

Dave T. Ashley’s Tool Set

Software Engineering Manual

Table of Contents
1	Introduction and Overview	3
2	Licensing	3
2.1	Licensing History	3
2.2	License	4
3	Use of Code Signing Key	4
4	Tool Set Design	4
5	Supported Platforms and Build Variants	5
6	Build Instructions	7
7	Coding Standards	7
8	Design Standards	7
9	Testing Standards, and Testing	7
10	Index	8

[bookmark: _Toc469780327]Introduction and Overview
David T. Ashley’s Tool Set[footnoteRef:1] (or DTATS) is the name given to the collection of all of Dave Ashley’s open-source software endeavors that are intended to run on a personal computer or server (rather than on an embedded system). Much of the tool set is geared towards embedded software development, but it is an eclectic collection. [1: I opted not to use the word toolset, as it tends to have the narrower meaning of add-ins for a specific application.]

This document contains the software engineering description of the tool set, and covers issues that are not generally of interest to casual users of the tool set. These issues include:
· Licensing.
· Procedures for using a code signing key.
· A description of supported platforms for which the tool set can be built.
· Build instructions for supported platforms.
· Design of the tool set.
· Coding standards.
· Design standards.
· Testing standards, and how the tool set is tested.
[bookmark: _Toc469780328]Licensing
[bookmark: _Toc469780329]Licensing History
I do embedded software for a living, and I’m aware that:
· Most consumers do not want to know anything about the origin of the software that operates their consumer electronic device. Making such information available to consumers simply annoys them.
· Open-source licenses impose a burden on manufacturers or embedded products because:
· They require the manufacturer to make information available to consumers, either in printed form or on the Internet, about which open-source software components are used in the products, AND
· They require modified software components to be made available as well.
My preference would be for a do what you want but you can’t sue me license for all software I make publicly available, but this is not considered an open-source license. I did have an e-mail exchange with Richard Stallman around 2000 about what constitutes an open-source license. Mr. Stallman is of the opinion that an open-source license must require notice to consumers of the inclusion of open-source software in an embedded product, and must require that modified source code be made public. (I consider both elements to be burdensome for manufacturers of embedded products.)
I’ve decided to take the following approach:
· Software intended for personal computers and servers is released under a minimally-restrictive open-source license (The MIT License, see §2.2).
· Software intended to be used in an embedded system is released under a minimally-restrictive license that does not meet the criteria to be an open-source license. (This license is yet to be authored.) This license does not require manufacturers of embedded products to advise consumers that the embedded product contains this software, and does not require users to make changes public.
[bookmark: _Ref469778841][bookmark: _Toc469780330]License
David T. Ashley’s Tool Set (source code, binaries, ancillary documents / files / images) is released under The MIT License. The license text is reproduced below.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
The intent of this choice of a license is to be as permissive as possible while still meeting the minimum requirements for an open-source license that limits liability.
[bookmark: _Toc469780331]Use of Code Signing Key
TBD.
I anticipate in the future that I will begin the practice of signing executables. In this section, I need to include the procedure.
[bookmark: _Toc469780332]Tool Set Design
The tool set consists of:
· A number of individual projects (i.e. programs):
· Each project consists of:
· The project files (Visual Studio project files, makefiles, etc.).
· Source and graphics files that are unique to the program (the main() function, icons, etc.).
· Each project may make reference to files in the shared source code (described below).
· Each project parameterizes the build (by setting preprocessor directives) for the target platform.
· Shared source code:
· Does not stand alone—it is included in a project.
· Parameterized for the build platforms and variants.
[bookmark: _Toc469780333]Supported Platforms and Build Variants
The C/C++ code of the tool set is build is parameterized in a number of nearly orthogonal directions, as described in Table 1.
Within a build, every C/C++ source file is parameterized identically. In a product like Microsoft Visual Studio, the parameterization would be done via GUI options that affect the options provided to the C/C++ compiler. In a more traditional command-line build, the parameterization would typically be done via the “-D” compiler option.
Within each category, constants are mutually exclusive, and only one constant can be applied, for example, “-D DTATS_PF=DTATS_PF_K_MFC”. In the future, bit-masked constants (not mutually exclusive) may be added.

[bookmark: _Ref469261471]Table 1: C/C++ Build Parameterization
	PREPROCESSOR CONSTANT
	DESCRIPTION

	Platform (DTATS_PF)

	DTATS_PF_K_WINAPI
	Windows API (also sometimes called Win32, although this a misnomer because 64-bit programs can also use the Win32 API).

	DTATS_PF_K_MFC
	Program uses the Windows API with the MFC.

	DTATS_PF_K_WIN_NET
	Windows .NET.

	DTATS_PF_K_UNIX
	Unix.

	DTATS_PF_K_LINUX
	Linix.

	DTATS_PF_K_FREE_BSD
	Free BSD.

	DTATS_PF_K_ANDROID
	Android.

	DTATS_PF_K_FIRE_OS
	Fire OS.

	DTATS_PF_K_IOS
	iOS.

	Machine Word Size (DTATS_MWS)
(Note: machine word size does not imply C or C++ default integer size.)

	DTATS_MWS_K_16
	The machine word size is 16 bits.

	DTATS_MWS_K_24
	The machine word size is 24 bits.

	DTATS_MWS_K_32
	The machine word size is 32 bits.

	DTATS_MWS_K_48
	The machine word size is 48 bits.

	DTATS_MWS_K_64
	The machine word size is 64 bits.

	DTATS_MWS_K_96
	The machine word size is 96 bits.

	DTATS_MWS_K_128
	The machine word size is 128 bits.

	DTATS_MWS_K_GT_128
	The machine word size is greater than 128 bits.

	Machine Integer Representation (DTATS_MIR)

	DTATS_MIR_K_2SCOMP
	Integers have traditional 2’s complement representation. (This allows many programming optimizations.)

	DTATS_MIR_K_SIGNMAG
	Integers have sign-magnitude representation.

	DTATS_MIR_K_OTHER
	Integers have another representation.

	Machine Floating Point Unit (DTATS_MFPU)

	DTATS_MFPU_K_NO
	Hardware does not have a floating-point processor, and floating-point operations are done in software (relatively slow).

	DTATS_MFPU_K_YES
	Hardware does have a floating-point processor, and floating-point operations are done in hardware (very quick).

	Program Type (DTATS_PROGTYPE)

	DTATS_PROGTYPE_K_CONSOLE
	Program is a console-mode utility (text input, text output).

	DTATS_PROGTYPE_K_WINGUI
	Program is a graphical program under Windows.

	DTATS_PROGTYPE_K_TCL_A_CONSOLE
	Program is a Tcl console-mode utility, using Tcl code ported by Dave Ashley around 2004.

	DTATS_PROGTYPE_K_TCL_A_GUI
	Program is a Tcl/Tk graphical utility, using Tcl/Tk code ported by Dave Ashley around 2004.

	DTATS_PROGTYPE_K_TCL_B_CONSOLE
	Placeholder for future console port of Tcl.

	DTATS_PROGTYPE_K_TCL_B_GUI
	Placeholder for future graphical port of Tcl/Tk.

	DTATS_PROGTYPE_K_CLIKE_A_CONSOLE
	Placeholder for future console application involving “Clike” (a yet-to-be-developed C-like scripting language).

	DTATS_PROGTYPE_K_CLIKE_A_GUI
	Placeholder for future graphical application involving “Clike” (a yet-to-be-developed C-like scripting language).

	DTATS_PROGTYPE_K_UNIX_SWING
	Program developed using Unix Swing.

	DTATS_PROGTYPE_K_UNIX_AWT
	Program developed using Unix AWT.

	DTATS_PROGTYPE_K_CGIBIN_HELPER
	Program is invoked by CGI-BIN PHP, Python, or Perl scripts to implement functionality awkward under the scripting language.

	DTATS_PROGTYPE_K_CGIBIN_HTTPD
	Program is a CGI-BIN program invoked directly by httpd to answer HTTP[S] requests.

	DTATS_PROGTYPE_K_CGIBIN_SERVER
	Program listens on TCP ports and is an actual HTTP[S] server.

	Screen Size (DTATS_SCREENSIZE)

	DTATS_SCREENSIZE_K_SMALL
	The target screen size is small (such as a cellphone).

	DTATS_SCREENSIZE_K_LARGE
	The target screen size is large (such as a tablet computer or computer).

	DTATS_SCREENSIZE_K_ADAPTIVE
	The program adapts to the screen size.

	Threadedness (DTATS_THREADS)

	DTATS_THREADS_K_1
	The program runs with one thread, a greatly reduced priority (essentially, a background program).

	DTATS_THREADS_K_1
	The program runs with one thread, at unmodified priority.

	DTATS_THREADS_K_2
	The program runs with two threads, at unmodified priority.

	DTATS_THREADS_K_3
	The program runs with three threads, at unmodified priority.

	DTATS_THREADS_K_4
	The program runs with four threads, at unmodified priority.

	DTATS_THREADS_ADAPT_HALF_CORES
	The program adapts to the number of cores on the target system, attempting to use one half of the cores, at normal priority.

	DTATS_THREADS_ADAPT_ALL_CORES
	The program adapts to the number of cores on the target system, attempting to use all of the cores, at normal priority.

	DTATS_THREADS_PROG_SET
	The number of threads and priority are set by the program (rather than at compile time).

[bookmark: _Toc469780334]Build Instructions
TBD.
[bookmark: _Toc469780335]Coding Standards
TBD.
[bookmark: _Toc469780336]Design Standards
TBD.
[bookmark: _Toc469780337]Testing Standards, and Testing
TBD.

[bookmark: _Toc469780338]Index

se_manual.docx	6/8	David T. Ashley (dashley@gmail.com)
David T. Ashley’s Tool Set, 3
DTATS, 3
testing, 3

[bookmark: _GoBack]
