1 |
//$Header$ |
2 |
// |
3 |
//******************************************************************************** |
4 |
//Copyright (C) 2003 David T. Ashley |
5 |
//******************************************************************************** |
6 |
//This program or source file is free software; you can redistribute it and/or |
7 |
//modify it under the terms of the GNU General Public License as published by |
8 |
//the Free Software Foundation; either version 2 of the License, or (at your |
9 |
//option) any later version. |
10 |
// |
11 |
//This program or source file is distributed in the hope that it will |
12 |
//be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 |
//GNU General Public License for more details. |
15 |
// |
16 |
//You may have received a copy of the GNU General Public License |
17 |
//along with this program; if not, write to the Free Software |
18 |
//Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
//******************************************************************************** |
20 |
// |
21 |
//This module finds the best rational approximations to a rational number |
22 |
//subject to constraints on the numerator and denominator using continued |
23 |
//fraction techniques. All of the algorithms employed are O(log N) so |
24 |
//there should be no problem obtaining results for any practical problem. |
25 |
//This module is based on a paper written by Dave Ashley and others providing |
26 |
//best rational approximation algorithms. |
27 |
// |
28 |
//INPUT PARAMETERS |
29 |
//---------------- |
30 |
//This subfunction accepts the following parameters, in order. |
31 |
// |
32 |
// (a) The numerator of the number whose best rational approximation is to |
33 |
// be found (max 1000 digits). |
34 |
// |
35 |
// (b) The denominator of the number whose best rational approximation is to |
36 |
// be found (max 1000 digits). |
37 |
// |
38 |
// (c) The largest allowable numerator of the approximations, or "0" if the numerator |
39 |
// is unconstrained (max 1000 digits). |
40 |
// |
41 |
// (d) The largest allowable denominator of the approximations, or "0" if the denominator |
42 |
// is unconstrained (max 1000 digits). |
43 |
// |
44 |
// (e) The number of neighbors to the left of the specified number to return (max 1000). |
45 |
// |
46 |
// (f) The number of neighbors to the right of the specified number to return (max 1000). |
47 |
// |
48 |
// (g) The number of significant figures to use in floating-point results (note that |
49 |
// "significant figures" includes the numbers before the decimal point as well as |
50 |
// after). The maximum value here is 1000. |
51 |
// |
52 |
// (h) The maximum number of CPU seconds to expend calculating (max 1000). |
53 |
// |
54 |
// NOTE (1): Numerator and denominator may not both be unconstrained. |
55 |
// |
56 |
//OUTPUT RESULTS |
57 |
//-------------- |
58 |
//The notation below gives the outputs of the program. In some cases, [i] notation |
59 |
//is used to indicate line numbers. |
60 |
// |
61 |
//[01] An overall success or failure code for the operation, as a string. |
62 |
// Valid responses are: |
63 |
// S : Success. |
64 |
// FNPAR : The number of command-line parameters was wrong. |
65 |
// FCPU : The operation failed because ran out of CPU time. |
66 |
// FNUM : The operation failed because the numerator of the rational number whose |
67 |
// neighbors are to be found was invalid or too large. |
68 |
// FDEN : The operation failed because the denominator of the rational number whose |
69 |
// neighbors are to be found was invalid or too large. |
70 |
// FNUMMAX : The operation failed because the numerator limit was invalid or |
71 |
// too large. |
72 |
// FDENMAX : The operation failed because the denominator limit was invalid |
73 |
// or too large. |
74 |
// FLEFT : The operation failed because the number of left neighbors requested |
75 |
// was invalid or too large. |
76 |
// FRIGHT : The operation failed because the number of right neighbors requested |
77 |
// was invalid or too large. |
78 |
// FSIG : The number of significant figures specified was invalid. |
79 |
// FCPU : The CPU time limit was invalid. |
80 |
// FGEN : General failure code (catchall, if anything else is possible). |
81 |
// |
82 |
// For all failure codes, there will be no additional output if a failure code |
83 |
// appears on the first line. |
84 |
//[02] The total number of lines in the output from the program, including the start |
85 |
// and ending lines. |
86 |
//[03] The fully normalized numerator entered. This means it has been |
87 |
// stripped of all weird characters, etc. This can be used by the |
88 |
// PHP script to repopulate form boxes. |
89 |
//[04] The fully normalized denominator entered. |
90 |
//[05] The fully normalized maximum numerator entered. |
91 |
//[06] The fully normalized maximum denominator entered. |
92 |
//[07] The fully normalized number of left neighbors entered. |
93 |
//[08] The fully normalized number of right neighbors entered. |
94 |
//[09] The fully normalized number of significant figures requested. |
95 |
//[10] The fully normalized number of CPU seconds allowed. |
96 |
// |
97 |
//The next section of the output contains the decimal form of the number that is to |
98 |
//be approximated and also slightly more data about the number to be approximated. |
99 |
//The PHP script may receive a number which is either specified as |
100 |
//a rational number or as a decimal number, and the PHP script must convert it to a |
101 |
//rational number so this program can process it. Depending on what the PHP script |
102 |
//was given as input, it may not have the decimal form. |
103 |
// |
104 |
//[11] Decimal equivalent of number entered, avoiding scientific notation if |
105 |
// possible but using it if necessary. |
106 |
//[12] Scientific notation equivalent of number entered. |
107 |
//[13] GCD of numerator and denominator of [04] and [05]. |
108 |
//[14] Numerator of reduced rational form. |
109 |
//[15] Denominator of reduced rational form. |
110 |
// |
111 |
//This secion contains "pointers" to the major sections which may follow. |
112 |
//All line numbers below are engineered so that "1" is the first line number |
113 |
//in the output block and "0" represents the non-existence of the section. |
114 |
//[16] Index to results section (code "NEIGHBORS"). |
115 |
//[17] Index to CF decomp of number to approximate (code "CFINPUT"). |
116 |
//[18] Index to CF decomp of reciprocal of number to approximate (code "CFINPUTRECIP"). |
117 |
//[19] Index to CF decomp of corner point (code "CFCORNER"). |
118 |
//[20] Index to CF decomp of reciprocal of corner point (code "CFCORNERRECIP"). |
119 |
// |
120 |
//This section contains the neighbors of the number to approximate. The number of |
121 |
//neighbors is strongly influenced by the number of neighbors specified on the |
122 |
//CGI-BIN form. However, there may be fewer neighbors returned if 0/1 or the last |
123 |
//formable rational number is encountered. |
124 |
//[N+ 0] Constant "NEIGHBORS". |
125 |
//[N+ 1] Number of neighbors to follow. |
126 |
//[N+ 2] Subscript of first neighbor, from left to right. Subscripts are assigned so they rank |
127 |
// the neighbors in relation to the number to approximate. "0" indicates that the number |
128 |
// is the number to approximate, i.e. the number is present in the rectangular region of |
129 |
// the integer lattice being considered. |
130 |
//[N+ 3] 1 if the number is the corner point, or 0 otherwise. |
131 |
//[N+ 4] Numerator of number, irreducible with respect to denominator. |
132 |
//[N+ 5] Denominator of number, irreducible with respect to numerator. |
133 |
//[N+ 6] Decimal form of neighbor, avoiding scientific notation if possible. |
134 |
//[N+ 7] Decimal form of neighbor, using scientific notation. |
135 |
//[N+ 8] Sign of error. Will be "-" for negative error or "+" otherwise. |
136 |
//[N+ 9] Numerator of absolute value of error, irreducible with respect to denominator. |
137 |
//[N+10] Denominator of absolute value of error, irreducible with respect to numerator. |
138 |
//[N+11] Decimal form of absolute value of error, avoiding scientific notation if possible. |
139 |
//[N+12] Decimal form of absolute value of error, using scientific notation. |
140 |
//[N+13] Repeats at [N+2] for next neighbor, out to as many neighbors specified in |
141 |
// [N+1] |
142 |
// |
143 |
//The next section of the output contains the continued fraction decomposition |
144 |
//of the number to approximate. |
145 |
//[N+ 0] Constant "CFINPUT". |
146 |
//[N+ 1] Number of partial quotients to follow. |
147 |
//[N+ 2] k, subscript of iteration (first subscript is 0). |
148 |
//[N+ 3] dividend_k |
149 |
//[N+ 4] divisor_k |
150 |
//[N+ 5] a_k |
151 |
//[N+ 6] remainder_k |
152 |
//[N+ 7] p_k |
153 |
//[N+ 8] q_k |
154 |
//[N+ 9] k+1 ... repeats as with element [N+2] out to as many partial |
155 |
// quotients specified in [N+1]. |
156 |
// |
157 |
//The next section of the output contains the continued fraction decomposition |
158 |
//of the reciprocal of the number to approximate. If the number to approximate is 0, |
159 |
//this entire section will be omitted. |
160 |
//[N+ 0] Constant "CFINPUTRECIP". |
161 |
//[N+ 1] Number of partial quotients to follow. |
162 |
//[N+ 2] k, subscript of iteration (first subscript is 0). |
163 |
//[N+ 3] dividend_k |
164 |
//[N+ 4] divisor_k |
165 |
//[N+ 5] a_k |
166 |
//[N+ 6] remainder_k |
167 |
//[N+ 7] p_k |
168 |
//[N+ 8] q_k |
169 |
//[N+ 9] k+1 ... repeats as with element [N+2] out to as many partial |
170 |
// quotients specified in [N+1]. |
171 |
// |
172 |
//The next section of the output contains the continued fraction decomposition of the |
173 |
//the corner point. If the numerator and denominator were not both constrained, |
174 |
//this section will be omitted. |
175 |
//[N+ 0] Constant "CCORNER". |
176 |
//[N+ 1] Number of partial quotients to follow. |
177 |
//[N+ 2] k, subscript of iteration (first subscript is 0). |
178 |
//[N+ 3] dividend_k |
179 |
//[N+ 4] divisor_k |
180 |
//[N+ 5] a_k |
181 |
//[N+ 6] remainder_k |
182 |
//[N+ 7] p_k |
183 |
//[N+ 8] q_k |
184 |
//[N+ 9] k+1 ... repeats as with element [N+2] out to as many partial |
185 |
// quotients specified in [N+1]. |
186 |
// |
187 |
//The next section of the output contains the continued fraction decomposition of the |
188 |
//reciprocal of the corner point. If the numerator and denominator were not both constrained, |
189 |
//this section will be omitted. |
190 |
//[N+ 0] Constant "CCORNERRECIP". |
191 |
//[N+ 1] Number of partial quotients to follow. |
192 |
//[N+ 2] k, subscript of iteration (first subscript is 0). |
193 |
//[N+ 3] dividend_k |
194 |
//[N+ 4] divisor_k |
195 |
//[N+ 5] a_k |
196 |
//[N+ 6] remainder_k |
197 |
//[N+ 7] p_k |
198 |
//[N+ 8] q_k |
199 |
//[N+ 9] k+1 ... repeats as with element [N+2] out to as many partial |
200 |
// quotients specified in [N+1]. |
201 |
// |
202 |
//The next section is the footer. |
203 |
//[N] Constant "S", terminator line. |
204 |
|
205 |
//The return value (exit code) from this subfunction is always 0. |
206 |
// |
207 |
|
208 |
#define MODULE_SUBFUNC_CFBRAP |
209 |
|
210 |
#include <assert.h> |
211 |
#include <ctype.h> |
212 |
#include <stddef.h> |
213 |
#include <stdio.h> |
214 |
#include <stdlib.h> |
215 |
#include <string.h> |
216 |
#include <time.h> |
217 |
|
218 |
#include <gmp.h> |
219 |
|
220 |
#include "auxfuncs.h" |
221 |
#include "subfunc_cfbrap.h" |
222 |
#include "sieve_eratosthenes.h" |
223 |
|
224 |
|
225 |
/****************************************************************************/ |
226 |
/* MODULE CONSTANTS */ |
227 |
/****************************************************************************/ |
228 |
#define SUBFUNC_CFBRAP_MAX_IN_DIGITS (1000) |
229 |
//The maximum number of decimal digits that will be allowed in input rational |
230 |
//numbers and limits. |
231 |
#define SUBFUNC_CFBRAP_MAX_NEIGHBORS (1000) |
232 |
//The maximum number of integer lattice rectangular region neighbors that will |
233 |
//be allowed. |
234 |
|
235 |
/****************************************************************************/ |
236 |
/* MODULE DATA STRUCTURES */ |
237 |
/****************************************************************************/ |
238 |
//A structure to hold all input parameters from the command-line. |
239 |
// |
240 |
struct SUBFUNC_CFBRAP_input_par_struct |
241 |
{ |
242 |
mpz_t num; |
243 |
mpz_t den; |
244 |
mpz_t num_max; |
245 |
mpz_t den_max; |
246 |
int lneighbors; |
247 |
int rneighbors; |
248 |
int sig_fig; |
249 |
int max_cpu; |
250 |
}; |
251 |
|
252 |
//A structure to hold a single line that might be output from this |
253 |
//program. |
254 |
struct SUBFUNC_CFBRAP_line_buffer |
255 |
{ |
256 |
char *line; |
257 |
//The line itself, with zero terminator. |
258 |
}; |
259 |
|
260 |
//A structure to hold the collection of lines that will eventually be |
261 |
//output from this program. These must be buffered because it is |
262 |
//not known how many there will be. |
263 |
// |
264 |
struct SUBFUNC_CFBRAP_program_output_buffer |
265 |
{ |
266 |
int nlines; |
267 |
//The number of lines. |
268 |
struct SUBFUNC_CFBRAP_line_buffer *lines; |
269 |
//Pointer to the first element of array of line structures. |
270 |
}; |
271 |
|
272 |
|
273 |
/****************************************************************************/ |
274 |
/* PROGRAM OUTPUT BUFFER MANIPULATION FUNCTIONS */ |
275 |
/****************************************************************************/ |
276 |
void SUBFUNC_CFBRAP_pob_init(struct SUBFUNC_CFBRAP_program_output_buffer *arg) |
277 |
{ |
278 |
arg->nlines = 0; |
279 |
arg->lines = NULL; |
280 |
} |
281 |
|
282 |
void SUBFUNC_CFBRAP_pob_destroy(struct SUBFUNC_CFBRAP_program_output_buffer *arg) |
283 |
{ |
284 |
int i; |
285 |
|
286 |
for (i=0; i<arg->nlines; i++) |
287 |
{ |
288 |
free(arg->lines[i].line); |
289 |
} |
290 |
|
291 |
if (i) |
292 |
free(arg->lines); |
293 |
|
294 |
arg->nlines = 0; |
295 |
arg->lines = NULL; |
296 |
} |
297 |
|
298 |
//Tacks a line onto the output buffer. |
299 |
// |
300 |
void SUBFUNC_CFBRAP_pob_tack_line(struct SUBFUNC_CFBRAP_program_output_buffer *arg, |
301 |
const char *line) |
302 |
{ |
303 |
int tack_strlen; |
304 |
//String length of the line to tack. Must allocate one more space for it. |
305 |
|
306 |
//Figure out how long the input string is. |
307 |
tack_strlen = strlen(line); |
308 |
|
309 |
//If there are no lines in the buffer, allocate space for 1 else realloc. |
310 |
if (!arg->nlines) |
311 |
arg->lines = malloc(sizeof(struct SUBFUNC_CFBRAP_line_buffer)); |
312 |
else |
313 |
arg->lines = realloc(arg->lines, (arg->nlines + 1) * sizeof(struct SUBFUNC_CFBRAP_line_buffer)); |
314 |
|
315 |
//Set up for the line itself. |
316 |
arg->lines[arg->nlines].line = malloc(tack_strlen + 1); |
317 |
|
318 |
//Copy in the line. |
319 |
strcpy(arg->lines[arg->nlines].line, line); |
320 |
|
321 |
//We now have one more line. |
322 |
arg->nlines++; |
323 |
} |
324 |
|
325 |
|
326 |
//Changes a line in the buffer to be something different. The first line is "1". If the line |
327 |
//does not already exist, this function does nothing. |
328 |
// |
329 |
void SUBFUNC_CFBRAP_pob_modify_line(struct SUBFUNC_CFBRAP_program_output_buffer *arg, |
330 |
int which_line, |
331 |
const char *new_line) |
332 |
{ |
333 |
int modify_strlen; |
334 |
//String length of the line to swap in. Must allocate one more space for it. |
335 |
|
336 |
//Figure out how long the input string is. |
337 |
modify_strlen = strlen(new_line); |
338 |
|
339 |
//The line number specified must be at least number 1 and the line must already |
340 |
//exist, else do nothing. |
341 |
if ((which_line >= 1) && (which_line <= arg->nlines)) |
342 |
{ |
343 |
//Reallocate the space to hold the new line and copy it in. |
344 |
arg->lines[which_line-1].line = realloc(arg->lines[which_line-1].line, modify_strlen + 1); |
345 |
strcpy(arg->lines[which_line-1].line, new_line); |
346 |
} |
347 |
} |
348 |
|
349 |
|
350 |
//Dumps the entire output buffer to the standard output. |
351 |
// |
352 |
void SUBFUNC_CFBRAP_pob_dump(struct SUBFUNC_CFBRAP_program_output_buffer *arg) |
353 |
{ |
354 |
int i; |
355 |
|
356 |
for (i=0; i<arg->nlines; i++) |
357 |
{ |
358 |
printf("%s\n", arg->lines[i].line); |
359 |
} |
360 |
} |
361 |
|
362 |
|
363 |
/****************************************************************************/ |
364 |
/* INPUT PARAMETER BLOCK MANIPULATION */ |
365 |
/****************************************************************************/ |
366 |
//Initializes the input parameter block (allocates initial storage). |
367 |
// |
368 |
void SUBFUNC_CFBRAP_ipblock_init(struct SUBFUNC_CFBRAP_input_par_struct *arg) |
369 |
{ |
370 |
mpz_init(arg->num); |
371 |
mpz_init(arg->den); |
372 |
mpz_init(arg->num_max); |
373 |
mpz_init(arg->den_max); |
374 |
arg->lneighbors = 1; |
375 |
arg->rneighbors = 1; |
376 |
arg->sig_fig = 9; |
377 |
arg->max_cpu = 20; |
378 |
} |
379 |
|
380 |
//Deallocates the input parameter block (deallocates storage). |
381 |
// |
382 |
void SUBFUNC_CFBRAP_ipblock_destroy(struct SUBFUNC_CFBRAP_input_par_struct *arg) |
383 |
{ |
384 |
mpz_clear(arg->num); |
385 |
mpz_clear(arg->den); |
386 |
mpz_clear(arg->num_max); |
387 |
mpz_clear(arg->den_max); |
388 |
arg->lneighbors = 1; |
389 |
arg->rneighbors = 1; |
390 |
arg->sig_fig = 9; |
391 |
arg->max_cpu = 20; |
392 |
} |
393 |
|
394 |
|
395 |
/****************************************************************************/ |
396 |
/* ERROR PATH OUTPUT */ |
397 |
/****************************************************************************/ |
398 |
//Dumps an error code and associated proper information out to the output stream |
399 |
//and returns. |
400 |
// |
401 |
int SUBFUNC_CFBRAP_error_dump(int argc, char *argv[]) |
402 |
{ |
403 |
return 0; |
404 |
} |
405 |
|
406 |
|
407 |
/****************************************************************************/ |
408 |
/* INPUT PARAMETER PARSING */ |
409 |
/****************************************************************************/ |
410 |
//Parses input parameters, stuffs the structure containing these parameters, |
411 |
//and in the event of an error will return 1 and will stuff the output |
412 |
//buffer with only the error code. |
413 |
int SUBFUNC_CFBRAP_parse_input_pars( |
414 |
int argc, |
415 |
char *argv[], |
416 |
struct SUBFUNC_CFBRAP_input_par_struct *ipb, |
417 |
struct SUBFUNC_CFBRAP_program_output_buffer *pob |
418 |
) |
419 |
{ |
420 |
char *scratch = NULL; |
421 |
|
422 |
//There should be 8 input parameters in addition to the 2 required (the |
423 |
//program name plus the subfunction code. Error out if wrong. |
424 |
if (argc != 10) |
425 |
{ |
426 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FNPAR"); |
427 |
return(1); |
428 |
} |
429 |
|
430 |
//The first input parameter should be the numerator of the rational number to |
431 |
//approximate. We can parse this out and place it into the input parameter |
432 |
//block. |
433 |
scratch = malloc(strlen(argv[2]) + 1); |
434 |
strcpy(scratch, argv[2]); |
435 |
AUXFUNCS_remove_non_digits(scratch); |
436 |
AUXFUNCS_remove_leading_zeros(scratch); |
437 |
|
438 |
if (!strlen(scratch)) |
439 |
{ |
440 |
//The only possibility is that this was zero. Assign zero. |
441 |
mpz_set_ui(ipb->num, 0); |
442 |
} |
443 |
else |
444 |
{ |
445 |
//What is left must be a valid integer. We need to be sure it is not too |
446 |
//long. |
447 |
if (strlen(scratch) > SUBFUNC_CFBRAP_MAX_IN_DIGITS) |
448 |
{ |
449 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FNUM"); |
450 |
return(1); |
451 |
} |
452 |
else |
453 |
{ |
454 |
mpz_set_str(ipb->num, scratch, 10); |
455 |
} |
456 |
} |
457 |
|
458 |
//The second input parameter should be the denominator of the rational number to |
459 |
//approximate. We can parse this out and place it into the input parameter |
460 |
//block. |
461 |
scratch = realloc(scratch, strlen(argv[3]) + 1); |
462 |
strcpy(scratch, argv[3]); |
463 |
AUXFUNCS_remove_non_digits(scratch); |
464 |
AUXFUNCS_remove_leading_zeros(scratch); |
465 |
|
466 |
if (!strlen(scratch)) |
467 |
{ |
468 |
//The only possibility is that this was zero. This is a no-no. |
469 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FDEN"); |
470 |
return(1); |
471 |
} |
472 |
else |
473 |
{ |
474 |
//What is left must be a valid integer. We need to be sure it is not too |
475 |
//long. |
476 |
if (strlen(scratch) > SUBFUNC_CFBRAP_MAX_IN_DIGITS) |
477 |
{ |
478 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FDEN"); |
479 |
return(1); |
480 |
} |
481 |
else |
482 |
{ |
483 |
mpz_set_str(ipb->den, scratch, 10); |
484 |
} |
485 |
} |
486 |
|
487 |
//The third input parameter should be the max numerator value for approximations. |
488 |
//We can parse this out and place it into the input parameter |
489 |
//block. |
490 |
scratch = malloc(strlen(argv[4]) + 1); |
491 |
strcpy(scratch, argv[4]); |
492 |
AUXFUNCS_remove_non_digits(scratch); |
493 |
AUXFUNCS_remove_leading_zeros(scratch); |
494 |
|
495 |
if (!strlen(scratch)) |
496 |
{ |
497 |
//The only possibility is that this was zero. Assign zero. |
498 |
mpz_set_ui(ipb->num_max, 0); |
499 |
} |
500 |
else |
501 |
{ |
502 |
//What is left must be a valid integer. We need to be sure it is not too |
503 |
//long. |
504 |
if (strlen(scratch) > SUBFUNC_CFBRAP_MAX_IN_DIGITS) |
505 |
{ |
506 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FNUMMAX"); |
507 |
return(1); |
508 |
} |
509 |
else |
510 |
{ |
511 |
mpz_set_str(ipb->num_max, scratch, 10); |
512 |
} |
513 |
} |
514 |
|
515 |
//The fourth input parameter should be the max denominator value for approximations. |
516 |
//We can parse this out and place it into the input parameter |
517 |
//block. |
518 |
scratch = malloc(strlen(argv[5]) + 1); |
519 |
strcpy(scratch, argv[5]); |
520 |
AUXFUNCS_remove_non_digits(scratch); |
521 |
AUXFUNCS_remove_leading_zeros(scratch); |
522 |
|
523 |
if (!strlen(scratch)) |
524 |
{ |
525 |
//The only possibility is that this was zero. Assign zero. |
526 |
mpz_set_ui(ipb->den_max, 0); |
527 |
} |
528 |
else |
529 |
{ |
530 |
//What is left must be a valid integer. We need to be sure it is not too |
531 |
//long. |
532 |
if (strlen(scratch) > SUBFUNC_CFBRAP_MAX_IN_DIGITS) |
533 |
{ |
534 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FDENMAX"); |
535 |
return(1); |
536 |
} |
537 |
else |
538 |
{ |
539 |
mpz_set_str(ipb->den_max, scratch, 10); |
540 |
} |
541 |
} |
542 |
|
543 |
//The fifth input parameter should be the number of desired left neighbors. |
544 |
//We can parse this out and place it into the input parameter |
545 |
//block. |
546 |
scratch = malloc(strlen(argv[6]) + 1); |
547 |
strcpy(scratch, argv[6]); |
548 |
AUXFUNCS_remove_non_digits(scratch); |
549 |
AUXFUNCS_remove_leading_zeros(scratch); |
550 |
|
551 |
if (!strlen(scratch)) |
552 |
{ |
553 |
//The only possibility is that this was zero. Assign 0. |
554 |
ipb->lneighbors = 0; |
555 |
} |
556 |
else |
557 |
{ |
558 |
//What is left must be a valid integer. Scan it in. |
559 |
// |
560 |
if (strlen(scratch) > SUBFUNC_CFBRAP_MAX_IN_DIGITS) |
561 |
{ |
562 |
SUBFUNC_CFBRAP_pob_tack_line(pob, "FDENMAX"); |
563 |
return(1); |
564 |
} |
565 |
else |
566 |
{ |
567 |
mpz_set_str(ipb->den_max, scratch, 10); |
568 |
} |
569 |
} |
570 |
|
571 |
return(0); |
572 |
} |
573 |
|
574 |
|
575 |
/****************************************************************************/ |
576 |
/* MAIN CALCULATION FUNCTION */ |
577 |
/****************************************************************************/ |
578 |
//Carries out the best rational approximation calculation and display, knowing that |
579 |
//all parameters have been validated. |
580 |
// |
581 |
int SUBFUNC_CFBRAP_calc_brap(int argc, char *argv[]) |
582 |
{ |
583 |
return 0; |
584 |
} |
585 |
|
586 |
|
587 |
|
588 |
//Main function. Checks parameters and carries out the calculations. |
589 |
// |
590 |
int SUBFUNC_CFBRAP_main(int argc, char *argv[]) |
591 |
{ |
592 |
//The time snapshot against which we compare to see if we're over |
593 |
//time budget. |
594 |
time_t time_snapshot; |
595 |
|
596 |
struct SUBFUNC_CFBRAP_input_par_struct ipb; |
597 |
//The input parameters. |
598 |
|
599 |
struct SUBFUNC_CFBRAP_program_output_buffer pob; |
600 |
//The program output. Output is buffered because there are some lines |
601 |
//early that point to later lines. |
602 |
|
603 |
//Scratch structure. |
604 |
char *scratchstr = NULL; |
605 |
|
606 |
//Initialize the input parameter structure. |
607 |
SUBFUNC_CFBRAP_ipblock_init(&ipb); |
608 |
|
609 |
//Initialize the output buffer. |
610 |
SUBFUNC_CFBRAP_pob_init(&pob); |
611 |
|
612 |
//Parse, check, etc. the input parameters. If there are any issues, |
613 |
//Jump to the end and just dump what we have. |
614 |
if (SUBFUNC_CFBRAP_parse_input_pars(argc, argv, &ipb, &pob)) |
615 |
goto error_return; |
616 |
|
617 |
|
618 |
//This is a success event. What this means is that we should store the output, |
619 |
//which will then be send to stdout. |
620 |
// |
621 |
//Initial success code. |
622 |
SUBFUNC_CFBRAP_pob_tack_line(&pob, "S"); |
623 |
// |
624 |
//Total number of lines in the program. This is just a placeholder, until we know how |
625 |
//many. |
626 |
SUBFUNC_CFBRAP_pob_tack_line(&pob, "NUMLINES_PLACEHOLDER"); |
627 |
// |
628 |
//Numerator of number to be approximated. |
629 |
scratchstr = realloc(scratchstr, mpz_sizeinbase(ipb.num, 10) + 20); |
630 |
gmp_sprintf(scratchstr, "%Zd", ipb.num); |
631 |
SUBFUNC_CFBRAP_pob_tack_line(&pob, scratchstr); |
632 |
// |
633 |
//Denominator of number to be approximated. |
634 |
scratchstr = realloc(scratchstr, mpz_sizeinbase(ipb.den, 10) + 20); |
635 |
gmp_sprintf(scratchstr, "%Zd", ipb.den); |
636 |
SUBFUNC_CFBRAP_pob_tack_line(&pob, scratchstr); |
637 |
// |
638 |
//Maximum numerator of approximations. |
639 |
scratchstr = realloc(scratchstr, mpz_sizeinbase(ipb.num_max, 10) + 20); |
640 |
gmp_sprintf(scratchstr, "%Zd", ipb.num_max); |
641 |
SUBFUNC_CFBRAP_pob_tack_line(&pob, scratchstr); |
642 |
// |
643 |
//Maximum denominator of approximations. |
644 |
scratchstr = realloc(scratchstr, mpz_sizeinbase(ipb.den_max, 10) + 20); |
645 |
gmp_sprintf(scratchstr, "%Zd", ipb.den_max); |
646 |
SUBFUNC_CFBRAP_pob_tack_line(&pob, scratchstr); |
647 |
// |
648 |
//Fill in the number of lines that we have. This replaces the placeholder. |
649 |
{ |
650 |
char buf[100]; |
651 |
|
652 |
sprintf(buf, "%d", pob.nlines); |
653 |
SUBFUNC_CFBRAP_pob_modify_line(&pob, 2, buf); |
654 |
} |
655 |
|
656 |
|
657 |
|
658 |
error_return: |
659 |
|
660 |
//Destroy the input parameter structure. |
661 |
SUBFUNC_CFBRAP_ipblock_destroy(&ipb); |
662 |
|
663 |
//Dump the output to STDOUT. |
664 |
SUBFUNC_CFBRAP_pob_dump(&pob); |
665 |
|
666 |
//Destroy the output buffer. |
667 |
SUBFUNC_CFBRAP_pob_destroy(&pob); |
668 |
|
669 |
//Always return 0. |
670 |
return(0); |
671 |
} |
672 |
|
673 |
//******************************************************************************** |
674 |
// $Log: subfunc_cfbrap.c,v $ |
675 |
// Revision 1.3 2003/07/01 03:46:58 dtashley |
676 |
// Edits towards working continued fraction best rational approximation |
677 |
// functionality. |
678 |
// |
679 |
// Revision 1.2 2003/06/29 22:58:55 dtashley |
680 |
// Extra log line removed. |
681 |
// |
682 |
// Revision 1.1 2003/06/29 22:56:47 dtashley |
683 |
// Initial checkin. |
684 |
//******************************************************************************** |
685 |
// End of SUBFUNC_CFBRAP.C. |
686 |
//******************************************************************************** |