Parent Directory | Revision Log
Initial commit.
1 | dashley | 25 | // $Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/c_datd/gmp_ints.c,v 1.22 2002/01/27 15:18:44 dtashley Exp $ |
2 | |||
3 | //-------------------------------------------------------------------------------- | ||
4 | //Copyright 2001 David T. Ashley | ||
5 | //------------------------------------------------------------------------------------------------- | ||
6 | //This source code and any program in which it is compiled/used is provided under the GNU GENERAL | ||
7 | //PUBLIC LICENSE, Version 3, full license text below. | ||
8 | //------------------------------------------------------------------------------------------------- | ||
9 | // GNU GENERAL PUBLIC LICENSE | ||
10 | // Version 3, 29 June 2007 | ||
11 | // | ||
12 | // Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> | ||
13 | // Everyone is permitted to copy and distribute verbatim copies | ||
14 | // of this license document, but changing it is not allowed. | ||
15 | // | ||
16 | // Preamble | ||
17 | // | ||
18 | // The GNU General Public License is a free, copyleft license for | ||
19 | //software and other kinds of works. | ||
20 | // | ||
21 | // The licenses for most software and other practical works are designed | ||
22 | //to take away your freedom to share and change the works. By contrast, | ||
23 | //the GNU General Public License is intended to guarantee your freedom to | ||
24 | //share and change all versions of a program--to make sure it remains free | ||
25 | //software for all its users. We, the Free Software Foundation, use the | ||
26 | //GNU General Public License for most of our software; it applies also to | ||
27 | //any other work released this way by its authors. You can apply it to | ||
28 | //your programs, too. | ||
29 | // | ||
30 | // When we speak of free software, we are referring to freedom, not | ||
31 | //price. Our General Public Licenses are designed to make sure that you | ||
32 | //have the freedom to distribute copies of free software (and charge for | ||
33 | //them if you wish), that you receive source code or can get it if you | ||
34 | //want it, that you can change the software or use pieces of it in new | ||
35 | //free programs, and that you know you can do these things. | ||
36 | // | ||
37 | // To protect your rights, we need to prevent others from denying you | ||
38 | //these rights or asking you to surrender the rights. Therefore, you have | ||
39 | //certain responsibilities if you distribute copies of the software, or if | ||
40 | //you modify it: responsibilities to respect the freedom of others. | ||
41 | // | ||
42 | // For example, if you distribute copies of such a program, whether | ||
43 | //gratis or for a fee, you must pass on to the recipients the same | ||
44 | //freedoms that you received. You must make sure that they, too, receive | ||
45 | //or can get the source code. And you must show them these terms so they | ||
46 | //know their rights. | ||
47 | // | ||
48 | // Developers that use the GNU GPL protect your rights with two steps: | ||
49 | //(1) assert copyright on the software, and (2) offer you this License | ||
50 | //giving you legal permission to copy, distribute and/or modify it. | ||
51 | // | ||
52 | // For the developers' and authors' protection, the GPL clearly explains | ||
53 | //that there is no warranty for this free software. For both users' and | ||
54 | //authors' sake, the GPL requires that modified versions be marked as | ||
55 | //changed, so that their problems will not be attributed erroneously to | ||
56 | //authors of previous versions. | ||
57 | // | ||
58 | // Some devices are designed to deny users access to install or run | ||
59 | //modified versions of the software inside them, although the manufacturer | ||
60 | //can do so. This is fundamentally incompatible with the aim of | ||
61 | //protecting users' freedom to change the software. The systematic | ||
62 | //pattern of such abuse occurs in the area of products for individuals to | ||
63 | //use, which is precisely where it is most unacceptable. Therefore, we | ||
64 | //have designed this version of the GPL to prohibit the practice for those | ||
65 | //products. If such problems arise substantially in other domains, we | ||
66 | //stand ready to extend this provision to those domains in future versions | ||
67 | //of the GPL, as needed to protect the freedom of users. | ||
68 | // | ||
69 | // Finally, every program is threatened constantly by software patents. | ||
70 | //States should not allow patents to restrict development and use of | ||
71 | //software on general-purpose computers, but in those that do, we wish to | ||
72 | //avoid the special danger that patents applied to a free program could | ||
73 | //make it effectively proprietary. To prevent this, the GPL assures that | ||
74 | //patents cannot be used to render the program non-free. | ||
75 | // | ||
76 | // The precise terms and conditions for copying, distribution and | ||
77 | //modification follow. | ||
78 | // | ||
79 | // TERMS AND CONDITIONS | ||
80 | // | ||
81 | // 0. Definitions. | ||
82 | // | ||
83 | // "This License" refers to version 3 of the GNU General Public License. | ||
84 | // | ||
85 | // "Copyright" also means copyright-like laws that apply to other kinds of | ||
86 | //works, such as semiconductor masks. | ||
87 | // | ||
88 | // "The Program" refers to any copyrightable work licensed under this | ||
89 | //License. Each licensee is addressed as "you". "Licensees" and | ||
90 | //"recipients" may be individuals or organizations. | ||
91 | // | ||
92 | // To "modify" a work means to copy from or adapt all or part of the work | ||
93 | //in a fashion requiring copyright permission, other than the making of an | ||
94 | //exact copy. The resulting work is called a "modified version" of the | ||
95 | //earlier work or a work "based on" the earlier work. | ||
96 | // | ||
97 | // A "covered work" means either the unmodified Program or a work based | ||
98 | //on the Program. | ||
99 | // | ||
100 | // To "propagate" a work means to do anything with it that, without | ||
101 | //permission, would make you directly or secondarily liable for | ||
102 | //infringement under applicable copyright law, except executing it on a | ||
103 | //computer or modifying a private copy. Propagation includes copying, | ||
104 | //distribution (with or without modification), making available to the | ||
105 | //public, and in some countries other activities as well. | ||
106 | // | ||
107 | // To "convey" a work means any kind of propagation that enables other | ||
108 | //parties to make or receive copies. Mere interaction with a user through | ||
109 | //a computer network, with no transfer of a copy, is not conveying. | ||
110 | // | ||
111 | // An interactive user interface displays "Appropriate Legal Notices" | ||
112 | //to the extent that it includes a convenient and prominently visible | ||
113 | //feature that (1) displays an appropriate copyright notice, and (2) | ||
114 | //tells the user that there is no warranty for the work (except to the | ||
115 | //extent that warranties are provided), that licensees may convey the | ||
116 | //work under this License, and how to view a copy of this License. If | ||
117 | //the interface presents a list of user commands or options, such as a | ||
118 | //menu, a prominent item in the list meets this criterion. | ||
119 | // | ||
120 | // 1. Source Code. | ||
121 | // | ||
122 | // The "source code" for a work means the preferred form of the work | ||
123 | //for making modifications to it. "Object code" means any non-source | ||
124 | //form of a work. | ||
125 | // | ||
126 | // A "Standard Interface" means an interface that either is an official | ||
127 | //standard defined by a recognized standards body, or, in the case of | ||
128 | //interfaces specified for a particular programming language, one that | ||
129 | //is widely used among developers working in that language. | ||
130 | // | ||
131 | // The "System Libraries" of an executable work include anything, other | ||
132 | //than the work as a whole, that (a) is included in the normal form of | ||
133 | //packaging a Major Component, but which is not part of that Major | ||
134 | //Component, and (b) serves only to enable use of the work with that | ||
135 | //Major Component, or to implement a Standard Interface for which an | ||
136 | //implementation is available to the public in source code form. A | ||
137 | //"Major Component", in this context, means a major essential component | ||
138 | //(kernel, window system, and so on) of the specific operating system | ||
139 | //(if any) on which the executable work runs, or a compiler used to | ||
140 | //produce the work, or an object code interpreter used to run it. | ||
141 | // | ||
142 | // The "Corresponding Source" for a work in object code form means all | ||
143 | //the source code needed to generate, install, and (for an executable | ||
144 | //work) run the object code and to modify the work, including scripts to | ||
145 | //control those activities. However, it does not include the work's | ||
146 | //System Libraries, or general-purpose tools or generally available free | ||
147 | //programs which are used unmodified in performing those activities but | ||
148 | //which are not part of the work. For example, Corresponding Source | ||
149 | //includes interface definition files associated with source files for | ||
150 | //the work, and the source code for shared libraries and dynamically | ||
151 | //linked subprograms that the work is specifically designed to require, | ||
152 | //such as by intimate data communication or control flow between those | ||
153 | //subprograms and other parts of the work. | ||
154 | // | ||
155 | // The Corresponding Source need not include anything that users | ||
156 | //can regenerate automatically from other parts of the Corresponding | ||
157 | //Source. | ||
158 | // | ||
159 | // The Corresponding Source for a work in source code form is that | ||
160 | //same work. | ||
161 | // | ||
162 | // 2. Basic Permissions. | ||
163 | // | ||
164 | // All rights granted under this License are granted for the term of | ||
165 | //copyright on the Program, and are irrevocable provided the stated | ||
166 | //conditions are met. This License explicitly affirms your unlimited | ||
167 | //permission to run the unmodified Program. The output from running a | ||
168 | //covered work is covered by this License only if the output, given its | ||
169 | //content, constitutes a covered work. This License acknowledges your | ||
170 | //rights of fair use or other equivalent, as provided by copyright law. | ||
171 | // | ||
172 | // You may make, run and propagate covered works that you do not | ||
173 | //convey, without conditions so long as your license otherwise remains | ||
174 | //in force. You may convey covered works to others for the sole purpose | ||
175 | //of having them make modifications exclusively for you, or provide you | ||
176 | //with facilities for running those works, provided that you comply with | ||
177 | //the terms of this License in conveying all material for which you do | ||
178 | //not control copyright. Those thus making or running the covered works | ||
179 | //for you must do so exclusively on your behalf, under your direction | ||
180 | //and control, on terms that prohibit them from making any copies of | ||
181 | //your copyrighted material outside their relationship with you. | ||
182 | // | ||
183 | // Conveying under any other circumstances is permitted solely under | ||
184 | //the conditions stated below. Sublicensing is not allowed; section 10 | ||
185 | //makes it unnecessary. | ||
186 | // | ||
187 | // 3. Protecting Users' Legal Rights From Anti-Circumvention Law. | ||
188 | // | ||
189 | // No covered work shall be deemed part of an effective technological | ||
190 | //measure under any applicable law fulfilling obligations under article | ||
191 | //11 of the WIPO copyright treaty adopted on 20 December 1996, or | ||
192 | //similar laws prohibiting or restricting circumvention of such | ||
193 | //measures. | ||
194 | // | ||
195 | // When you convey a covered work, you waive any legal power to forbid | ||
196 | //circumvention of technological measures to the extent such circumvention | ||
197 | //is effected by exercising rights under this License with respect to | ||
198 | //the covered work, and you disclaim any intention to limit operation or | ||
199 | //modification of the work as a means of enforcing, against the work's | ||
200 | //users, your or third parties' legal rights to forbid circumvention of | ||
201 | //technological measures. | ||
202 | // | ||
203 | // 4. Conveying Verbatim Copies. | ||
204 | // | ||
205 | // You may convey verbatim copies of the Program's source code as you | ||
206 | //receive it, in any medium, provided that you conspicuously and | ||
207 | //appropriately publish on each copy an appropriate copyright notice; | ||
208 | //keep intact all notices stating that this License and any | ||
209 | //non-permissive terms added in accord with section 7 apply to the code; | ||
210 | //keep intact all notices of the absence of any warranty; and give all | ||
211 | //recipients a copy of this License along with the Program. | ||
212 | // | ||
213 | // You may charge any price or no price for each copy that you convey, | ||
214 | //and you may offer support or warranty protection for a fee. | ||
215 | // | ||
216 | // 5. Conveying Modified Source Versions. | ||
217 | // | ||
218 | // You may convey a work based on the Program, or the modifications to | ||
219 | //produce it from the Program, in the form of source code under the | ||
220 | //terms of section 4, provided that you also meet all of these conditions: | ||
221 | // | ||
222 | // a) The work must carry prominent notices stating that you modified | ||
223 | // it, and giving a relevant date. | ||
224 | // | ||
225 | // b) The work must carry prominent notices stating that it is | ||
226 | // released under this License and any conditions added under section | ||
227 | // 7. This requirement modifies the requirement in section 4 to | ||
228 | // "keep intact all notices". | ||
229 | // | ||
230 | // c) You must license the entire work, as a whole, under this | ||
231 | // License to anyone who comes into possession of a copy. This | ||
232 | // License will therefore apply, along with any applicable section 7 | ||
233 | // additional terms, to the whole of the work, and all its parts, | ||
234 | // regardless of how they are packaged. This License gives no | ||
235 | // permission to license the work in any other way, but it does not | ||
236 | // invalidate such permission if you have separately received it. | ||
237 | // | ||
238 | // d) If the work has interactive user interfaces, each must display | ||
239 | // Appropriate Legal Notices; however, if the Program has interactive | ||
240 | // interfaces that do not display Appropriate Legal Notices, your | ||
241 | // work need not make them do so. | ||
242 | // | ||
243 | // A compilation of a covered work with other separate and independent | ||
244 | //works, which are not by their nature extensions of the covered work, | ||
245 | //and which are not combined with it such as to form a larger program, | ||
246 | //in or on a volume of a storage or distribution medium, is called an | ||
247 | //"aggregate" if the compilation and its resulting copyright are not | ||
248 | //used to limit the access or legal rights of the compilation's users | ||
249 | //beyond what the individual works permit. Inclusion of a covered work | ||
250 | //in an aggregate does not cause this License to apply to the other | ||
251 | //parts of the aggregate. | ||
252 | // | ||
253 | // 6. Conveying Non-Source Forms. | ||
254 | // | ||
255 | // You may convey a covered work in object code form under the terms | ||
256 | //of sections 4 and 5, provided that you also convey the | ||
257 | //machine-readable Corresponding Source under the terms of this License, | ||
258 | //in one of these ways: | ||
259 | // | ||
260 | // a) Convey the object code in, or embodied in, a physical product | ||
261 | // (including a physical distribution medium), accompanied by the | ||
262 | // Corresponding Source fixed on a durable physical medium | ||
263 | // customarily used for software interchange. | ||
264 | // | ||
265 | // b) Convey the object code in, or embodied in, a physical product | ||
266 | // (including a physical distribution medium), accompanied by a | ||
267 | // written offer, valid for at least three years and valid for as | ||
268 | // long as you offer spare parts or customer support for that product | ||
269 | // model, to give anyone who possesses the object code either (1) a | ||
270 | // copy of the Corresponding Source for all the software in the | ||
271 | // product that is covered by this License, on a durable physical | ||
272 | // medium customarily used for software interchange, for a price no | ||
273 | // more than your reasonable cost of physically performing this | ||
274 | // conveying of source, or (2) access to copy the | ||
275 | // Corresponding Source from a network server at no charge. | ||
276 | // | ||
277 | // c) Convey individual copies of the object code with a copy of the | ||
278 | // written offer to provide the Corresponding Source. This | ||
279 | // alternative is allowed only occasionally and noncommercially, and | ||
280 | // only if you received the object code with such an offer, in accord | ||
281 | // with subsection 6b. | ||
282 | // | ||
283 | // d) Convey the object code by offering access from a designated | ||
284 | // place (gratis or for a charge), and offer equivalent access to the | ||
285 | // Corresponding Source in the same way through the same place at no | ||
286 | // further charge. You need not require recipients to copy the | ||
287 | // Corresponding Source along with the object code. If the place to | ||
288 | // copy the object code is a network server, the Corresponding Source | ||
289 | // may be on a different server (operated by you or a third party) | ||
290 | // that supports equivalent copying facilities, provided you maintain | ||
291 | // clear directions next to the object code saying where to find the | ||
292 | // Corresponding Source. Regardless of what server hosts the | ||
293 | // Corresponding Source, you remain obligated to ensure that it is | ||
294 | // available for as long as needed to satisfy these requirements. | ||
295 | // | ||
296 | // e) Convey the object code using peer-to-peer transmission, provided | ||
297 | // you inform other peers where the object code and Corresponding | ||
298 | // Source of the work are being offered to the general public at no | ||
299 | // charge under subsection 6d. | ||
300 | // | ||
301 | // A separable portion of the object code, whose source code is excluded | ||
302 | //from the Corresponding Source as a System Library, need not be | ||
303 | //included in conveying the object code work. | ||
304 | // | ||
305 | // A "User Product" is either (1) a "consumer product", which means any | ||
306 | //tangible personal property which is normally used for personal, family, | ||
307 | //or household purposes, or (2) anything designed or sold for incorporation | ||
308 | //into a dwelling. In determining whether a product is a consumer product, | ||
309 | //doubtful cases shall be resolved in favor of coverage. For a particular | ||
310 | //product received by a particular user, "normally used" refers to a | ||
311 | //typical or common use of that class of product, regardless of the status | ||
312 | //of the particular user or of the way in which the particular user | ||
313 | //actually uses, or expects or is expected to use, the product. A product | ||
314 | //is a consumer product regardless of whether the product has substantial | ||
315 | //commercial, industrial or non-consumer uses, unless such uses represent | ||
316 | //the only significant mode of use of the product. | ||
317 | // | ||
318 | // "Installation Information" for a User Product means any methods, | ||
319 | //procedures, authorization keys, or other information required to install | ||
320 | //and execute modified versions of a covered work in that User Product from | ||
321 | //a modified version of its Corresponding Source. The information must | ||
322 | //suffice to ensure that the continued functioning of the modified object | ||
323 | //code is in no case prevented or interfered with solely because | ||
324 | //modification has been made. | ||
325 | // | ||
326 | // If you convey an object code work under this section in, or with, or | ||
327 | //specifically for use in, a User Product, and the conveying occurs as | ||
328 | //part of a transaction in which the right of possession and use of the | ||
329 | //User Product is transferred to the recipient in perpetuity or for a | ||
330 | //fixed term (regardless of how the transaction is characterized), the | ||
331 | //Corresponding Source conveyed under this section must be accompanied | ||
332 | //by the Installation Information. But this requirement does not apply | ||
333 | //if neither you nor any third party retains the ability to install | ||
334 | //modified object code on the User Product (for example, the work has | ||
335 | //been installed in ROM). | ||
336 | // | ||
337 | // The requirement to provide Installation Information does not include a | ||
338 | //requirement to continue to provide support service, warranty, or updates | ||
339 | //for a work that has been modified or installed by the recipient, or for | ||
340 | //the User Product in which it has been modified or installed. Access to a | ||
341 | //network may be denied when the modification itself materially and | ||
342 | //adversely affects the operation of the network or violates the rules and | ||
343 | //protocols for communication across the network. | ||
344 | // | ||
345 | // Corresponding Source conveyed, and Installation Information provided, | ||
346 | //in accord with this section must be in a format that is publicly | ||
347 | //documented (and with an implementation available to the public in | ||
348 | //source code form), and must require no special password or key for | ||
349 | //unpacking, reading or copying. | ||
350 | // | ||
351 | // 7. Additional Terms. | ||
352 | // | ||
353 | // "Additional permissions" are terms that supplement the terms of this | ||
354 | //License by making exceptions from one or more of its conditions. | ||
355 | //Additional permissions that are applicable to the entire Program shall | ||
356 | //be treated as though they were included in this License, to the extent | ||
357 | //that they are valid under applicable law. If additional permissions | ||
358 | //apply only to part of the Program, that part may be used separately | ||
359 | //under those permissions, but the entire Program remains governed by | ||
360 | //this License without regard to the additional permissions. | ||
361 | // | ||
362 | // When you convey a copy of a covered work, you may at your option | ||
363 | //remove any additional permissions from that copy, or from any part of | ||
364 | //it. (Additional permissions may be written to require their own | ||
365 | //removal in certain cases when you modify the work.) You may place | ||
366 | //additional permissions on material, added by you to a covered work, | ||
367 | //for which you have or can give appropriate copyright permission. | ||
368 | // | ||
369 | // Notwithstanding any other provision of this License, for material you | ||
370 | //add to a covered work, you may (if authorized by the copyright holders of | ||
371 | //that material) supplement the terms of this License with terms: | ||
372 | // | ||
373 | // a) Disclaiming warranty or limiting liability differently from the | ||
374 | // terms of sections 15 and 16 of this License; or | ||
375 | // | ||
376 | // b) Requiring preservation of specified reasonable legal notices or | ||
377 | // author attributions in that material or in the Appropriate Legal | ||
378 | // Notices displayed by works containing it; or | ||
379 | // | ||
380 | // c) Prohibiting misrepresentation of the origin of that material, or | ||
381 | // requiring that modified versions of such material be marked in | ||
382 | // reasonable ways as different from the original version; or | ||
383 | // | ||
384 | // d) Limiting the use for publicity purposes of names of licensors or | ||
385 | // authors of the material; or | ||
386 | // | ||
387 | // e) Declining to grant rights under trademark law for use of some | ||
388 | // trade names, trademarks, or service marks; or | ||
389 | // | ||
390 | // f) Requiring indemnification of licensors and authors of that | ||
391 | // material by anyone who conveys the material (or modified versions of | ||
392 | // it) with contractual assumptions of liability to the recipient, for | ||
393 | // any liability that these contractual assumptions directly impose on | ||
394 | // those licensors and authors. | ||
395 | // | ||
396 | // All other non-permissive additional terms are considered "further | ||
397 | //restrictions" within the meaning of section 10. If the Program as you | ||
398 | //received it, or any part of it, contains a notice stating that it is | ||
399 | //governed by this License along with a term that is a further | ||
400 | //restriction, you may remove that term. If a license document contains | ||
401 | //a further restriction but permits relicensing or conveying under this | ||
402 | //License, you may add to a covered work material governed by the terms | ||
403 | //of that license document, provided that the further restriction does | ||
404 | //not survive such relicensing or conveying. | ||
405 | // | ||
406 | // If you add terms to a covered work in accord with this section, you | ||
407 | //must place, in the relevant source files, a statement of the | ||
408 | //additional terms that apply to those files, or a notice indicating | ||
409 | //where to find the applicable terms. | ||
410 | // | ||
411 | // Additional terms, permissive or non-permissive, may be stated in the | ||
412 | //form of a separately written license, or stated as exceptions; | ||
413 | //the above requirements apply either way. | ||
414 | // | ||
415 | // 8. Termination. | ||
416 | // | ||
417 | // You may not propagate or modify a covered work except as expressly | ||
418 | //provided under this License. Any attempt otherwise to propagate or | ||
419 | //modify it is void, and will automatically terminate your rights under | ||
420 | //this License (including any patent licenses granted under the third | ||
421 | //paragraph of section 11). | ||
422 | // | ||
423 | // However, if you cease all violation of this License, then your | ||
424 | //license from a particular copyright holder is reinstated (a) | ||
425 | //provisionally, unless and until the copyright holder explicitly and | ||
426 | //finally terminates your license, and (b) permanently, if the copyright | ||
427 | //holder fails to notify you of the violation by some reasonable means | ||
428 | //prior to 60 days after the cessation. | ||
429 | // | ||
430 | // Moreover, your license from a particular copyright holder is | ||
431 | //reinstated permanently if the copyright holder notifies you of the | ||
432 | //violation by some reasonable means, this is the first time you have | ||
433 | //received notice of violation of this License (for any work) from that | ||
434 | //copyright holder, and you cure the violation prior to 30 days after | ||
435 | //your receipt of the notice. | ||
436 | // | ||
437 | // Termination of your rights under this section does not terminate the | ||
438 | //licenses of parties who have received copies or rights from you under | ||
439 | //this License. If your rights have been terminated and not permanently | ||
440 | //reinstated, you do not qualify to receive new licenses for the same | ||
441 | //material under section 10. | ||
442 | // | ||
443 | // 9. Acceptance Not Required for Having Copies. | ||
444 | // | ||
445 | // You are not required to accept this License in order to receive or | ||
446 | //run a copy of the Program. Ancillary propagation of a covered work | ||
447 | //occurring solely as a consequence of using peer-to-peer transmission | ||
448 | //to receive a copy likewise does not require acceptance. However, | ||
449 | //nothing other than this License grants you permission to propagate or | ||
450 | //modify any covered work. These actions infringe copyright if you do | ||
451 | //not accept this License. Therefore, by modifying or propagating a | ||
452 | //covered work, you indicate your acceptance of this License to do so. | ||
453 | // | ||
454 | // 10. Automatic Licensing of Downstream Recipients. | ||
455 | // | ||
456 | // Each time you convey a covered work, the recipient automatically | ||
457 | //receives a license from the original licensors, to run, modify and | ||
458 | //propagate that work, subject to this License. You are not responsible | ||
459 | //for enforcing compliance by third parties with this License. | ||
460 | // | ||
461 | // An "entity transaction" is a transaction transferring control of an | ||
462 | //organization, or substantially all assets of one, or subdividing an | ||
463 | //organization, or merging organizations. If propagation of a covered | ||
464 | //work results from an entity transaction, each party to that | ||
465 | //transaction who receives a copy of the work also receives whatever | ||
466 | //licenses to the work the party's predecessor in interest had or could | ||
467 | //give under the previous paragraph, plus a right to possession of the | ||
468 | //Corresponding Source of the work from the predecessor in interest, if | ||
469 | //the predecessor has it or can get it with reasonable efforts. | ||
470 | // | ||
471 | // You may not impose any further restrictions on the exercise of the | ||
472 | //rights granted or affirmed under this License. For example, you may | ||
473 | //not impose a license fee, royalty, or other charge for exercise of | ||
474 | //rights granted under this License, and you may not initiate litigation | ||
475 | //(including a cross-claim or counterclaim in a lawsuit) alleging that | ||
476 | //any patent claim is infringed by making, using, selling, offering for | ||
477 | //sale, or importing the Program or any portion of it. | ||
478 | // | ||
479 | // 11. Patents. | ||
480 | // | ||
481 | // A "contributor" is a copyright holder who authorizes use under this | ||
482 | //License of the Program or a work on which the Program is based. The | ||
483 | //work thus licensed is called the contributor's "contributor version". | ||
484 | // | ||
485 | // A contributor's "essential patent claims" are all patent claims | ||
486 | //owned or controlled by the contributor, whether already acquired or | ||
487 | //hereafter acquired, that would be infringed by some manner, permitted | ||
488 | //by this License, of making, using, or selling its contributor version, | ||
489 | //but do not include claims that would be infringed only as a | ||
490 | //consequence of further modification of the contributor version. For | ||
491 | //purposes of this definition, "control" includes the right to grant | ||
492 | //patent sublicenses in a manner consistent with the requirements of | ||
493 | //this License. | ||
494 | // | ||
495 | // Each contributor grants you a non-exclusive, worldwide, royalty-free | ||
496 | //patent license under the contributor's essential patent claims, to | ||
497 | //make, use, sell, offer for sale, import and otherwise run, modify and | ||
498 | //propagate the contents of its contributor version. | ||
499 | // | ||
500 | // In the following three paragraphs, a "patent license" is any express | ||
501 | //agreement or commitment, however denominated, not to enforce a patent | ||
502 | //(such as an express permission to practice a patent or covenant not to | ||
503 | //sue for patent infringement). To "grant" such a patent license to a | ||
504 | //party means to make such an agreement or commitment not to enforce a | ||
505 | //patent against the party. | ||
506 | // | ||
507 | // If you convey a covered work, knowingly relying on a patent license, | ||
508 | //and the Corresponding Source of the work is not available for anyone | ||
509 | //to copy, free of charge and under the terms of this License, through a | ||
510 | //publicly available network server or other readily accessible means, | ||
511 | //then you must either (1) cause the Corresponding Source to be so | ||
512 | //available, or (2) arrange to deprive yourself of the benefit of the | ||
513 | //patent license for this particular work, or (3) arrange, in a manner | ||
514 | //consistent with the requirements of this License, to extend the patent | ||
515 | //license to downstream recipients. "Knowingly relying" means you have | ||
516 | //actual knowledge that, but for the patent license, your conveying the | ||
517 | //covered work in a country, or your recipient's use of the covered work | ||
518 | //in a country, would infringe one or more identifiable patents in that | ||
519 | //country that you have reason to believe are valid. | ||
520 | // | ||
521 | // If, pursuant to or in connection with a single transaction or | ||
522 | //arrangement, you convey, or propagate by procuring conveyance of, a | ||
523 | //covered work, and grant a patent license to some of the parties | ||
524 | //receiving the covered work authorizing them to use, propagate, modify | ||
525 | //or convey a specific copy of the covered work, then the patent license | ||
526 | //you grant is automatically extended to all recipients of the covered | ||
527 | //work and works based on it. | ||
528 | // | ||
529 | // A patent license is "discriminatory" if it does not include within | ||
530 | //the scope of its coverage, prohibits the exercise of, or is | ||
531 | //conditioned on the non-exercise of one or more of the rights that are | ||
532 | //specifically granted under this License. You may not convey a covered | ||
533 | //work if you are a party to an arrangement with a third party that is | ||
534 | //in the business of distributing software, under which you make payment | ||
535 | //to the third party based on the extent of your activity of conveying | ||
536 | //the work, and under which the third party grants, to any of the | ||
537 | //parties who would receive the covered work from you, a discriminatory | ||
538 | //patent license (a) in connection with copies of the covered work | ||
539 | //conveyed by you (or copies made from those copies), or (b) primarily | ||
540 | //for and in connection with specific products or compilations that | ||
541 | //contain the covered work, unless you entered into that arrangement, | ||
542 | //or that patent license was granted, prior to 28 March 2007. | ||
543 | // | ||
544 | // Nothing in this License shall be construed as excluding or limiting | ||
545 | //any implied license or other defenses to infringement that may | ||
546 | //otherwise be available to you under applicable patent law. | ||
547 | // | ||
548 | // 12. No Surrender of Others' Freedom. | ||
549 | // | ||
550 | // If conditions are imposed on you (whether by court order, agreement or | ||
551 | //otherwise) that contradict the conditions of this License, they do not | ||
552 | //excuse you from the conditions of this License. If you cannot convey a | ||
553 | //covered work so as to satisfy simultaneously your obligations under this | ||
554 | //License and any other pertinent obligations, then as a consequence you may | ||
555 | //not convey it at all. For example, if you agree to terms that obligate you | ||
556 | //to collect a royalty for further conveying from those to whom you convey | ||
557 | //the Program, the only way you could satisfy both those terms and this | ||
558 | //License would be to refrain entirely from conveying the Program. | ||
559 | // | ||
560 | // 13. Use with the GNU Affero General Public License. | ||
561 | // | ||
562 | // Notwithstanding any other provision of this License, you have | ||
563 | //permission to link or combine any covered work with a work licensed | ||
564 | //under version 3 of the GNU Affero General Public License into a single | ||
565 | //combined work, and to convey the resulting work. The terms of this | ||
566 | //License will continue to apply to the part which is the covered work, | ||
567 | //but the special requirements of the GNU Affero General Public License, | ||
568 | //section 13, concerning interaction through a network will apply to the | ||
569 | //combination as such. | ||
570 | // | ||
571 | // 14. Revised Versions of this License. | ||
572 | // | ||
573 | // The Free Software Foundation may publish revised and/or new versions of | ||
574 | //the GNU General Public License from time to time. Such new versions will | ||
575 | //be similar in spirit to the present version, but may differ in detail to | ||
576 | //address new problems or concerns. | ||
577 | // | ||
578 | // Each version is given a distinguishing version number. If the | ||
579 | //Program specifies that a certain numbered version of the GNU General | ||
580 | //Public License "or any later version" applies to it, you have the | ||
581 | //option of following the terms and conditions either of that numbered | ||
582 | //version or of any later version published by the Free Software | ||
583 | //Foundation. If the Program does not specify a version number of the | ||
584 | //GNU General Public License, you may choose any version ever published | ||
585 | //by the Free Software Foundation. | ||
586 | // | ||
587 | // If the Program specifies that a proxy can decide which future | ||
588 | //versions of the GNU General Public License can be used, that proxy's | ||
589 | //public statement of acceptance of a version permanently authorizes you | ||
590 | //to choose that version for the Program. | ||
591 | // | ||
592 | // Later license versions may give you additional or different | ||
593 | //permissions. However, no additional obligations are imposed on any | ||
594 | //author or copyright holder as a result of your choosing to follow a | ||
595 | //later version. | ||
596 | // | ||
597 | // 15. Disclaimer of Warranty. | ||
598 | // | ||
599 | // THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY | ||
600 | //APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT | ||
601 | //HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY | ||
602 | //OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, | ||
603 | //THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
604 | //PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM | ||
605 | //IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF | ||
606 | //ALL NECESSARY SERVICING, REPAIR OR CORRECTION. | ||
607 | // | ||
608 | // 16. Limitation of Liability. | ||
609 | // | ||
610 | // IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING | ||
611 | //WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS | ||
612 | //THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY | ||
613 | //GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE | ||
614 | //USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF | ||
615 | //DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD | ||
616 | //PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), | ||
617 | //EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF | ||
618 | //SUCH DAMAGES. | ||
619 | // | ||
620 | // 17. Interpretation of Sections 15 and 16. | ||
621 | // | ||
622 | // If the disclaimer of warranty and limitation of liability provided | ||
623 | //above cannot be given local legal effect according to their terms, | ||
624 | //reviewing courts shall apply local law that most closely approximates | ||
625 | //an absolute waiver of all civil liability in connection with the | ||
626 | //Program, unless a warranty or assumption of liability accompanies a | ||
627 | //copy of the Program in return for a fee. | ||
628 | // | ||
629 | // END OF TERMS AND CONDITIONS | ||
630 | // | ||
631 | // How to Apply These Terms to Your New Programs | ||
632 | // | ||
633 | // If you develop a new program, and you want it to be of the greatest | ||
634 | //possible use to the public, the best way to achieve this is to make it | ||
635 | //free software which everyone can redistribute and change under these terms. | ||
636 | // | ||
637 | // To do so, attach the following notices to the program. It is safest | ||
638 | //to attach them to the start of each source file to most effectively | ||
639 | //state the exclusion of warranty; and each file should have at least | ||
640 | //the "copyright" line and a pointer to where the full notice is found. | ||
641 | // | ||
642 | // <one line to give the program's name and a brief idea of what it does.> | ||
643 | // Copyright (C) <year> <name of author> | ||
644 | // | ||
645 | // This program is free software: you can redistribute it and/or modify | ||
646 | // it under the terms of the GNU General Public License as published by | ||
647 | // the Free Software Foundation, either version 3 of the License, or | ||
648 | // (at your option) any later version. | ||
649 | // | ||
650 | // This program is distributed in the hope that it will be useful, | ||
651 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
652 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
653 | // GNU General Public License for more details. | ||
654 | // | ||
655 | // You should have received a copy of the GNU General Public License | ||
656 | // along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
657 | // | ||
658 | //Also add information on how to contact you by electronic and paper mail. | ||
659 | // | ||
660 | // If the program does terminal interaction, make it output a short | ||
661 | //notice like this when it starts in an interactive mode: | ||
662 | // | ||
663 | // <program> Copyright (C) <year> <name of author> | ||
664 | // This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. | ||
665 | // This is free software, and you are welcome to redistribute it | ||
666 | // under certain conditions; type `show c' for details. | ||
667 | // | ||
668 | //The hypothetical commands `show w' and `show c' should show the appropriate | ||
669 | //parts of the General Public License. Of course, your program's commands | ||
670 | //might be different; for a GUI interface, you would use an "about box". | ||
671 | // | ||
672 | // You should also get your employer (if you work as a programmer) or school, | ||
673 | //if any, to sign a "copyright disclaimer" for the program, if necessary. | ||
674 | //For more information on this, and how to apply and follow the GNU GPL, see | ||
675 | //<http://www.gnu.org/licenses/>. | ||
676 | // | ||
677 | // The GNU General Public License does not permit incorporating your program | ||
678 | //into proprietary programs. If your program is a subroutine library, you | ||
679 | //may consider it more useful to permit linking proprietary applications with | ||
680 | //the library. If this is what you want to do, use the GNU Lesser General | ||
681 | //Public License instead of this License. But first, please read | ||
682 | //<http://www.gnu.org/philosophy/why-not-lgpl.html>. | ||
683 | //------------------------------------------------------------------------------------------------- | ||
684 | //-------------------------------------------------------------------------------- | ||
685 | #define MODULE_GMP_INTS | ||
686 | |||
687 | #include <assert.h> | ||
688 | #include <ctype.h> | ||
689 | #include <process.h> | ||
690 | #include <stddef.h> | ||
691 | #include <stdio.h> | ||
692 | #include <string.h> | ||
693 | #include <time.h> | ||
694 | |||
695 | |||
696 | /* Only included the guarded allocation header if we are compiling | ||
697 | ** a DOS console type application. Other types of applications have | ||
698 | ** other ways of protecting for out of memory. Including the | ||
699 | ** header would do no harm in these cases, but do no good, either. | ||
700 | */ | ||
701 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
702 | #include "ccmalloc.h" | ||
703 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
704 | #include "tclalloc.h" | ||
705 | #else | ||
706 | /* Do nothing. */ | ||
707 | #endif | ||
708 | |||
709 | #include "bstrfunc.h" | ||
710 | #include "charfunc.h" | ||
711 | #include "fcmiof.h" | ||
712 | #include "gmp_ints.h" | ||
713 | #include "intfunc.h" | ||
714 | |||
715 | |||
716 | /******************************************************************/ | ||
717 | /*** CUSTOM ALLOCATION FUNCTIONS *******************************/ | ||
718 | /******************************************************************/ | ||
719 | /* We need to decide here on how memory not on the stack will be | ||
720 | ** allocated (i.e. what will become of the standard functions | ||
721 | ** like malloc, free, etc.). This is dependent on the type of | ||
722 | ** application we're making. The possible types are so far are: | ||
723 | ** APP_TYPE_SIMPLE_DOS_CONSOLE : | ||
724 | ** Simple DOS console application. | ||
725 | ** APP_TYPE_IJUSCRIPTER_IJUCONSOLE: | ||
726 | ** The Tcl tool build. | ||
727 | ** | ||
728 | ** The custom allocation functions here are a "portal" or "wrapper" | ||
729 | ** for how the integer and rational number functions should | ||
730 | ** get memory. | ||
731 | ** | ||
732 | ** The functions below are standard, except that the GNU MP team | ||
733 | ** built more generality into what allocation schemes could be | ||
734 | ** used by including size information in some calls that don't | ||
735 | ** normally get it. That is why there are some extra calls below | ||
736 | ** where the information is discarded. Other than that, these are | ||
737 | ** standard allocation calls. | ||
738 | */ | ||
739 | //07/15/01: Visual inspection only. Function deemed too | ||
740 | //simple for unit testing. | ||
741 | void *GMP_INTS_malloc( size_t size ) | ||
742 | { | ||
743 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
744 | return(CCMALLOC_malloc(size)); | ||
745 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
746 | return(TclpAlloc(size)); | ||
747 | #else | ||
748 | return(malloc(size)); | ||
749 | #endif | ||
750 | } | ||
751 | |||
752 | |||
753 | //07/15/01: Visual inspection only. Function deemed too | ||
754 | //simple for unit testing. | ||
755 | void *GMP_INTS_calloc( size_t num, size_t size ) | ||
756 | { | ||
757 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
758 | return(CCMALLOC_calloc(num, size)); | ||
759 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
760 | return(TclpCalloc(num, size)); | ||
761 | #else | ||
762 | return(calloc(num, size)); | ||
763 | #endif | ||
764 | } | ||
765 | |||
766 | |||
767 | //07/15/01: Visual inspection only. Function deemed too | ||
768 | //simple for unit testing. | ||
769 | void *GMP_INTS_realloc( void *memblock, size_t size ) | ||
770 | { | ||
771 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
772 | return(CCMALLOC_realloc(memblock, size)); | ||
773 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
774 | return(TclpRealloc(memblock, size)); | ||
775 | #else | ||
776 | return(realloc(memblock, size)); | ||
777 | #endif | ||
778 | } | ||
779 | |||
780 | |||
781 | //07/15/01: Visual inspection only. Function deemed too | ||
782 | //simple for unit testing. | ||
783 | void *GMP_INTS_realloc_w_size( void *memblock, | ||
784 | size_t old_size, | ||
785 | size_t size ) | ||
786 | { | ||
787 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
788 | return(CCMALLOC_realloc(memblock, size)); | ||
789 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
790 | return(TclpRealloc(memblock, size)); | ||
791 | #else | ||
792 | return(realloc(memblock, size)); | ||
793 | #endif | ||
794 | } | ||
795 | |||
796 | |||
797 | //07/15/01: Visual inspection only. Function deemed too | ||
798 | //simple for unit testing. | ||
799 | void GMP_INTS_free( void *memblock ) | ||
800 | { | ||
801 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
802 | CCMALLOC_free(memblock); | ||
803 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
804 | TclpFree(memblock); | ||
805 | #else | ||
806 | free(memblock); | ||
807 | #endif | ||
808 | } | ||
809 | |||
810 | |||
811 | //07/15/01: Visual inspection only. Function deemed too | ||
812 | //simple for unit testing. | ||
813 | void GMP_INTS_free_w_size( void *memblock, size_t size ) | ||
814 | { | ||
815 | #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) | ||
816 | CCMALLOC_free(memblock); | ||
817 | #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) | ||
818 | TclpFree(memblock); | ||
819 | #else | ||
820 | free(memblock); | ||
821 | #endif | ||
822 | } | ||
823 | |||
824 | |||
825 | /******************************************************************/ | ||
826 | /*** PORTABILITY CHECK FUNCTIONS *******************************/ | ||
827 | /******************************************************************/ | ||
828 | //Because there is the risk that Microsoft Visual C++ might | ||
829 | //change in the future, the following function can be called | ||
830 | //to see if the assumptions about data sizes are valid. This | ||
831 | //function returns TRUE if there is a problem, or FALSE | ||
832 | //otherwise. | ||
833 | |||
834 | //07/15/01: Unit testing complete. | ||
835 | int GMP_INTS_data_sizes_are_wrong(void) | ||
836 | { | ||
837 | int i; | ||
838 | GMP_INTS_limb_t tv; | ||
839 | _int64 tv64; | ||
840 | |||
841 | //Check the number of bit rolls required to get the limb | ||
842 | //to go to zero again. This had better be 32. | ||
843 | tv = 1; | ||
844 | i = 0; | ||
845 | while (tv) | ||
846 | { | ||
847 | tv <<= 1; | ||
848 | i++; | ||
849 | } | ||
850 | if (i != 32) | ||
851 | return(1); | ||
852 | |||
853 | //Check that an _int64 is really and truly 64 bits. | ||
854 | tv64 = 1; | ||
855 | i = 0; | ||
856 | while (tv64) | ||
857 | { | ||
858 | tv64 <<= 1; | ||
859 | i++; | ||
860 | } | ||
861 | if (i != 64) | ||
862 | return(1); | ||
863 | |||
864 | //Room for additional tests here if needed later. | ||
865 | |||
866 | return(0); | ||
867 | } | ||
868 | |||
869 | |||
870 | /******************************************************************/ | ||
871 | /*** ERROR STRING IDENTIFICATION AND PROCESSING FUNCTIONS *******/ | ||
872 | /******************************************************************/ | ||
873 | |||
874 | int GMP_INTS_identify_nan_string(const char *s) | ||
875 | { | ||
876 | assert(s != NULL); | ||
877 | |||
878 | if (!strcmp(s, GMP_INTS_EF_INTOVF_POS_STRING)) | ||
879 | return(0); | ||
880 | else if (!strcmp(s, GMP_INTS_EF_INTOVF_NEG_STRING)) | ||
881 | return(1); | ||
882 | else if (!strcmp(s, GMP_INTS_EF_INTOVF_TAINT_POS_STRING)) | ||
883 | return(2); | ||
884 | else if (!strcmp(s, GMP_INTS_EF_INTOVF_TAINT_NEG_STRING)) | ||
885 | return(3); | ||
886 | else | ||
887 | return(-1); | ||
888 | } | ||
889 | |||
890 | |||
891 | const char *GMP_INTS_supply_nan_string(int idx) | ||
892 | { | ||
893 | assert((idx >= 0) && (idx <= 3)); | ||
894 | |||
895 | if (idx==0) | ||
896 | return(GMP_INTS_EF_INTOVF_POS_STRING); | ||
897 | else if (idx==1) | ||
898 | return(GMP_INTS_EF_INTOVF_NEG_STRING); | ||
899 | else if (idx==2) | ||
900 | return(GMP_INTS_EF_INTOVF_TAINT_POS_STRING); | ||
901 | else | ||
902 | return(GMP_INTS_EF_INTOVF_TAINT_NEG_STRING); | ||
903 | } | ||
904 | |||
905 | |||
906 | /******************************************************************/ | ||
907 | /*** DEBUG PRINTING FUNCTIONS **********************************/ | ||
908 | /******************************************************************/ | ||
909 | //These functions are for printing out integers and limbs | ||
910 | //and groups of limbs for unit testing and debugging. | ||
911 | |||
912 | //07/15/01: Exempt from testing because debug/development | ||
913 | //function. | ||
914 | void GMP_INTS_print_limb_group(FILE *stream, | ||
915 | GMP_INTS_limb_srcptr lg, | ||
916 | GMP_INTS_size_t n, | ||
917 | char *desc) | ||
918 | { | ||
919 | int i; | ||
920 | |||
921 | assert(stream != NULL); | ||
922 | assert(n >= 0); | ||
923 | assert(desc != NULL); | ||
924 | |||
925 | if (!lg) | ||
926 | { | ||
927 | fprintf(stream, " %s: NULL\n", desc); | ||
928 | } | ||
929 | else | ||
930 | { | ||
931 | for (i=n-1; i>=0; i--) | ||
932 | { | ||
933 | fprintf(stream, " %s[%2d]: 0x%8X\n", desc, i, lg[i]); | ||
934 | } | ||
935 | } | ||
936 | } | ||
937 | |||
938 | |||
939 | void GMP_INTS_mpz_print_int(FILE *stream, | ||
940 | const GMP_INTS_mpz_struct *arg, | ||
941 | char *desc) | ||
942 | { | ||
943 | int i; | ||
944 | |||
945 | assert(stream != NULL); | ||
946 | assert(arg != NULL); | ||
947 | assert(desc != NULL); | ||
948 | |||
949 | fprintf(stream, "Printing integer:\n %s\n", desc); | ||
950 | |||
951 | fprintf(stream, " flags: %d\n", arg->flags); | ||
952 | fprintf(stream, " ptr value to body: %p\n", arg); | ||
953 | fprintf(stream, " n_allocd: %d\n", arg->n_allocd); | ||
954 | fprintf(stream, " size: %d\n", arg->size); | ||
955 | fprintf(stream, " limbs (ptr val): %p\n", arg->limbs); | ||
956 | |||
957 | for (i=arg->n_allocd-1; i>=0; i--) | ||
958 | { | ||
959 | fprintf(stream, " limb[%3d]: %8X\n", i, arg->limbs[i]); | ||
960 | } | ||
961 | } | ||
962 | |||
963 | |||
964 | /******************************************************************/ | ||
965 | /*** LOW-LEVEL MACRO REPLACEMENTS ******************************/ | ||
966 | /******************************************************************/ | ||
967 | //The functions in this category are replacements for macros. | ||
968 | //Clarity was gained at the expense of speed. | ||
969 | |||
970 | int GMP_INTS_mpz_get_flags (const GMP_INTS_mpz_struct *arg) | ||
971 | { | ||
972 | assert(arg != NULL); | ||
973 | assert(arg->n_allocd > 0); | ||
974 | |||
975 | return(arg->flags); | ||
976 | } | ||
977 | |||
978 | |||
979 | //07/15/01: Visual inspection only. Function deemed too | ||
980 | //simple for unit testing. | ||
981 | GMP_INTS_size_t GMP_INTS_abs_of_size_t(GMP_INTS_size_t arg) | ||
982 | { | ||
983 | //Be sure that the bit pattern does not represent the maximum | ||
984 | //negative argument. Negating this would give the result of | ||
985 | //zero, which is not what is intended. | ||
986 | assert(arg != 0x80000000); | ||
987 | |||
988 | if (arg < 0) | ||
989 | return(-arg); | ||
990 | else | ||
991 | return(arg); | ||
992 | } | ||
993 | |||
994 | |||
995 | //07/15/01: Visual inspection only. Function deemed too | ||
996 | //simple for unit testing. | ||
997 | int GMP_INTS_mpz_sgn(const GMP_INTS_mpz_struct *arg) | ||
998 | { | ||
999 | assert(arg != NULL); | ||
1000 | assert(arg->n_allocd > 0); | ||
1001 | |||
1002 | if (arg->size > 0) | ||
1003 | return(1); | ||
1004 | else if (arg->size == 0) | ||
1005 | return(0); | ||
1006 | else | ||
1007 | return(-1); | ||
1008 | } | ||
1009 | |||
1010 | |||
1011 | //07/15/01: Visual inspection only. Function deemed too | ||
1012 | //simple for unit testing. | ||
1013 | int GMP_INTS_mpz_is_neg(const GMP_INTS_mpz_struct *arg) | ||
1014 | { | ||
1015 | assert(arg != NULL); | ||
1016 | assert(arg->n_allocd > 0); | ||
1017 | |||
1018 | if (GMP_INTS_mpz_sgn(arg) == -1) | ||
1019 | return(1); | ||
1020 | else | ||
1021 | return(0); | ||
1022 | } | ||
1023 | |||
1024 | |||
1025 | //07/15/01: Visual inspection only. Function deemed too | ||
1026 | //simple for unit testing. | ||
1027 | int GMP_INTS_mpz_is_zero(const GMP_INTS_mpz_struct *arg) | ||
1028 | { | ||
1029 | assert(arg != NULL); | ||
1030 | assert(arg->n_allocd > 0); | ||
1031 | |||
1032 | if (GMP_INTS_mpz_sgn(arg) == 0) | ||
1033 | return(1); | ||
1034 | else | ||
1035 | return(0); | ||
1036 | } | ||
1037 | |||
1038 | |||
1039 | //07/15/01: Visual inspection only. Function deemed too | ||
1040 | //simple for unit testing. | ||
1041 | int GMP_INTS_mpz_is_pos(const GMP_INTS_mpz_struct *arg) | ||
1042 | { | ||
1043 | assert(arg != NULL); | ||
1044 | assert(arg->n_allocd > 0); | ||
1045 | |||
1046 | if (GMP_INTS_mpz_sgn(arg) == 1) | ||
1047 | return(1); | ||
1048 | else | ||
1049 | return(0); | ||
1050 | } | ||
1051 | |||
1052 | |||
1053 | //07/15/01: Visual inspection only. Function deemed too | ||
1054 | //simple for unit testing. | ||
1055 | int GMP_INTS_mpz_is_odd(const GMP_INTS_mpz_struct *arg) | ||
1056 | { | ||
1057 | assert(arg != NULL); | ||
1058 | assert(arg->n_allocd > 0); | ||
1059 | |||
1060 | if (arg->size == 0) | ||
1061 | return 0; | ||
1062 | else if ((arg->limbs[0] & 0x1) != 0) | ||
1063 | return 1; | ||
1064 | else | ||
1065 | return 0; | ||
1066 | } | ||
1067 | |||
1068 | |||
1069 | //07/15/01: Visual inspection only. Function deemed too | ||
1070 | //simple for unit testing. | ||
1071 | int GMP_INTS_mpz_is_even(const GMP_INTS_mpz_struct *arg) | ||
1072 | { | ||
1073 | assert(arg != NULL); | ||
1074 | assert(arg->n_allocd > 0); | ||
1075 | |||
1076 | if (GMP_INTS_mpz_is_odd(arg)) | ||
1077 | return 0; | ||
1078 | else | ||
1079 | return 1; | ||
1080 | } | ||
1081 | |||
1082 | |||
1083 | void GMP_INTS_mpz_negate(GMP_INTS_mpz_struct *arg) | ||
1084 | { | ||
1085 | //Eyeball the input parameters. | ||
1086 | assert(arg != NULL); | ||
1087 | assert(arg->n_allocd > 0); | ||
1088 | assert(arg->limbs != NULL); | ||
1089 | |||
1090 | arg->size = -(arg->size); | ||
1091 | } | ||
1092 | |||
1093 | |||
1094 | //07/15/01: Visual inspection only. Function deemed too | ||
1095 | //simple for unit testing. | ||
1096 | void GMP_INTS_mpn_normalize(GMP_INTS_limb_ptr limb_array, | ||
1097 | GMP_INTS_size_t *idx) | ||
1098 | { | ||
1099 | assert(limb_array != NULL); | ||
1100 | assert(idx != NULL); | ||
1101 | assert(idx >= 0); | ||
1102 | |||
1103 | while (*idx > 0) | ||
1104 | { | ||
1105 | if (limb_array[*idx - 1] != 0) | ||
1106 | break; | ||
1107 | (*idx)--; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1111 | |||
1112 | //07/15/01: Visual inspection only. Function deemed too | ||
1113 | //simple for unit testing. | ||
1114 | void GMP_INTS_mpn_copy_limbs(GMP_INTS_limb_ptr dest, | ||
1115 | GMP_INTS_limb_srcptr src, | ||
1116 | GMP_INTS_size_t n) | ||
1117 | { | ||
1118 | GMP_INTS_size_t i; | ||
1119 | |||
1120 | assert(dest != NULL); | ||
1121 | assert(src != NULL); | ||
1122 | assert(n >= 0); | ||
1123 | |||
1124 | for (i=0; i<n; i++) | ||
1125 | dest[i] = src[i]; | ||
1126 | } | ||
1127 | |||
1128 | |||
1129 | /******************************************************************/ | ||
1130 | /*** LOW-LEVEL ARITHMETIC FUNCTIONS ****************************/ | ||
1131 | /******************************************************************/ | ||
1132 | |||
1133 | int GMP_INTS_two_op_flags_map(int flags1, int flags2) | ||
1134 | { | ||
1135 | int cf; | ||
1136 | |||
1137 | if (!flags1 && !flags2) | ||
1138 | { | ||
1139 | return(0); | ||
1140 | } | ||
1141 | else | ||
1142 | { | ||
1143 | cf = flags1 | flags2; | ||
1144 | |||
1145 | if (cf & (GMP_INTS_EF_INTOVF_POS | GMP_INTS_EF_INTOVF_TAINT_POS)) | ||
1146 | { | ||
1147 | //In either case here, the result will be tainted | ||
1148 | //positive. | ||
1149 | return(GMP_INTS_EF_INTOVF_TAINT_POS); | ||
1150 | } | ||
1151 | else if (cf & (GMP_INTS_EF_INTOVF_NEG | GMP_INTS_EF_INTOVF_TAINT_NEG)) | ||
1152 | { | ||
1153 | //In either case here, the result will be tainted | ||
1154 | //negative. | ||
1155 | return(GMP_INTS_EF_INTOVF_TAINT_NEG); | ||
1156 | } | ||
1157 | else | ||
1158 | { | ||
1159 | //This case is where the flags ints are non-zero, but | ||
1160 | //no known bits are set. This is surely some kind of | ||
1161 | //an internal software error. In debug mode, want to | ||
1162 | //alert to error. In actual operation, want to just | ||
1163 | //pretend an ordinary positive taint. | ||
1164 | assert(0); | ||
1165 | return(GMP_INTS_EF_INTOVF_TAINT_POS); | ||
1166 | } | ||
1167 | } | ||
1168 | } | ||
1169 | |||
1170 | |||
1171 | GMP_INTS_limb_t GMP_INTS_mpn_add_1 (GMP_INTS_limb_ptr res_ptr, | ||
1172 | GMP_INTS_limb_srcptr s1_ptr, | ||
1173 | GMP_INTS_size_t s1_size, | ||
1174 | GMP_INTS_limb_t s2_limb) | ||
1175 | { | ||
1176 | GMP_INTS_limb_t x; | ||
1177 | |||
1178 | assert(res_ptr != NULL); | ||
1179 | assert(s1_ptr != NULL); | ||
1180 | assert(s1_size > 0); | ||
1181 | |||
1182 | x = *s1_ptr++; | ||
1183 | s2_limb = x + s2_limb; | ||
1184 | *res_ptr++ = s2_limb; | ||
1185 | //Since limbs are unsigned, the test below tests if there | ||
1186 | //was a carry, i.e. a positive rollover. | ||
1187 | if (s2_limb < x) | ||
1188 | { | ||
1189 | while (--s1_size != 0) | ||
1190 | { | ||
1191 | x = *s1_ptr++ + 1; | ||
1192 | *res_ptr++ = x; | ||
1193 | if (x != 0) | ||
1194 | goto fin; | ||
1195 | } | ||
1196 | |||
1197 | return 1; | ||
1198 | } | ||
1199 | |||
1200 | fin: | ||
1201 | if (res_ptr != s1_ptr) | ||
1202 | { | ||
1203 | GMP_INTS_size_t i; | ||
1204 | for (i = 0; i < s1_size - 1; i++) | ||
1205 | { | ||
1206 | res_ptr[i] = s1_ptr[i]; | ||
1207 | } | ||
1208 | } | ||
1209 | |||
1210 | return 0; | ||
1211 | } | ||
1212 | |||
1213 | |||
1214 | GMP_INTS_limb_t GMP_INTS_mpn_sub_1(GMP_INTS_limb_ptr res_ptr, | ||
1215 | GMP_INTS_limb_srcptr s1_ptr, | ||
1216 | GMP_INTS_size_t s1_size, | ||
1217 | GMP_INTS_limb_t s2_limb) | ||
1218 | { | ||
1219 | GMP_INTS_limb_t x; | ||
1220 | |||
1221 | assert(res_ptr != NULL); | ||
1222 | assert(s1_ptr != NULL); | ||
1223 | assert(s1_size > 0); | ||
1224 | |||
1225 | x = *s1_ptr++; | ||
1226 | s2_limb = x - s2_limb; | ||
1227 | *res_ptr++ = s2_limb; | ||
1228 | //The test below detects a borrow. | ||
1229 | if (s2_limb > x) | ||
1230 | { | ||
1231 | while (--s1_size != 0) | ||
1232 | { | ||
1233 | x = *s1_ptr++; | ||
1234 | *res_ptr++ = x - 1; | ||
1235 | if (x != 0) | ||
1236 | goto fin; | ||
1237 | } | ||
1238 | |||
1239 | return 1; | ||
1240 | } | ||
1241 | |||
1242 | fin: | ||
1243 | if (res_ptr != s1_ptr) | ||
1244 | { | ||
1245 | GMP_INTS_size_t i; | ||
1246 | for (i = 0; i < s1_size - 1; i++) | ||
1247 | { | ||
1248 | res_ptr[i] = s1_ptr[i]; | ||
1249 | } | ||
1250 | } | ||
1251 | return 0; | ||
1252 | } | ||
1253 | |||
1254 | |||
1255 | //07/15/01: Am willing to skip unit-testing on this. | ||
1256 | //Understand the logic (i.e. passes visual inspection), | ||
1257 | //and comes from GNU-MP. Hope any defects here will be | ||
1258 | //caught in testing of GMP_INTS_mpz_mul() and other | ||
1259 | //higher-level functions. | ||
1260 | GMP_INTS_limb_t GMP_INTS_mpn_mul_1 (GMP_INTS_limb_ptr res_ptr, | ||
1261 | GMP_INTS_limb_srcptr s1_ptr, | ||
1262 | GMP_INTS_size_t s1_size, | ||
1263 | GMP_INTS_limb_t s2_limb) | ||
1264 | { | ||
1265 | GMP_INTS_limb_t cy_limb; | ||
1266 | GMP_INTS_size_t j; | ||
1267 | GMP_INTS_limb_t prod_high, prod_low; | ||
1268 | unsigned _int64 temp; | ||
1269 | |||
1270 | assert(res_ptr != NULL); | ||
1271 | assert(s1_ptr != NULL); | ||
1272 | assert(s1_size > 0); | ||
1273 | |||
1274 | /* The loop counter and index J goes from -S1_SIZE to -1. This way | ||
1275 | the loop becomes faster. */ | ||
1276 | j = -s1_size; | ||
1277 | |||
1278 | /* Offset the base pointers to compensate for the negative indices. */ | ||
1279 | s1_ptr -= j; | ||
1280 | res_ptr -= j; | ||
1281 | |||
1282 | cy_limb = 0; | ||
1283 | do | ||
1284 | { | ||
1285 | //The original code here was the following macro: | ||
1286 | //umul_ppmm (prod_high, prod_low, s1_ptr[j], s2_limb); | ||
1287 | //Will use the 64-bit data type of MSVC++ to achieve | ||
1288 | //the same effect. | ||
1289 | // | ||
1290 | //NOTE AS OF 07/13/01: I have looked at the assembly- | ||
1291 | //language, and the lines below are a real sore spot. | ||
1292 | //The multiply is fairly direct (although there is a | ||
1293 | //function call), but the shift does not behave as | ||
1294 | //expected--there is a function call and a loop to | ||
1295 | //go through the 32 iterations. After logical testing, | ||
1296 | //may want to clean this out--this would surely | ||
1297 | //result in a speed increase. This is a sore spot. | ||
1298 | temp = ((unsigned _int64)s1_ptr[j]) * ((unsigned _int64)s2_limb); | ||
1299 | prod_low = (GMP_INTS_limb_t)temp; | ||
1300 | prod_high = (GMP_INTS_limb_t)(temp >> 32); | ||
1301 | |||
1302 | prod_low += cy_limb; | ||
1303 | cy_limb = (prod_low < cy_limb) + prod_high; | ||
1304 | |||
1305 | res_ptr[j] = prod_low; | ||
1306 | } | ||
1307 | while (++j != 0); | ||
1308 | |||
1309 | return cy_limb; | ||
1310 | } | ||
1311 | |||
1312 | |||
1313 | //07/15/01: Am willing to skip unit-testing on this. | ||
1314 | //Understand the logic (i.e. passes visual inspection), | ||
1315 | //and comes from GNU-MP. Hope any defects here will be | ||
1316 | //caught in testing of GMP_INTS_mpz_add() and other | ||
1317 | //higher-level functions. | ||
1318 | GMP_INTS_limb_t GMP_INTS_mpn_add_n(GMP_INTS_limb_ptr res_ptr, | ||
1319 | GMP_INTS_limb_srcptr s1_ptr, | ||
1320 | GMP_INTS_limb_srcptr s2_ptr, | ||
1321 | GMP_INTS_size_t size) | ||
1322 | { | ||
1323 | GMP_INTS_limb_t x, y, cy; | ||
1324 | GMP_INTS_size_t j; | ||
1325 | |||
1326 | assert(res_ptr != NULL); | ||
1327 | assert(s1_ptr != NULL); | ||
1328 | assert(s2_ptr != NULL); | ||
1329 | |||
1330 | /* The loop counter and index J goes from -SIZE to -1. This way | ||
1331 | the loop becomes faster. */ | ||
1332 | j = -size; | ||
1333 | |||
1334 | /* Offset the base pointers to compensate for the negative indices. */ | ||
1335 | s1_ptr -= j; | ||
1336 | s2_ptr -= j; | ||
1337 | res_ptr -= j; | ||
1338 | |||
1339 | cy = 0; | ||
1340 | do | ||
1341 | { | ||
1342 | y = s2_ptr[j]; | ||
1343 | x = s1_ptr[j]; | ||
1344 | y += cy; /* add previous carry to one addend */ | ||
1345 | cy = (y < cy); /* get out carry from that addition */ | ||
1346 | y = x + y; /* add other addend */ | ||
1347 | cy = (y < x) + cy; /* get out carry from that add, combine */ | ||
1348 | res_ptr[j] = y; | ||
1349 | } | ||
1350 | while (++j != 0); | ||
1351 | |||
1352 | return cy; | ||
1353 | } | ||
1354 | |||
1355 | |||
1356 | //07/15/01: Am willing to skip unit-testing on this. | ||
1357 | //Understand the logic (i.e. passes visual inspection), | ||
1358 | //and comes from GNU-MP. Hope any defects here will be | ||
1359 | //caught in testing of GMP_INTS_mpz_mul() and other | ||
1360 | //higher-level functions. | ||
1361 | GMP_INTS_limb_t GMP_INTS_mpn_addmul_1 (GMP_INTS_limb_ptr res_ptr, | ||
1362 | GMP_INTS_limb_srcptr s1_ptr, | ||
1363 | GMP_INTS_size_t s1_size, | ||
1364 | GMP_INTS_limb_t s2_limb) | ||
1365 | { | ||
1366 | GMP_INTS_limb_t cy_limb; | ||
1367 | GMP_INTS_size_t j; | ||
1368 | GMP_INTS_limb_t prod_high, prod_low; | ||
1369 | GMP_INTS_limb_t x; | ||
1370 | unsigned _int64 temp; | ||
1371 | |||
1372 | //Eyeball the inputs carefully. | ||
1373 | assert(res_ptr != NULL); | ||
1374 | assert(s1_ptr != NULL); | ||
1375 | assert(s1_size > 0); | ||
1376 | |||
1377 | /* The loop counter and index J goes from -SIZE to -1. This way | ||
1378 | the loop becomes faster. */ | ||
1379 | j = -s1_size; | ||
1380 | |||
1381 | /* Offset the base pointers to compensate for the negative indices. */ | ||
1382 | res_ptr -= j; | ||
1383 | s1_ptr -= j; | ||
1384 | |||
1385 | cy_limb = 0; | ||
1386 | do | ||
1387 | { | ||
1388 | //The original code here was the following macro: | ||
1389 | //umul_ppmm (prod_high, prod_low, s1_ptr[j], s2_limb); | ||
1390 | //Will use the 64-bit data type of MSVC++ to achieve | ||
1391 | //the same effect. | ||
1392 | // | ||
1393 | //NOTE AS OF 07/14/01: I have not looked at the assembly- | ||
1394 | //language, but the assembly-language generated by what | ||
1395 | //is below is suspected to have performance problems. | ||
1396 | //May want to come back to this. | ||
1397 | temp = ((unsigned _int64)s1_ptr[j]) * ((unsigned _int64)s2_limb); | ||
1398 | prod_low = (GMP_INTS_limb_t)temp; | ||
1399 | prod_high = (GMP_INTS_limb_t)(temp >> 32); | ||
1400 | |||
1401 | prod_low += cy_limb; | ||
1402 | cy_limb = (prod_low < cy_limb) + prod_high; | ||
1403 | |||
1404 | x = res_ptr[j]; | ||
1405 | prod_low = x + prod_low; | ||
1406 | cy_limb += (prod_low < x); | ||
1407 | res_ptr[j] = prod_low; | ||
1408 | } | ||
1409 | while (++j != 0); | ||
1410 | |||
1411 | return cy_limb; | ||
1412 | } | ||
1413 | |||
1414 | |||
1415 | //07/15/01: Am willing to skip unit-testing on this. | ||
1416 | //Understand the logic (i.e. passes visual inspection), | ||
1417 | //and comes from GNU-MP. | ||
1418 | GMP_INTS_limb_t GMP_INTS_mpn_add (GMP_INTS_limb_ptr res_ptr, | ||
1419 | GMP_INTS_limb_srcptr s1_ptr, | ||
1420 | GMP_INTS_size_t s1_size, | ||
1421 | GMP_INTS_limb_srcptr s2_ptr, | ||
1422 | GMP_INTS_size_t s2_size) | ||
1423 | { | ||
1424 | GMP_INTS_limb_t cy_limb = 0; | ||
1425 | |||
1426 | assert(res_ptr != NULL); | ||
1427 | assert(s1_ptr != NULL); | ||
1428 | assert(s2_ptr != NULL); | ||
1429 | |||
1430 | //Numbers apparently must be arranged with sizes so that | ||
1431 | //LIMBS(s1) >= LIMBS(s2). | ||
1432 | //Add the parts up to the most significant limb of S2. | ||
1433 | if (s2_size != 0) | ||
1434 | cy_limb = GMP_INTS_mpn_add_n (res_ptr, | ||
1435 | s1_ptr, | ||
1436 | s2_ptr, | ||
1437 | s2_size); | ||
1438 | |||
1439 | //Process the carry result, and propagate the carries up through | ||
1440 | //the parts of S1 that don't exist in S2, i.e. propagate the | ||
1441 | //carries upward in S1. | ||
1442 | if (s1_size - s2_size != 0) | ||
1443 | cy_limb = GMP_INTS_mpn_add_1 (res_ptr + s2_size, | ||
1444 | s1_ptr + s2_size, | ||
1445 | s1_size - s2_size, | ||
1446 | cy_limb); | ||
1447 | return cy_limb; | ||
1448 | } | ||
1449 | |||
1450 | |||
1451 | //07/15/01: Am willing to skip unit-testing on this. | ||
1452 | //Understand the logic (i.e. passes visual inspection), | ||
1453 | //and comes from GNU-MP. | ||
1454 | GMP_INTS_limb_t GMP_INTS_mpn_sub_n(GMP_INTS_limb_ptr res_ptr, | ||
1455 | GMP_INTS_limb_srcptr s1_ptr, | ||
1456 | GMP_INTS_limb_srcptr s2_ptr, | ||
1457 | GMP_INTS_size_t size) | ||
1458 | { | ||
1459 | GMP_INTS_limb_t x, y, cy; | ||
1460 | GMP_INTS_size_t j; | ||
1461 | |||
1462 | assert(res_ptr != NULL); | ||
1463 | assert(s1_ptr != NULL); | ||
1464 | assert(s2_ptr != NULL); | ||
1465 | |||
1466 | /* The loop counter and index J goes from -SIZE to -1. This way | ||
1467 | the loop becomes faster. */ | ||
1468 | j = -size; | ||
1469 | |||
1470 | /* Offset the base pointers to compensate for the negative indices. */ | ||
1471 | s1_ptr -= j; | ||
1472 | s2_ptr -= j; | ||
1473 | res_ptr -= j; | ||
1474 | |||
1475 | cy = 0; | ||
1476 | do | ||
1477 | { | ||
1478 | y = s2_ptr[j]; | ||
1479 | x = s1_ptr[j]; | ||
1480 | y += cy; /* add previous carry to subtrahend */ | ||
1481 | cy = (y < cy); /* get out carry from that addition */ | ||
1482 | y = x - y; /* main subtract */ | ||
1483 | cy = (y > x) + cy; /* get out carry from the subtract, combine */ | ||
1484 | res_ptr[j] = y; | ||
1485 | } | ||
1486 | while (++j != 0); | ||
1487 | |||
1488 | return cy; | ||
1489 | } | ||
1490 | |||
1491 | |||
1492 | //07/17/01: Am willing to skip unit-testing on this. | ||
1493 | //Understand the logic (i.e. passes visual inspection), | ||
1494 | //and comes from GNU-MP. | ||
1495 | GMP_INTS_limb_t GMP_INTS_mpn_sub (GMP_INTS_limb_ptr res_ptr, | ||
1496 | GMP_INTS_limb_srcptr s1_ptr, | ||
1497 | GMP_INTS_size_t s1_size, | ||
1498 | GMP_INTS_limb_srcptr s2_ptr, | ||
1499 | GMP_INTS_size_t s2_size) | ||
1500 | { | ||
1501 | GMP_INTS_limb_t cy_limb = 0; | ||
1502 | |||
1503 | assert(res_ptr != NULL); | ||
1504 | assert(s1_ptr != NULL); | ||
1505 | assert(s2_ptr != NULL); | ||
1506 | |||
1507 | if (s2_size != 0) | ||
1508 | cy_limb = GMP_INTS_mpn_sub_n(res_ptr, | ||
1509 | s1_ptr, | ||
1510 | s2_ptr, | ||
1511 | s2_size); | ||
1512 | |||
1513 | if (s1_size - s2_size != 0) | ||
1514 | cy_limb = GMP_INTS_mpn_sub_1(res_ptr + s2_size, | ||
1515 | s1_ptr + s2_size, | ||
1516 | s1_size - s2_size, | ||
1517 | cy_limb); | ||
1518 | return cy_limb; | ||
1519 | } | ||
1520 | |||
1521 | |||
1522 | //07/17/01: Am willing to skip unit-testing on this. | ||
1523 | //Understand the logic (i.e. passes visual inspection), | ||
1524 | //and comes from GNU-MP. | ||
1525 | GMP_INTS_limb_t GMP_INTS_mpn_lshift(GMP_INTS_limb_ptr wp, | ||
1526 | GMP_INTS_limb_srcptr up, | ||
1527 | GMP_INTS_size_t usize, | ||
1528 | unsigned int cnt) | ||
1529 | { | ||
1530 | GMP_INTS_limb_t high_limb, low_limb; | ||
1531 | unsigned sh_1, sh_2; | ||
1532 | GMP_INTS_size_t i; | ||
1533 | GMP_INTS_limb_t retval; | ||
1534 | |||
1535 | assert(wp != NULL); | ||
1536 | assert(up != NULL); | ||
1537 | assert(usize > 0); | ||
1538 | assert(cnt > 0); | ||
1539 | |||
1540 | sh_1 = cnt; | ||
1541 | |||
1542 | wp += 1; | ||
1543 | sh_2 = GMP_INTS_BITS_PER_LIMB - sh_1; | ||
1544 | //This automatically implies that can't call this function to shift more | ||
1545 | //than 31 places. | ||
1546 | i = usize - 1; | ||
1547 | low_limb = up[i]; | ||
1548 | retval = low_limb >> sh_2; //Return value is the amount shifted | ||
1549 | //off the top. | ||
1550 | high_limb = low_limb; | ||
1551 | while (--i >= 0) | ||
1552 | { | ||
1553 | low_limb = up[i]; | ||
1554 | wp[i] = (high_limb << sh_1) | (low_limb >> sh_2); | ||
1555 | high_limb = low_limb; | ||
1556 | } | ||
1557 | wp[i] = high_limb << sh_1; | ||
1558 | |||
1559 | return retval; | ||
1560 | } | ||
1561 | |||
1562 | |||
1563 | //07/17/01: Am willing to skip unit-testing on this. | ||
1564 | //Understand the logic more or less (i.e. passes visual inspection), | ||
1565 | //and comes from GNU-MP. | ||
1566 | /* Shift U (pointed to by UP and USIZE limbs long) CNT bits to the right | ||
1567 | and store the USIZE least significant limbs of the result at WP. | ||
1568 | The bits shifted out to the right are returned. | ||
1569 | |||
1570 | Argument constraints: | ||
1571 | 1. 0 < CNT < BITS_PER_MP_LIMB | ||
1572 | 2. If the result is to be written over the input, WP must be <= UP. | ||
1573 | */ | ||
1574 | GMP_INTS_limb_t GMP_INTS_mpn_rshift (GMP_INTS_limb_ptr wp, | ||
1575 | GMP_INTS_limb_srcptr up, | ||
1576 | GMP_INTS_size_t usize, | ||
1577 | unsigned int cnt) | ||
1578 | { | ||
1579 | GMP_INTS_limb_t high_limb, low_limb; | ||
1580 | unsigned sh_1, sh_2; | ||
1581 | GMP_INTS_size_t i; | ||
1582 | GMP_INTS_limb_t retval; | ||
1583 | |||
1584 | assert(wp != NULL); | ||
1585 | assert(up != NULL); | ||
1586 | assert(usize > 0); | ||
1587 | assert(cnt > 0); | ||
1588 | |||
1589 | sh_1 = cnt; | ||
1590 | |||
1591 | wp -= 1; | ||
1592 | sh_2 = GMP_INTS_BITS_PER_LIMB - sh_1; | ||
1593 | high_limb = up[0]; | ||
1594 | retval = high_limb << sh_2; | ||
1595 | low_limb = high_limb; | ||
1596 | |||
1597 | for (i = 1; i < usize; i++) | ||
1598 | { | ||
1599 | high_limb = up[i]; | ||
1600 | wp[i] = (low_limb >> sh_1) | (high_limb << sh_2); | ||
1601 | low_limb = high_limb; | ||
1602 | } | ||
1603 | wp[i] = low_limb >> sh_1; | ||
1604 | |||
1605 | return retval; | ||
1606 | } | ||
1607 | |||
1608 | |||
1609 | //07/17/01: Am willing to skip unit-testing on this. | ||
1610 | //Understand the logic (i.e. passes visual inspection), | ||
1611 | //and comes from GNU-MP. | ||
1612 | int GMP_INTS_mpn_cmp (GMP_INTS_limb_srcptr op1_ptr, | ||
1613 | GMP_INTS_limb_srcptr op2_ptr, | ||
1614 | GMP_INTS_size_t size) | ||
1615 | { | ||
1616 | GMP_INTS_size_t i; | ||
1617 | GMP_INTS_limb_t op1_word, op2_word; | ||
1618 | |||
1619 | assert(op1_ptr != NULL); | ||
1620 | assert(op2_ptr != NULL); | ||
1621 | |||
1622 | for (i = size - 1; i >= 0; i--) | ||
1623 | { | ||
1624 | op1_word = op1_ptr[i]; | ||
1625 | op2_word = op2_ptr[i]; | ||
1626 | if (op1_word != op2_word) | ||
1627 | goto diff; | ||
1628 | } | ||
1629 | return 0; | ||
1630 | |||
1631 | diff: | ||
1632 | //This can *not* be simplified to | ||
1633 | // op2_word - op2_word | ||
1634 | //since that expression might give signed overflow. | ||
1635 | return (op1_word > op2_word) ? 1 : -1; | ||
1636 | } | ||
1637 | |||
1638 | |||
1639 | //07/15/01: Am willing to skip unit-testing on this. | ||
1640 | //Understand the logic (i.e. passes visual inspection), | ||
1641 | //and comes from GNU-MP. Hope any defects here will be | ||
1642 | //caught in testing of GMP_INTS_mpz_mul() and other | ||
1643 | //higher-level functions. | ||
1644 | void GMP_INTS_mpn_mul_basecase (GMP_INTS_limb_ptr prodp, | ||
1645 | GMP_INTS_limb_srcptr up, | ||
1646 | GMP_INTS_size_t usize, | ||
1647 | GMP_INTS_limb_srcptr vp, | ||
1648 | GMP_INTS_size_t vsize) | ||
1649 | { | ||
1650 | assert(prodp != NULL); | ||
1651 | assert(up != NULL); | ||
1652 | assert(usize > 0); | ||
1653 | assert(vp != NULL); | ||
1654 | assert(vsize > 0); | ||
1655 | |||
1656 | /* We first multiply by the low order one or two limbs, as the result can | ||
1657 | be stored, not added, to PROD. We also avoid a loop for zeroing this | ||
1658 | way. */ | ||
1659 | prodp[usize] = GMP_INTS_mpn_mul_1 (prodp, up, usize, vp[0]); | ||
1660 | prodp++; | ||
1661 | vp++; | ||
1662 | vsize--; | ||
1663 | |||
1664 | /* For each iteration in the loop, multiply U with one limb from V, and | ||
1665 | add the result to PROD. */ | ||
1666 | while (vsize != 0) | ||
1667 | { | ||
1668 | prodp[usize] = GMP_INTS_mpn_addmul_1 (prodp, up, usize, vp[0]); | ||
1669 | prodp++, | ||
1670 | vp++, | ||
1671 | vsize--; | ||
1672 | } | ||
1673 | } | ||
1674 | |||
1675 | |||
1676 | //07/15/01: No unit testing possible--this is a passthrough. | ||
1677 | //In the original GNU MP code, there were several multiplication | ||
1678 | //algorithms, and this function would select one based on the | ||
1679 | //size of the operands and other considerations. The code has been | ||
1680 | //pared so that only simple multiplication is used, which is why | ||
1681 | //this function contains only a single pass-thru function call. | ||
1682 | void GMP_INTS_mpn_mul_n (GMP_INTS_limb_ptr p, | ||
1683 | GMP_INTS_limb_srcptr a, | ||
1684 | GMP_INTS_limb_srcptr b, | ||
1685 | GMP_INTS_size_t n) | ||
1686 | { | ||
1687 | GMP_INTS_mpn_mul_basecase (p, a, n, b, n); | ||
1688 | } | ||
1689 | |||
1690 | |||
1691 | //07/16/01: Visual inspection OK. Will not perform unit testing. | ||
1692 | GMP_INTS_limb_t GMP_INTS_mpn_mul(GMP_INTS_limb_ptr prodp, | ||
1693 | GMP_INTS_limb_srcptr up, | ||
1694 | GMP_INTS_size_t un, | ||
1695 | GMP_INTS_limb_srcptr vp, | ||
1696 | GMP_INTS_size_t vn) | ||
1697 | { | ||
1698 | //This is a gutted version of the GNU MP function. The GNU | ||
1699 | //MP function considered the case of a square, and also | ||
1700 | //better algorithms that pay off with large operands. | ||
1701 | //This gutted version uses only basic multiplication | ||
1702 | //(O(N**2)). | ||
1703 | |||
1704 | //Eyeball the input parameters. | ||
1705 | assert(prodp != NULL); | ||
1706 | assert(up != NULL); | ||
1707 | assert(un >= 0); | ||
1708 | assert(vp != NULL); | ||
1709 | assert(vn >= 0); | ||
1710 | |||
1711 | /* Basic long multiplication. */ | ||
1712 | GMP_INTS_mpn_mul_basecase (prodp, up, un, vp, vn); | ||
1713 | |||
1714 | //Return the most significant limb (which might be zero). | ||
1715 | //This is different than | ||
1716 | //most other functions, which return the spillover. | ||
1717 | return prodp[un + vn - 1]; | ||
1718 | } | ||
1719 | |||
1720 | |||
1721 | /******************************************************************/ | ||
1722 | /*** LIMB SPACE REALLOCATION FUNCTIONS *************************/ | ||
1723 | /******************************************************************/ | ||
1724 | |||
1725 | void *GMP_INTS_mpz_realloc (GMP_INTS_mpz_struct *m, | ||
1726 | GMP_INTS_size_t new_size) | ||
1727 | { | ||
1728 | /* Never allocate zero space. */ | ||
1729 | if (new_size <= 0) | ||
1730 | new_size = 1; | ||
1731 | |||
1732 | m->limbs = (GMP_INTS_limb_ptr) | ||
1733 | GMP_INTS_realloc_w_size (m->limbs, | ||
1734 | m->n_allocd * sizeof(GMP_INTS_limb_t), | ||
1735 | new_size * sizeof(GMP_INTS_limb_t)); | ||
1736 | m->n_allocd = new_size; | ||
1737 | |||
1738 | return (void *) m->limbs; | ||
1739 | } | ||
1740 | |||
1741 | |||
1742 | /******************************************************************/ | ||
1743 | /*** PUBLIC INITIALIZATION AND MEMORY MANAGEMENT FUNCTIONS *****/ | ||
1744 | /******************************************************************/ | ||
1745 | |||
1746 | void GMP_INTS_mpz_init (GMP_INTS_mpz_struct *x) | ||
1747 | { | ||
1748 | assert(x != NULL); | ||
1749 | |||
1750 | //The structure (the header block) exists in the | ||
1751 | //caller's area. Most likely it is a local variable. | ||
1752 | //This is OK, because it doesn't take up much space. | ||
1753 | |||
1754 | //Start off with no errors. | ||
1755 | x->flags = 0; | ||
1756 | |||
1757 | //Allocate space for one limb, which is the most | ||
1758 | //basic amount. This will grow, almost certainly. | ||
1759 | x->limbs = GMP_INTS_malloc(sizeof(GMP_INTS_limb_t)); | ||
1760 | |||
1761 | //Indicate that one limb was allocated. | ||
1762 | x->n_allocd = 1; | ||
1763 | |||
1764 | //Set the size to 0. This signals a value of zero. | ||
1765 | x->size = 0; | ||
1766 | } | ||
1767 | |||
1768 | |||
1769 | void GMP_INTS_mpz_clear (GMP_INTS_mpz_struct *x) | ||
1770 | { | ||
1771 | //Be sure the passed pointer is not NULL. | ||
1772 | assert(x != NULL); | ||
1773 | |||
1774 | //Be sure that the amount allocated is also above zero. | ||
1775 | //Anything else represents a logical error. | ||
1776 | assert(x->n_allocd > 0); | ||
1777 | |||
1778 | //Be sure that the pointer to the allocated limbs | ||
1779 | //is not NULL. Anything else would be a logical | ||
1780 | //error. | ||
1781 | assert(x->limbs != NULL); | ||
1782 | |||
1783 | //Deallocate the space for the limbs. The pointer is | ||
1784 | //set NULL and the allocated amount set to zero | ||
1785 | // so in case clear is called again it will be | ||
1786 | //a detectable error. | ||
1787 | GMP_INTS_free_w_size(x->limbs, | ||
1788 | x->n_allocd * sizeof(GMP_INTS_limb_t)); | ||
1789 | x->limbs = NULL; | ||
1790 | x->n_allocd = 0; | ||
1791 | } | ||
1792 | |||
1793 | |||
1794 | /******************************************************************/ | ||
1795 | /*** PUBLIC ASSIGNMENT FUNCTIONS *******************************/ | ||
1796 | /******************************************************************/ | ||
1797 | |||
1798 | void GMP_INTS_mpz_copy( GMP_INTS_mpz_struct *dst, | ||
1799 | const GMP_INTS_mpz_struct *src) | ||
1800 | { | ||
1801 | GMP_INTS_size_t i, n; | ||
1802 | |||
1803 | //Eyeball the input parameters. | ||
1804 | assert(dst != NULL); | ||
1805 | assert(dst->n_allocd > 0); | ||
1806 | assert(dst->limbs != NULL); | ||
1807 | assert(src != NULL); | ||
1808 | assert(src->n_allocd > 0); | ||
1809 | assert(src->limbs != NULL); | ||
1810 | |||
1811 | //Source and destination may not be the same. | ||
1812 | assert(src != dst); | ||
1813 | |||
1814 | //Figure out the real size of the source. We need to take the absolute | ||
1815 | //value. | ||
1816 | n = GMP_INTS_abs_of_size_t(src->size); | ||
1817 | |||
1818 | //Reallocate the destination to be bigger if necessary. | ||
1819 | if (dst->n_allocd < n) | ||
1820 | { | ||
1821 | GMP_INTS_mpz_realloc (dst, n); | ||
1822 | } | ||
1823 | |||
1824 | //Copy the non-dynamic fields in the header. | ||
1825 | dst->flags = src->flags; | ||
1826 | dst->size = src->size; | ||
1827 | |||
1828 | //Copy the limbs. | ||
1829 | for (i=0; i<n; i++) | ||
1830 | dst->limbs[i] = src->limbs[i]; | ||
1831 | } | ||
1832 | |||
1833 | |||
1834 | void GMP_INTS_mpz_set_ui (GMP_INTS_mpz_struct *dest, | ||
1835 | unsigned long int val) | ||
1836 | { | ||
1837 | assert(dest != NULL); | ||
1838 | |||
1839 | /* We don't check if the allocation is enough, since the rest of the | ||
1840 | package ensures it's at least 1, which is what we need here. */ | ||
1841 | |||
1842 | dest->flags = 0; | ||
1843 | //A set operation resets any errors. | ||
1844 | |||
1845 | if (val > 0) | ||
1846 | { | ||
1847 | dest->limbs[0] = val; | ||
1848 | dest->size = 1; | ||
1849 | } | ||
1850 | else | ||
1851 | { | ||
1852 | dest->size = 0; | ||
1853 | } | ||
1854 | } | ||
1855 | |||
1856 | |||
1857 | void GMP_INTS_mpz_set_si (GMP_INTS_mpz_struct *dest, | ||
1858 | signed long int val) | ||
1859 | { | ||
1860 | assert(dest != NULL); | ||
1861 | |||
1862 | /* We don't check if the allocation is enough, since the rest of the | ||
1863 | package ensures it's at least 1, which is what we need here. */ | ||
1864 | |||
1865 | dest->flags = 0; | ||
1866 | //A set operation resets any errors. | ||
1867 | |||
1868 | if (val > 0) | ||
1869 | { | ||
1870 | dest->limbs[0] = val; | ||
1871 | dest->size = 1; | ||
1872 | } | ||
1873 | else if (val < 0) | ||
1874 | { | ||
1875 | dest->limbs[0] = (unsigned long) -val; | ||
1876 | dest->size = -1; | ||
1877 | } | ||
1878 | else | ||
1879 | { | ||
1880 | dest->size = 0; | ||
1881 | } | ||
1882 | } | ||
1883 | |||
1884 | |||
1885 | void GMP_INTS_mpz_set_simple_char_str(GMP_INTS_mpz_struct *z, | ||
1886 | const char *s) | ||
1887 | { | ||
1888 | int sign=1; | ||
1889 | int digval; | ||
1890 | GMP_INTS_mpz_struct digvalz, k10; | ||
1891 | |||
1892 | //Eyeball the arguments. | ||
1893 | assert(z != NULL); | ||
1894 | assert(z->n_allocd > 0); | ||
1895 | assert(z->limbs != NULL); | ||
1896 | assert(s != NULL); | ||
1897 | |||
1898 | //Set the arbitrary integer to zero. This will also kill | ||
1899 | //any error flags. | ||
1900 | GMP_INTS_mpz_set_ui(z, 0); | ||
1901 | |||
1902 | //Allocate an integer for our private use to hold each digit | ||
1903 | //value. | ||
1904 | GMP_INTS_mpz_init(&digvalz); | ||
1905 | |||
1906 | //Allocate the constant 10, which we will use often. | ||
1907 | GMP_INTS_mpz_init(&k10); | ||
1908 | GMP_INTS_mpz_set_ui(&k10, 10); | ||
1909 | |||
1910 | //As long as there are are digits and no flags set, keep | ||
1911 | //multiplying and adding the value of the digit. Non- | ||
1912 | //digits are simply ignored. | ||
1913 | while (!(z->flags) && (*s)) | ||
1914 | { | ||
1915 | if (*s == '-') | ||
1916 | { | ||
1917 | sign = -sign; | ||
1918 | } | ||
1919 | else | ||
1920 | { | ||
1921 | digval = CHARFUNC_digit_to_val(*s); | ||
1922 | if (digval >= 0) | ||
1923 | { | ||
1924 | GMP_INTS_mpz_set_ui(&digvalz, digval); | ||
1925 | GMP_INTS_mpz_mul(z, z, &k10); | ||
1926 | GMP_INTS_mpz_add(z, z, &digvalz); | ||
1927 | } | ||
1928 | } | ||
1929 | s++; | ||
1930 | } | ||
1931 | |||
1932 | //Adjust the final sign of the result. | ||
1933 | if (sign < 0) | ||
1934 | z->size = -(z->size); | ||
1935 | |||
1936 | //Deallocate our temporary integers. | ||
1937 | GMP_INTS_mpz_clear(&digvalz); | ||
1938 | GMP_INTS_mpz_clear(&k10); | ||
1939 | } | ||
1940 | |||
1941 | |||
1942 | void GMP_INTS_mpz_set_sci_not_num(GMP_INTS_mpz_struct *z, | ||
1943 | int *failure, | ||
1944 | const char *s) | ||
1945 | { | ||
1946 | int parse_failure; | ||
1947 | //Return code from the floating point parsing | ||
1948 | //function. | ||
1949 | char mant_sign; | ||
1950 | //Sign character, if any, from the mantissa, | ||
1951 | //or N otherwise. | ||
1952 | size_t mant_bdp; | ||
1953 | //The index to the start of the mantissa before | ||
1954 | //the decimal point. | ||
1955 | size_t mant_bdp_len; | ||
1956 | //The length of the mantissa before the decimal | ||
1957 | //point. Zero means not defined, i.e. that | ||
1958 | //no characters were parsed and interpreted as | ||
1959 | //that part of a floating point number. | ||
1960 | size_t mant_adp; | ||
1961 | size_t mant_adp_len; | ||
1962 | //Similar fields for after the decimal point. | ||
1963 | char exp_sign; | ||
1964 | //Sign of the exponent, if any, or N otherwise. | ||
1965 | size_t exp; | ||
1966 | size_t exp_len; | ||
1967 | //Similar fields as to the mantissa, but for the | ||
1968 | //exponent. | ||
1969 | size_t si; | ||
1970 | //Iteration variable. | ||
1971 | int exponent_val; | ||
1972 | //The value of the exponent. We can't accept | ||
1973 | //an exponent outside the range of a 24-bit | ||
1974 | //signed integer. The 24-bit limit is arbitrary. | ||
1975 | //For one thing, it gives room to detect overflow | ||
1976 | //as are adding and multiplying by 10. | ||
1977 | |||
1978 | //Eyeball the input parameters. | ||
1979 | assert(z != NULL); | ||
1980 | assert(z->n_allocd > 0); | ||
1981 | assert(z->limbs != NULL); | ||
1982 | assert(failure != NULL); | ||
1983 | assert(s != NULL); | ||
1984 | |||
1985 | //Start off believing no failure. | ||
1986 | *failure = 0; | ||
1987 | |||
1988 | //Set the output to zero. This is the default case for some | ||
1989 | //steps below. | ||
1990 | GMP_INTS_mpz_set_ui(z, 0); | ||
1991 | |||
1992 | //Attempt to parse the number as a general number | ||
1993 | //in scientific notation. | ||
1994 | BSTRFUNC_parse_gen_sci_not_num(s, | ||
1995 | &parse_failure, | ||
1996 | &mant_sign, | ||
1997 | &mant_bdp, | ||
1998 | &mant_bdp_len, | ||
1999 | &mant_adp, | ||
2000 | &mant_adp_len, | ||
2001 | &exp_sign, | ||
2002 | &exp, | ||
2003 | &exp_len); | ||
2004 | |||
2005 | //If it wouldn't parse as a general number, can't go further. | ||
2006 | if (parse_failure) | ||
2007 | { | ||
2008 | *failure = 1; | ||
2009 | return; | ||
2010 | } | ||
2011 | else if (!exp_len && !mant_adp_len) | ||
2012 | { | ||
2013 | //There was no exponent, and no portion after | ||
2014 | //the decimal point. Can just parse as an integer. | ||
2015 | char *temp_buf; | ||
2016 | |||
2017 | //Allocate the temporary buffer to be one character longer | ||
2018 | //than the length specified for the parsed mantissa. | ||
2019 | temp_buf = GMP_INTS_malloc(sizeof(char) * (mant_bdp_len + 1)); | ||
2020 | |||
2021 | //Copy from the parsed area into the temporary buffer. | ||
2022 | for (si=mant_bdp; si<(mant_bdp+mant_bdp_len); si++) | ||
2023 | temp_buf[si-mant_bdp] = s[si]; | ||
2024 | temp_buf[mant_bdp_len] = 0; | ||
2025 | |||
2026 | //Set the arbitrary integer to the value of the character | ||
2027 | //string. | ||
2028 | GMP_INTS_mpz_set_simple_char_str(z, temp_buf); | ||
2029 | |||
2030 | //If the number parsed as negative, invert. | ||
2031 | if (mant_sign == '-') | ||
2032 | z->size = -z->size; | ||
2033 | |||
2034 | //Deallocate the temporary buffer. | ||
2035 | GMP_INTS_free(temp_buf); | ||
2036 | } | ||
2037 | else if (!exp_len && mant_adp_len) | ||
2038 | { | ||
2039 | char *temp_buf; | ||
2040 | |||
2041 | //In this case, there are digits after the decimal point, | ||
2042 | //but no exponent specified. The only way this makes | ||
2043 | //sense is if all of the digits are zero--otherwise it | ||
2044 | //cannot be an integer. | ||
2045 | for (si=mant_adp; si<(mant_adp+mant_adp_len); si++) | ||
2046 | { | ||
2047 | if (s[si] != '0') | ||
2048 | { | ||
2049 | *failure = 1; | ||
2050 | return; | ||
2051 | } | ||
2052 | } | ||
2053 | |||
2054 | //We're clean. They are only zeros. Execute as per | ||
2055 | //integer code. | ||
2056 | |||
2057 | //Allocate the temporary buffer to be one character longer | ||
2058 | //than the length specified for the parsed mantissa. | ||
2059 | temp_buf = GMP_INTS_malloc(sizeof(char) * (mant_bdp_len + 1)); | ||
2060 | |||
2061 | //Copy from the parsed area into the temporary buffer. | ||
2062 | for (si=mant_bdp; si<(mant_bdp+mant_bdp_len); si++) | ||
2063 | temp_buf[si-mant_bdp] = s[si]; | ||
2064 | temp_buf[mant_bdp_len] = 0; | ||
2065 | |||
2066 | //Set the arbitrary integer to the value of the character | ||
2067 | //string. | ||
2068 | GMP_INTS_mpz_set_simple_char_str(z, temp_buf); | ||
2069 | |||
2070 | //If the number parsed as negative, invert. | ||
2071 | if (mant_sign == '-') | ||
2072 | z->size = -z->size; | ||
2073 | |||
2074 | //Deallocate the temporary buffer. | ||
2075 | GMP_INTS_free(temp_buf); | ||
2076 | } | ||
2077 | else if (exp_len) | ||
2078 | { | ||
2079 | //This is the most difficult case, where an exponent | ||
2080 | //is specified. There are several complex subcases, | ||
2081 | //such as: | ||
2082 | // a)If the exponent is too positive or too negative, | ||
2083 | // we can't use it. In general, we won't tackle | ||
2084 | // an exponent that won't fit in a signed 24-bit | ||
2085 | // integer. This provides a range of from | ||
2086 | // -8,388,608 to +8,388,607. This dwarfs the | ||
2087 | // 100,000 or so digit preprocessor limit, | ||
2088 | // and should be adequate for any practical | ||
2089 | // application. | ||
2090 | // b)If the exponent is zero, we ignore it. | ||
2091 | // c)If the exponent is positive, it has to | ||
2092 | // be large enough to overcome any | ||
2093 | // digits past the decimal point, otherwise | ||
2094 | // we don't end up with an integer. | ||
2095 | // d)If the exponent is negative, there have to | ||
2096 | // be enough digits so that an integer remains | ||
2097 | // after the exponent is applied. This | ||
2098 | // generally requires trailing zeros on the | ||
2099 | // part before the decimal point. | ||
2100 | |||
2101 | //First, tackle the exponent. Process the | ||
2102 | //exponent into a signed integer. We have to | ||
2103 | //balk at anything outside of 24 bits. The | ||
2104 | //procedure used automatically handles | ||
2105 | //leading zeros correctly. | ||
2106 | exponent_val = 0; | ||
2107 | for (si=exp; si<(exp+exp_len); si++) | ||
2108 | { | ||
2109 | int val; | ||
2110 | |||
2111 | val = CHARFUNC_digit_to_val(s[si]); | ||
2112 | |||
2113 | assert(val >= 0 && val <= 9); | ||
2114 | |||
2115 | exponent_val *= 10; | ||
2116 | exponent_val += val; | ||
2117 | |||
2118 | if (((exp_sign=='-') && (exponent_val>8388608)) | ||
2119 | || | ||
2120 | ((exp_sign != '-') && (exponent_val>8388607))) | ||
2121 | { | ||
2122 | *failure = 1; | ||
2123 | return; | ||
2124 | } | ||
2125 | } | ||
2126 | |||
2127 | //If we're here, the exponent has been computed and | ||
2128 | //is within 24 bits. However, we need to adjust for | ||
2129 | //the sign. | ||
2130 | if (exp_sign == '-') | ||
2131 | exponent_val = -exponent_val; | ||
2132 | |||
2133 | //We need to make accurate assertions about the | ||
2134 | //portion of the number, if any, after the decimal point. | ||
2135 | //This means that we need to effectively discard | ||
2136 | //trailing zeros. To do this, we do not need to | ||
2137 | //relocate the string, we can just back off the index | ||
2138 | //to bypass any trailing zeros. | ||
2139 | while ((mant_adp_len > 0) && (s[mant_adp + mant_adp_len - 1]=='0')) | ||
2140 | mant_adp_len--; | ||
2141 | |||
2142 | //We also need to make accurate assertions about the | ||
2143 | //portion of the number, if any, before the decimal | ||
2144 | //point. It is known that the parsing function | ||
2145 | //isn't tolerant of multiple zeros, but zero is a | ||
2146 | //special case. Let's advance the pointer to the | ||
2147 | //part before the decimal point so that zero will | ||
2148 | //have zero length. | ||
2149 | while ((mant_bdp_len > 0) && (s[mant_bdp]=='0')) | ||
2150 | { | ||
2151 | mant_bdp++; | ||
2152 | mant_bdp_len--; | ||
2153 | } | ||
2154 | |||
2155 | //If we are dealing with zero, who cares about the | ||
2156 | //exponent? Just return the value of zero. | ||
2157 | if (!mant_bdp_len && !mant_adp_len) | ||
2158 | { | ||
2159 | *failure = 0; | ||
2160 | GMP_INTS_mpz_set_ui(z, 0); | ||
2161 | return; | ||
2162 | } | ||
2163 | |||
2164 | //Beyond this point, we have something non-zero. | ||
2165 | //If the exponent is positive, it must be at least | ||
2166 | //as large as the number of digits beyond the | ||
2167 | //decimal point in order to form an integer. If the | ||
2168 | //exponent is zero, there must be no digits after the | ||
2169 | //decimal point. If the exponent is negative, there | ||
2170 | //must be no digits after the decimal point, and the | ||
2171 | //trailing zeros on the part before the decimal point | ||
2172 | //must be adequate to handle the right decimal shift. | ||
2173 | if (exponent_val == 0) | ||
2174 | { | ||
2175 | if (mant_adp_len) | ||
2176 | { | ||
2177 | *failure = 1; | ||
2178 | return; | ||
2179 | } | ||
2180 | } | ||
2181 | else if (exponent_val > 0) | ||
2182 | { | ||
2183 | if ((int)mant_adp_len > exponent_val) | ||
2184 | { | ||
2185 | *failure = 1; | ||
2186 | return; | ||
2187 | } | ||
2188 | } | ||
2189 | else //exponent_val < 0 | ||
2190 | { | ||
2191 | if (mant_adp_len) | ||
2192 | { | ||
2193 | *failure = 1; | ||
2194 | return; | ||
2195 | } | ||
2196 | else | ||
2197 | { | ||
2198 | //Count the number of trailing zeros on the part | ||
2199 | //before the decimal point. | ||
2200 | size_t trailing_zero_count; | ||
2201 | int idx; | ||
2202 | |||
2203 | trailing_zero_count = 0; | ||
2204 | |||
2205 | for(idx = mant_bdp + mant_bdp_len - 1; | ||
2206 | (mant_bdp_len != 0) && (idx >= (int)mant_bdp); | ||
2207 | idx--) | ||
2208 | { | ||
2209 | if (s[idx] == '0') | ||
2210 | trailing_zero_count++; | ||
2211 | else | ||
2212 | break; | ||
2213 | } | ||
2214 | |||
2215 | //Check on the assertion about trailing zeros. | ||
2216 | if ((int)trailing_zero_count < -exponent_val) | ||
2217 | { | ||
2218 | *failure = 1; | ||
2219 | return; | ||
2220 | } | ||
2221 | } | ||
2222 | } | ||
2223 | |||
2224 | { | ||
2225 | //Create a string long enough to hold the digits | ||
2226 | //before the decimal point plus the ones after and | ||
2227 | //convert that to an arbitrary integer. | ||
2228 | //Form a power of 10 which is 10 exponentiated to | ||
2229 | //the absolute value of the exponent. If the | ||
2230 | //exponent was positive, multiply by it. If the | ||
2231 | //exponent was negative, divide by it. | ||
2232 | char *conv_str; | ||
2233 | size_t sidx; | ||
2234 | GMP_INTS_mpz_struct power_of_ten, k10, trash; | ||
2235 | |||
2236 | GMP_INTS_mpz_init(&power_of_ten); | ||
2237 | GMP_INTS_mpz_init(&k10); | ||
2238 | GMP_INTS_mpz_init(&trash); | ||
2239 | |||
2240 | conv_str = GMP_INTS_malloc(sizeof(char) * (mant_bdp_len + mant_adp_len + 1)); | ||
2241 | |||
2242 | sidx=0; | ||
2243 | |||
2244 | for (si=mant_bdp; si<(mant_bdp+mant_bdp_len); si++) | ||
2245 | { | ||
2246 | conv_str[sidx] = s[si]; | ||
2247 | sidx++; | ||
2248 | } | ||
2249 | for (si=mant_adp; si<(mant_adp+mant_adp_len); si++) | ||
2250 | { | ||
2251 | conv_str[sidx] = s[si]; | ||
2252 | sidx++; | ||
2253 | } | ||
2254 | conv_str[sidx] = 0; | ||
2255 | |||
2256 | assert(sidx == (mant_bdp_len + mant_adp_len)); | ||
2257 | |||
2258 | GMP_INTS_mpz_set_simple_char_str(z, conv_str); | ||
2259 | |||
2260 | GMP_INTS_mpz_set_ui(&k10, 10); | ||
2261 | |||
2262 | if (exponent_val > 0) | ||
2263 | GMP_INTS_mpz_pow_ui(&power_of_ten, &k10, exponent_val-mant_adp_len); | ||
2264 | else | ||
2265 | GMP_INTS_mpz_pow_ui(&power_of_ten, &k10, -exponent_val); | ||
2266 | |||
2267 | if (exponent_val >= 0) | ||
2268 | { | ||
2269 | GMP_INTS_mpz_mul(z, z, &power_of_ten); | ||
2270 | } | ||
2271 | else | ||
2272 | { | ||
2273 | GMP_INTS_mpz_tdiv_qr (&k10, | ||
2274 | &trash, | ||
2275 | z, | ||
2276 | &power_of_ten); | ||
2277 | GMP_INTS_mpz_copy(z, &k10); | ||
2278 | } | ||
2279 | |||
2280 | //If the argument had a minus sign, invert. | ||
2281 | if (mant_sign == '-') | ||
2282 | z->size = -z->size; | ||
2283 | |||
2284 | GMP_INTS_free(conv_str); | ||
2285 | |||
2286 | GMP_INTS_mpz_clear(&trash); | ||
2287 | GMP_INTS_mpz_clear(&k10); | ||
2288 | GMP_INTS_mpz_clear(&power_of_ten); | ||
2289 | |||
2290 | //Finally, if the arbitrary integer has overflowed, this is | ||
2291 | //a parse failure. Must declare as such. | ||
2292 | if (z->flags) | ||
2293 | *failure = 1; | ||
2294 | } | ||
2295 | } | ||
2296 | else | ||
2297 | { | ||
2298 | *failure = 1; | ||
2299 | return; | ||
2300 | } | ||
2301 | } | ||
2302 | |||
2303 | |||
2304 | void GMP_INTS_mpz_set_general_int(GMP_INTS_mpz_struct *z, | ||
2305 | int *failure, | ||
2306 | const char *s) | ||
2307 | { | ||
2308 | //Eyeball the input parameters. | ||
2309 | assert(z != NULL); | ||
2310 | assert(z->n_allocd > 0); | ||
2311 | assert(z->limbs != NULL); | ||
2312 | assert(failure != NULL); | ||
2313 | assert(s != NULL); | ||
2314 | |||
2315 | //Try to parse it as a simple integer. | ||
2316 | if (BSTRFUNC_is_sint_wo_commas(s)) | ||
2317 | { | ||
2318 | GMP_INTS_mpz_set_simple_char_str(z, s); | ||
2319 | *failure = 0; | ||
2320 | return; | ||
2321 | } | ||
2322 | //If that didn't work, try to parse it as a simple | ||
2323 | //integer with commas. | ||
2324 | else if (BSTRFUNC_is_sint_w_commas(s)) | ||
2325 | { | ||
2326 | GMP_INTS_mpz_set_simple_char_str(z, s); | ||
2327 | *failure = 0; | ||
2328 | return; | ||
2329 | } | ||
2330 | //If neither of those worked, try to parse it as | ||
2331 | //something containing scientific notation. | ||
2332 | else | ||
2333 | { | ||
2334 | GMP_INTS_mpz_set_sci_not_num(z, failure, s); | ||
2335 | |||
2336 | if (!*failure) | ||
2337 | { | ||
2338 | //We were able to parse it that way. | ||
2339 | //Everything is set up, just return. | ||
2340 | return; | ||
2341 | } | ||
2342 | else | ||
2343 | { | ||
2344 | //We're out of options. All parsing failed. | ||
2345 | GMP_INTS_mpz_set_ui(z, 0); | ||
2346 | *failure = 1; | ||
2347 | return; | ||
2348 | } | ||
2349 | } | ||
2350 | } | ||
2351 | |||
2352 | |||
2353 | void GMP_INTS_mpz_parse_into_uint32(unsigned *result, | ||
2354 | int *failure, | ||
2355 | char *s) | ||
2356 | { | ||
2357 | GMP_INTS_mpz_struct arb_int; | ||
2358 | |||
2359 | //Eyeball the input parameters. | ||
2360 | assert(result != NULL); | ||
2361 | assert(failure != NULL); | ||
2362 | assert(s != NULL); | ||
2363 | |||
2364 | //Allocate space for the one arbitrary integer we need. | ||
2365 | GMP_INTS_mpz_init(&arb_int); | ||
2366 | |||
2367 | //Try to parse the string into an arbitrary length integer | ||
2368 | //using all methods known to man. | ||
2369 | GMP_INTS_mpz_set_general_int(&arb_int, failure, s); | ||
2370 | |||
2371 | //If the parse failed, we must declare failure and return | ||
2372 | //0. | ||
2373 | if (*failure) | ||
2374 | { | ||
2375 | *result = 0; | ||
2376 | *failure = 1; | ||
2377 | } | ||
2378 | else | ||
2379 | { | ||
2380 | //We might have success, but it might be negative or | ||
2381 | //too big. | ||
2382 | if (arb_int.size == 1) | ||
2383 | { | ||
2384 | *result = arb_int.limbs[0]; | ||
2385 | *failure = 0; | ||
2386 | } | ||
2387 | else if (arb_int.size == 0) | ||
2388 | { | ||
2389 | *result = 0; | ||
2390 | *failure = 0; | ||
2391 | } | ||
2392 | else | ||
2393 | { | ||
2394 | *result = 0; | ||
2395 | *failure = 1; | ||
2396 | } | ||
2397 | } | ||
2398 | |||
2399 | //Deallocate the arbitrary integer. | ||
2400 | GMP_INTS_mpz_clear(&arb_int); | ||
2401 | } | ||
2402 | |||
2403 | |||
2404 | void GMP_INTS_mpz_swap(GMP_INTS_mpz_struct *a, | ||
2405 | GMP_INTS_mpz_struct *b) | ||
2406 | { | ||
2407 | GMP_INTS_mpz_struct temp; | ||
2408 | |||
2409 | //Eyeball the input parameters. | ||
2410 | assert(a != NULL); | ||
2411 | assert(a->n_allocd > 0); | ||
2412 | assert(a->limbs != NULL); | ||
2413 | assert(b != NULL); | ||
2414 | assert(b->n_allocd > 0); | ||
2415 | assert(b->limbs != NULL); | ||
2416 | |||
2417 | //Make the swap via memory copy. | ||
2418 | memcpy(&temp, a, sizeof(GMP_INTS_mpz_struct)); | ||
2419 | memcpy(a, b, sizeof(GMP_INTS_mpz_struct)); | ||
2420 | memcpy(b, &temp, sizeof(GMP_INTS_mpz_struct)); | ||
2421 | } | ||
2422 | |||
2423 | |||
2424 | /******************************************************************/ | ||
2425 | /*** PUBLIC ARITHMETIC FUNCTIONS *******************************/ | ||
2426 | /******************************************************************/ | ||
2427 | |||
2428 | //07/15/01: Unit test and visual inspection passed. | ||
2429 | void GMP_INTS_mpz_add ( GMP_INTS_mpz_struct *w, | ||
2430 | const GMP_INTS_mpz_struct *u, | ||
2431 | const GMP_INTS_mpz_struct *v) | ||
2432 | { | ||
2433 | GMP_INTS_limb_srcptr up, vp; | ||
2434 | GMP_INTS_limb_ptr wp; | ||
2435 | GMP_INTS_size_t usize, vsize, wsize; | ||
2436 | GMP_INTS_size_t abs_usize; | ||
2437 | GMP_INTS_size_t abs_vsize; | ||
2438 | |||
2439 | //Look at the input parameters carefully. | ||
2440 | assert(w != NULL); | ||
2441 | assert(u != NULL); | ||
2442 | assert(v != NULL); | ||
2443 | assert(w->n_allocd > 0); | ||
2444 | assert(u->n_allocd > 0); | ||
2445 | assert(v->n_allocd > 0); | ||
2446 | assert(w->limbs != NULL); | ||
2447 | assert(u->limbs != NULL); | ||
2448 | assert(v->limbs != NULL); | ||
2449 | |||
2450 | //Handle the case of a tainted result. If either of the | ||
2451 | //two inputs are either direct overflows or tainted by | ||
2452 | //an overflow, mark the result tainted and do not perform | ||
2453 | //any arithmetic operation. | ||
2454 | { | ||
2455 | int taint; | ||
2456 | |||
2457 | taint = GMP_INTS_two_op_flags_map(u->flags, v->flags); | ||
2458 | |||
2459 | w->flags = 0; | ||
2460 | //"w" starts off with a clean slate. Must do this | ||
2461 | //after taint calculation in case locations of u or v | ||
2462 | //are the same as w. | ||
2463 | if (taint) | ||
2464 | { | ||
2465 | w->flags = taint; | ||
2466 | return; | ||
2467 | } | ||
2468 | } | ||
2469 | |||
2470 | usize = u->size; | ||
2471 | vsize = v->size; | ||
2472 | abs_usize = GMP_INTS_abs_of_size_t(usize); | ||
2473 | abs_vsize = GMP_INTS_abs_of_size_t(vsize); | ||
2474 | |||
2475 | //Arrange things so that U has at least as many | ||
2476 | //limbs as V, i.e. limbs(U) >= limbs(V); | ||
2477 | if (abs_usize < abs_vsize) | ||
2478 | { | ||
2479 | const GMP_INTS_mpz_struct *tmp_ptr; | ||
2480 | GMP_INTS_size_t tmp_size; | ||
2481 | |||
2482 | //Swap U and V. This does no harm, because we are | ||
2483 | //manipulating only local variables. This does not | ||
2484 | //affect the caller. | ||
2485 | tmp_ptr = u; | ||
2486 | u = v; | ||
2487 | v = tmp_ptr; | ||
2488 | tmp_size = usize; | ||
2489 | usize = vsize; | ||
2490 | vsize = tmp_size; | ||
2491 | tmp_size = abs_usize; | ||
2492 | abs_usize = abs_vsize; | ||
2493 | abs_vsize = tmp_size; | ||
2494 | } | ||
2495 | |||
2496 | /* True: ABS_USIZE >= ABS_VSIZE. */ | ||
2497 | |||
2498 | /* If not space for w (and possible carry), increase space. */ | ||
2499 | wsize = abs_usize + 1; | ||
2500 | if (w->n_allocd < wsize) | ||
2501 | GMP_INTS_mpz_realloc(w, wsize); | ||
2502 | |||
2503 | //These pointers must be obtained after realloc. At this point, | ||
2504 | //u or v may be the same as w. | ||
2505 | up = u->limbs; | ||
2506 | vp = v->limbs; | ||
2507 | wp = w->limbs; | ||
2508 | |||
2509 | if ((usize ^ vsize) < 0) | ||
2510 | { | ||
2511 | //U and V have different sign. Need to compare them to determine | ||
2512 | //which operand to subtract from which. | ||
2513 | |||
2514 | //This test is right since ABS_USIZE >= ABS_VSIZE. | ||
2515 | //If the equality case is ruled out, then U has more limbs | ||
2516 | //than V, which means that it is bigger in magnitude. | ||
2517 | if (abs_usize != abs_vsize) | ||
2518 | { | ||
2519 | GMP_INTS_mpn_sub (wp, up, abs_usize, vp, abs_vsize); | ||
2520 | wsize = abs_usize; | ||
2521 | |||
2522 | //Normalize the result. This was formerly a macro. | ||
2523 | //To normalize in this context means to trim the size | ||
2524 | //down to eliminate any leading zero limbs that came | ||
2525 | //about because the size of the result of an operation | ||
2526 | //was overestimated. | ||
2527 | GMP_INTS_mpn_normalize(wp, &wsize); | ||
2528 | |||
2529 | if (usize < 0) | ||
2530 | wsize = -wsize; | ||
2531 | } | ||
2532 | else if (GMP_INTS_mpn_cmp (up, vp, abs_usize) < 0) | ||
2533 | { | ||
2534 | GMP_INTS_mpn_sub_n (wp, vp, up, abs_usize); | ||
2535 | wsize = abs_usize; | ||
2536 | GMP_INTS_mpn_normalize(wp, &wsize); | ||
2537 | if (usize >= 0) | ||
2538 | wsize = -wsize; | ||
2539 | } | ||
2540 | else | ||
2541 | { | ||
2542 | GMP_INTS_mpn_sub_n (wp, up, vp, abs_usize); | ||
2543 | wsize = abs_usize; | ||
2544 | GMP_INTS_mpn_normalize(wp, &wsize); | ||
2545 | if (usize < 0) | ||
2546 | wsize = -wsize; | ||
2547 | } | ||
2548 | } | ||
2549 | else | ||
2550 | { | ||
2551 | /* U and V have same sign. Add them. */ | ||
2552 | GMP_INTS_limb_t cy_limb | ||
2553 | = GMP_INTS_mpn_add (wp, up, abs_usize, vp, abs_vsize); | ||
2554 | wp[abs_usize] = cy_limb; | ||
2555 | wsize = abs_usize + cy_limb; | ||
2556 | if (usize < 0) | ||
2557 | wsize = -wsize; | ||
2558 | } | ||
2559 | |||
2560 | w->size = wsize; | ||
2561 | |||
2562 | //Handle the case of an overflowed result. If the result | ||
2563 | //of the addition is too big or too small, mark it as | ||
2564 | //overflowed. | ||
2565 | if (w->size > GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2566 | { | ||
2567 | w->flags = GMP_INTS_EF_INTOVF_POS; | ||
2568 | } | ||
2569 | else if (w->size < -GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2570 | { | ||
2571 | w->flags = GMP_INTS_EF_INTOVF_NEG; | ||
2572 | } | ||
2573 | } | ||
2574 | |||
2575 | |||
2576 | //07/15/01: Unit testing skipped because of recursive | ||
2577 | //nature. Visual inspection OK. | ||
2578 | void GMP_INTS_mpz_add_ui ( GMP_INTS_mpz_struct *w, | ||
2579 | const GMP_INTS_mpz_struct *u, | ||
2580 | unsigned long int v) | ||
2581 | { | ||
2582 | //The GNU MP version of this is quite efficient, and this | ||
2583 | //makes sense since it is a common operation. However, | ||
2584 | //for simplicity just define this recursively in terms | ||
2585 | //of the ADD function. This can always be made quicker | ||
2586 | //later (by changing back to the GNU MP version). | ||
2587 | GMP_INTS_mpz_struct temp; | ||
2588 | |||
2589 | //Eyeball the inputs carefully. | ||
2590 | assert(w != NULL); | ||
2591 | assert(w->n_allocd > 0); | ||
2592 | assert(w->limbs != NULL); | ||
2593 | assert(u != NULL); | ||
2594 | assert(u->n_allocd > 0); | ||
2595 | assert(u->limbs != NULL); | ||
2596 | |||
2597 | //Create a temporary integer. | ||
2598 | GMP_INTS_mpz_init(&temp); | ||
2599 | |||
2600 | //Set the temporary integer to the value of the input | ||
2601 | //argument. | ||
2602 | GMP_INTS_mpz_set_ui(&temp, v); | ||
2603 | |||
2604 | //Do the actual addition. This recursive definition | ||
2605 | //is inherently wasteful, but I'm after clarity, not | ||
2606 | //warp speed. | ||
2607 | GMP_INTS_mpz_add(w, u, &temp); | ||
2608 | |||
2609 | //Destroy the temporary integer (this will reclaim the | ||
2610 | //memory). | ||
2611 | GMP_INTS_mpz_clear(&temp); | ||
2612 | } | ||
2613 | |||
2614 | |||
2615 | //07/15/01: Visual inspection passed. Not unit tested | ||
2616 | //because of symmetry with GMP_INTS_mpz_add(). | ||
2617 | void GMP_INTS_mpz_sub ( GMP_INTS_mpz_struct *w, | ||
2618 | const GMP_INTS_mpz_struct *u, | ||
2619 | const GMP_INTS_mpz_struct *v) | ||
2620 | { | ||
2621 | GMP_INTS_limb_srcptr up, vp; | ||
2622 | GMP_INTS_limb_ptr wp; | ||
2623 | GMP_INTS_size_t usize, vsize, wsize; | ||
2624 | GMP_INTS_size_t abs_usize; | ||
2625 | GMP_INTS_size_t abs_vsize; | ||
2626 | |||
2627 | //Look at the input parameters carefully. | ||
2628 | assert(w != NULL); | ||
2629 | assert(u != NULL); | ||
2630 | assert(v != NULL); | ||
2631 | assert(w->n_allocd > 0); | ||
2632 | assert(u->n_allocd > 0); | ||
2633 | assert(v->n_allocd > 0); | ||
2634 | assert(w->limbs != NULL); | ||
2635 | assert(u->limbs != NULL); | ||
2636 | assert(v->limbs != NULL); | ||
2637 | |||
2638 | //Handle the case of a tainted result. If either of the | ||
2639 | //two inputs are either direct overflows or tainted by | ||
2640 | //an overflow, mark the result tainted and do not perform | ||
2641 | //any arithmetic operation. | ||
2642 | { | ||
2643 | int taint; | ||
2644 | |||
2645 | taint = GMP_INTS_two_op_flags_map(u->flags, v->flags); | ||
2646 | |||
2647 | w->flags = 0; | ||
2648 | //"w" starts off with a clean slate. Must do this | ||
2649 | //after taint calculation in case locations of u or v | ||
2650 | //are the same as w. | ||
2651 | if (taint) | ||
2652 | { | ||
2653 | w->flags = taint; | ||
2654 | return; | ||
2655 | } | ||
2656 | } | ||
2657 | |||
2658 | usize = u->size; | ||
2659 | vsize = -(v->size); /* The "-" makes the difference from mpz_add */ | ||
2660 | abs_usize = GMP_INTS_abs_of_size_t(usize); | ||
2661 | abs_vsize = GMP_INTS_abs_of_size_t(vsize); | ||
2662 | |||
2663 | if (abs_usize < abs_vsize) | ||
2664 | { | ||
2665 | const GMP_INTS_mpz_struct *tmp_ptr; | ||
2666 | GMP_INTS_size_t tmp_size; | ||
2667 | |||
2668 | //Swap U and V. This does no harm, because we are | ||
2669 | //manipulating only local variables. This does not | ||
2670 | //affect the caller. | ||
2671 | tmp_ptr = u; | ||
2672 | u = v; | ||
2673 | v = tmp_ptr; | ||
2674 | tmp_size = usize; | ||
2675 | usize = vsize; | ||
2676 | vsize = tmp_size; | ||
2677 | tmp_size = abs_usize; | ||
2678 | abs_usize = abs_vsize; | ||
2679 | abs_vsize = tmp_size; | ||
2680 | } | ||
2681 | |||
2682 | /* True: ABS_USIZE >= ABS_VSIZE. */ | ||
2683 | |||
2684 | /* If not space for w (and possible carry), increase space. */ | ||
2685 | wsize = abs_usize + 1; | ||
2686 | if (w->n_allocd < wsize) | ||
2687 | GMP_INTS_mpz_realloc (w, wsize); | ||
2688 | |||
2689 | /* These must be after realloc (u or v may be the same as w). */ | ||
2690 | up = u->limbs; | ||
2691 | vp = v->limbs; | ||
2692 | wp = w->limbs; | ||
2693 | |||
2694 | if ((usize ^ vsize) < 0) | ||
2695 | { | ||
2696 | //U and V have different sign. Need to compare them to determine | ||
2697 | //which operand to subtract from which. | ||
2698 | |||
2699 | //This test is right since ABS_USIZE >= ABS_VSIZE. | ||
2700 | if (abs_usize != abs_vsize) | ||
2701 | { | ||
2702 | GMP_INTS_mpn_sub (wp, up, abs_usize, vp, abs_vsize); | ||
2703 | wsize = abs_usize; | ||
2704 | GMP_INTS_mpn_normalize(wp, &wsize); | ||
2705 | if (usize < 0) | ||
2706 | wsize = -wsize; | ||
2707 | } | ||
2708 | else if (GMP_INTS_mpn_cmp (up, vp, abs_usize) < 0) | ||
2709 | { | ||
2710 | GMP_INTS_mpn_sub_n (wp, vp, up, abs_usize); | ||
2711 | wsize = abs_usize; | ||
2712 | GMP_INTS_mpn_normalize(wp, &wsize); | ||
2713 | if (usize >= 0) | ||
2714 | wsize = -wsize; | ||
2715 | } | ||
2716 | else | ||
2717 | { | ||
2718 | GMP_INTS_mpn_sub_n (wp, up, vp, abs_usize); | ||
2719 | wsize = abs_usize; | ||
2720 | GMP_INTS_mpn_normalize (wp, &wsize); | ||
2721 | if (usize < 0) | ||
2722 | wsize = -wsize; | ||
2723 | } | ||
2724 | } | ||
2725 | else | ||
2726 | { | ||
2727 | /* U and V have same sign. Add them. */ | ||
2728 | GMP_INTS_limb_t cy_limb | ||
2729 | = GMP_INTS_mpn_add (wp, up, abs_usize, vp, abs_vsize); | ||
2730 | wp[abs_usize] = cy_limb; | ||
2731 | wsize = abs_usize + cy_limb; | ||
2732 | if (usize < 0) | ||
2733 | wsize = -wsize; | ||
2734 | } | ||
2735 | |||
2736 | w->size = wsize; | ||
2737 | |||
2738 | //Handle the case of an overflowed result. If the result | ||
2739 | //of the addition is too big or too small, mark it as | ||
2740 | //overflowed. | ||
2741 | if (w->size > GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2742 | { | ||
2743 | w->flags = GMP_INTS_EF_INTOVF_POS; | ||
2744 | } | ||
2745 | else if (w->size < -GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2746 | { | ||
2747 | w->flags = GMP_INTS_EF_INTOVF_NEG; | ||
2748 | } | ||
2749 | } | ||
2750 | |||
2751 | |||
2752 | //07/15/01: Unit testing skipped because of recursive | ||
2753 | //nature. Visual inspection OK. | ||
2754 | void GMP_INTS_mpz_sub_ui ( GMP_INTS_mpz_struct *w, | ||
2755 | const GMP_INTS_mpz_struct *u, | ||
2756 | unsigned long int v) | ||
2757 | { | ||
2758 | //The GNU MP version of this is quite efficient, and this | ||
2759 | //makes sense since it is a common operation. However, | ||
2760 | //for simplicity just define this recursively in terms | ||
2761 | //of the SUB function. This can always be made quicker | ||
2762 | //later (by changing back to the GNU MP version). | ||
2763 | GMP_INTS_mpz_struct temp; | ||
2764 | |||
2765 | //Eyeball the inputs carefully. | ||
2766 | assert(w != NULL); | ||
2767 | assert(w->n_allocd > 0); | ||
2768 | assert(w->limbs != NULL); | ||
2769 | assert(u != NULL); | ||
2770 | assert(u->n_allocd > 0); | ||
2771 | assert(u->limbs != NULL); | ||
2772 | |||
2773 | //Create a temporary integer. | ||
2774 | GMP_INTS_mpz_init(&temp); | ||
2775 | |||
2776 | //Set the temporary integer to the value of the input | ||
2777 | //argument. | ||
2778 | GMP_INTS_mpz_set_ui(&temp, v); | ||
2779 | |||
2780 | //Do the actual subtraction. This recursive definition | ||
2781 | //is inherently wasteful, but I'm after clarity, not | ||
2782 | //warp speed. | ||
2783 | GMP_INTS_mpz_sub(w, u, &temp); | ||
2784 | |||
2785 | //Destroy the temporary integer (this will reclaim the | ||
2786 | //memory). | ||
2787 | GMP_INTS_mpz_clear(&temp); | ||
2788 | } | ||
2789 | |||
2790 | |||
2791 | void GMP_INTS_mpz_mul ( GMP_INTS_mpz_struct *w, | ||
2792 | const GMP_INTS_mpz_struct *u, | ||
2793 | const GMP_INTS_mpz_struct *v) | ||
2794 | { | ||
2795 | GMP_INTS_size_t usize = u->size; | ||
2796 | GMP_INTS_size_t vsize = v->size; | ||
2797 | GMP_INTS_size_t wsize; | ||
2798 | GMP_INTS_size_t sign_product; | ||
2799 | GMP_INTS_limb_ptr up, vp; | ||
2800 | GMP_INTS_limb_ptr wp; | ||
2801 | GMP_INTS_limb_ptr free_me = NULL; | ||
2802 | GMP_INTS_size_t free_me_size; | ||
2803 | GMP_INTS_limb_t cy_limb; | ||
2804 | |||
2805 | //Eyeball the inputs. | ||
2806 | assert(w != NULL); | ||
2807 | assert(w->n_allocd > 0); | ||
2808 | assert(w->limbs != NULL); | ||
2809 | assert(u != NULL); | ||
2810 | assert(u->n_allocd > 0); | ||
2811 | assert(u->limbs != NULL); | ||
2812 | assert(v != NULL); | ||
2813 | assert(v->n_allocd > 0); | ||
2814 | assert(v->limbs != NULL); | ||
2815 | |||
2816 | //Handle the case of a tainted result. If either of the | ||
2817 | //two inputs are either direct overflows or tainted by | ||
2818 | //an overflow, mark the result tainted and do not perform | ||
2819 | //any arithmetic operation. | ||
2820 | { | ||
2821 | int taint; | ||
2822 | |||
2823 | taint = GMP_INTS_two_op_flags_map(u->flags, v->flags); | ||
2824 | |||
2825 | w->flags = 0; | ||
2826 | //"w" starts off with a clean slate. Must do this | ||
2827 | //after taint calculation in case locations of u or v | ||
2828 | //are the same as w. | ||
2829 | if (taint) | ||
2830 | { | ||
2831 | w->flags = taint; | ||
2832 | return; | ||
2833 | } | ||
2834 | } | ||
2835 | |||
2836 | sign_product = usize ^ vsize; | ||
2837 | usize = GMP_INTS_abs_of_size_t(usize); | ||
2838 | vsize = GMP_INTS_abs_of_size_t(vsize); | ||
2839 | |||
2840 | //Handle the case of a certain result overflow (why do the math when | ||
2841 | //the result is certain?). In general, when multiplying two inputs | ||
2842 | //whose sizes are M limbs and N limbs, the size of the result will be | ||
2843 | //either M+N or M+N-1 limbs. If M+N-1 > MAX_ALLOWED, then can declare | ||
2844 | //an early overflow. | ||
2845 | if ((usize + vsize - 1) > GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2846 | { | ||
2847 | if (sign_product < 0) | ||
2848 | w->flags = GMP_INTS_EF_INTOVF_NEG; | ||
2849 | else | ||
2850 | w->flags = GMP_INTS_EF_INTOVF_POS; | ||
2851 | |||
2852 | return; | ||
2853 | } | ||
2854 | |||
2855 | |||
2856 | if (usize < vsize) | ||
2857 | { | ||
2858 | //Temporary variables just for the swap. | ||
2859 | const GMP_INTS_mpz_struct *tmp_ptr; | ||
2860 | GMP_INTS_size_t tmp_size; | ||
2861 | |||
2862 | //Swap U and V. | ||
2863 | tmp_ptr = u; | ||
2864 | u = v; | ||
2865 | v = tmp_ptr; | ||
2866 | tmp_size = usize; | ||
2867 | usize = vsize; | ||
2868 | vsize = tmp_size; | ||
2869 | } | ||
2870 | |||
2871 | //Grab pointers to the arrays of limbs. | ||
2872 | up = u->limbs; | ||
2873 | vp = v->limbs; | ||
2874 | wp = w->limbs; | ||
2875 | |||
2876 | /* Ensure W has space enough to store the result. */ | ||
2877 | wsize = usize + vsize; | ||
2878 | if (w->n_allocd < wsize) | ||
2879 | { | ||
2880 | if (wp == up || wp == vp) | ||
2881 | { | ||
2882 | free_me = wp; | ||
2883 | free_me_size = w->n_allocd; | ||
2884 | } | ||
2885 | else | ||
2886 | { | ||
2887 | GMP_INTS_free_w_size (wp, w->n_allocd * sizeof(GMP_INTS_limb_t)); | ||
2888 | } | ||
2889 | |||
2890 | w->n_allocd = wsize; | ||
2891 | wp = (GMP_INTS_limb_ptr) | ||
2892 | GMP_INTS_malloc (wsize * sizeof(GMP_INTS_limb_t)); | ||
2893 | w->limbs = wp; | ||
2894 | } | ||
2895 | else | ||
2896 | { | ||
2897 | /* Make U and V not overlap with W. */ | ||
2898 | if (wp == up) | ||
2899 | { | ||
2900 | /* W and U are identical. Allocate temporary space for U. */ | ||
2901 | up = (GMP_INTS_limb_ptr) | ||
2902 | _alloca(usize * sizeof(GMP_INTS_limb_t)); | ||
2903 | /* Is V identical too? Keep it identical with U. */ | ||
2904 | if (wp == vp) | ||
2905 | vp = up; | ||
2906 | /* Copy to the temporary space. */ | ||
2907 | GMP_INTS_mpn_copy_limbs(up, wp, usize); | ||
2908 | } | ||
2909 | else if (wp == vp) | ||
2910 | { | ||
2911 | /* W and V are identical. Allocate temporary space for V. */ | ||
2912 | vp = (GMP_INTS_limb_ptr) | ||
2913 | _alloca(vsize * sizeof(GMP_INTS_limb_t)); | ||
2914 | /* Copy to the temporary space. */ | ||
2915 | GMP_INTS_mpn_copy_limbs(vp, wp, vsize); | ||
2916 | } | ||
2917 | } | ||
2918 | |||
2919 | if (vsize == 0) | ||
2920 | { | ||
2921 | wsize = 0; | ||
2922 | } | ||
2923 | else | ||
2924 | { | ||
2925 | cy_limb = GMP_INTS_mpn_mul (wp, up, usize, vp, vsize); | ||
2926 | wsize = usize + vsize; | ||
2927 | wsize -= cy_limb == 0; | ||
2928 | } | ||
2929 | |||
2930 | w->size = sign_product < 0 ? -wsize : wsize; | ||
2931 | |||
2932 | if (free_me != NULL) | ||
2933 | GMP_INTS_free_w_size (free_me, free_me_size * sizeof(GMP_INTS_limb_t)); | ||
2934 | |||
2935 | //Final check for overflow. | ||
2936 | if (w->size > GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2937 | w->flags = GMP_INTS_EF_INTOVF_POS; | ||
2938 | else if (w->size < -GMP_INTS_MAXIMUM_LIMBS_PER_INT) | ||
2939 | w->flags = GMP_INTS_EF_INTOVF_NEG; | ||
2940 | } | ||
2941 | |||
2942 | |||
2943 | //07/15/01: Unit testing skipped because of recursive | ||
2944 | //nature. Visual inspection OK. | ||
2945 | void GMP_INTS_mpz_mul_si ( GMP_INTS_mpz_struct *w, | ||
2946 | const GMP_INTS_mpz_struct *u, | ||
2947 | long int v) | ||
2948 | { | ||
2949 | GMP_INTS_mpz_struct temp; | ||
2950 | |||
2951 | //Eyeball the inputs carefully. | ||
2952 | assert(w != NULL); | ||
2953 | assert(w->n_allocd > 0); | ||
2954 | assert(w->limbs != NULL); | ||
2955 | assert(u != NULL); | ||
2956 | assert(u->n_allocd > 0); | ||
2957 | assert(u->limbs != NULL); | ||
2958 | |||
2959 | //Create a temporary integer. | ||
2960 | GMP_INTS_mpz_init(&temp); | ||
2961 | |||
2962 | //Set the temporary integer to the value of the input | ||
2963 | //argument. | ||
2964 | GMP_INTS_mpz_set_si(&temp, v); | ||
2965 | |||
2966 | //Do the actual multiplication. This recursive definition | ||
2967 | //is inherently wasteful, but I'm after clarity, not | ||
2968 | //warp speed. | ||
2969 | GMP_INTS_mpz_mul(w, u, &temp); | ||
2970 | |||
2971 | //Destroy the temporary integer (this will reclaim the | ||
2972 | //memory). | ||
2973 | GMP_INTS_mpz_clear(&temp); | ||
2974 | } | ||
2975 | |||
2976 | |||
2977 | //07/15/01: Unit testing skipped because of recursive | ||
2978 | //nature. Visual inspection OK. | ||
2979 | void GMP_INTS_mpz_mul_ui ( GMP_INTS_mpz_struct *w, | ||
2980 | const GMP_INTS_mpz_struct *u, | ||
2981 | unsigned long int v) | ||
2982 | { | ||
2983 | GMP_INTS_mpz_struct temp; | ||
2984 | |||
2985 | //Eyeball the inputs carefully. | ||
2986 | assert(w != NULL); | ||
2987 | assert(w->size >= 0); | ||
2988 | assert(w->limbs != NULL); | ||
2989 | assert(u != NULL); | ||
2990 | assert(u->size >= 0); | ||
2991 | assert(u->limbs != NULL); | ||
2992 | |||
2993 | //Create a temporary integer. | ||
2994 | GMP_INTS_mpz_init(&temp); | ||
2995 | |||
2996 | //Set the temporary integer to the value of the input | ||
2997 | //argument. | ||
2998 | GMP_INTS_mpz_set_ui(&temp, v); | ||
2999 | |||
3000 | //Do the actual multiplication. This recursive definition | ||
3001 | //is inherently wasteful, but I'm after clarity, not | ||
3002 | //warp speed. | ||
3003 | GMP_INTS_mpz_mul(w, u, &temp); | ||
3004 | |||
3005 | //Destroy the temporary integer (this will reclaim the | ||
3006 | //memory). | ||
3007 | GMP_INTS_mpz_clear(&temp); | ||
3008 | } | ||
3009 | |||
3010 | |||
3011 | void GMP_INTS_mpz_tdiv_qr ( GMP_INTS_mpz_struct *quot, | ||
3012 | GMP_INTS_mpz_struct *rem, | ||
3013 | const GMP_INTS_mpz_struct *num, | ||
3014 | const GMP_INTS_mpz_struct *den) | ||
3015 | { | ||
3016 | GMP_INTS_size_t abs_num_size, | ||
3017 | abs_den_size, | ||
3018 | quotient_sign, | ||
3019 | remainder_sign, | ||
3020 | numerator_bitsize, | ||
3021 | denominator_bitsize, | ||
3022 | division_loop_count, | ||
3023 | division_loop_count_mod_32, | ||
3024 | division_loop_count_div_32, | ||
3025 | division_counter, | ||
3026 | i; | ||
3027 | GMP_INTS_limb_t temp_limb; | ||
3028 | GMP_INTS_limb_ptr trial_divisor; | ||
3029 | |||
3030 | //Eyeball the input parameters. | ||
3031 | assert(quot != NULL); | ||
3032 | assert(quot->n_allocd > 0); | ||
3033 | assert(quot->limbs != NULL); | ||
3034 | assert(rem != NULL); | ||
3035 | assert(rem->n_allocd > 0); | ||
3036 | assert(rem->limbs != NULL); | ||
3037 | assert(num != NULL); | ||
3038 | assert(num->n_allocd > 0); | ||
3039 | assert(num->limbs != NULL); | ||
3040 | assert(den != NULL); | ||
3041 | assert(den->n_allocd > 0); | ||
3042 | assert(den->limbs != NULL); | ||
3043 | |||
3044 | //We require for this function that the numerator, denominator, quotient, and | ||
3045 | //remainder all be distinct. | ||
3046 | assert(quot != rem); | ||
3047 | assert(quot != num); | ||
3048 | assert(quot != den); | ||
3049 | assert(rem != num); | ||
3050 | assert(rem != den); | ||
3051 | assert(num != den); | ||
3052 | |||
3053 | //The GNU code was probably very efficient, but exceeded | ||
3054 | //my abilities to analyze. This is the classic | ||
3055 | //division algorithm. | ||
3056 | |||
3057 | //First, start off with the quotient and remainder having | ||
3058 | //no error flags set. These will be set if appropriate. | ||
3059 | quot->flags = 0; | ||
3060 | rem->flags = 0; | ||
3061 | |||
3062 | //First, handle tainted inputs. If the numerator or denominator | ||
3063 | //are bad or tainted, the quotient and remainder get tainted | ||
3064 | //automatically. | ||
3065 | { | ||
3066 | int taint; | ||
3067 | |||
3068 | taint = GMP_INTS_two_op_flags_map(num->flags, den->flags); | ||
3069 | |||
3070 | if (taint) | ||
3071 | { | ||
3072 | quot->flags = taint; | ||
3073 | rem->flags = taint; | ||
3074 | return; | ||
3075 | } | ||
3076 | } | ||
3077 | |||
3078 | //The second possible cause for taint is if the divisor is | ||
3079 | //zero. This will get both the value of positive overflow. | ||
3080 | if (den->size == 0) | ||
3081 | { | ||
3082 | quot->flags = GMP_INTS_EF_INTOVF_POS; | ||
3083 | rem->flags = GMP_INTS_EF_INTOVF_POS; | ||
3084 | return; | ||
3085 | } | ||
3086 | |||
3087 | //Handle the special case of a numerator of zero. If the numerator | ||
3088 | //is zero, the quotient and remainder are zero automatically. | ||
3089 | if (num->size == 0) | ||
3090 | { | ||
3091 | GMP_INTS_mpz_set_ui(quot, 0); | ||
3092 | GMP_INTS_mpz_set_ui(rem, 0); | ||
3093 | return; | ||
3094 | } | ||
3095 | |||
3096 | //Generally, nothing else can go wrong as far as taint. The | ||
3097 | //value of the quotient is confined to be no larger than the | ||
3098 | //numerator, and the value of the remainder is confined to | ||
3099 | //be no larger than denominator-1. So, generally, if the | ||
3100 | //inputs are in size bounds, the outputs will be also. | ||
3101 | |||
3102 | //Figure out how large in limbs the numerator and denominator actually | ||
3103 | //are. | ||
3104 | abs_num_size = GMP_INTS_abs_of_size_t(num->size); | ||
3105 | abs_den_size = GMP_INTS_abs_of_size_t(den->size); | ||
3106 | |||
3107 | //Figure out the sign of things. We want the following relationship | ||
3108 | //to be true: | ||
3109 | // num/den = quot + rem/den. | ||
3110 | //The way to achieve this is to assign the sign of the quotient in the traditional | ||
3111 | //way, then to assign the remainder to have the same sign as the numerator. | ||
3112 | quotient_sign = num->size ^ den->size; | ||
3113 | remainder_sign = num->size; | ||
3114 | |||
3115 | //The remainder starts off with the absolute value of the numerator, and then | ||
3116 | //we subtract from it as part of the division loop. | ||
3117 | GMP_INTS_mpz_copy(rem, num); | ||
3118 | //We know after the copy that the amount of space allocated in the remainder | ||
3119 | //MUST be at least as large as the absolute value of the numerator. So from | ||
3120 | //this point forward we use the space. | ||
3121 | assert(rem->n_allocd >= abs_num_size); | ||
3122 | |||
3123 | //Figure out the number of significant bits in the numerator and denominator. | ||
3124 | //This determines the loop count over which we do the shift division loop. | ||
3125 | numerator_bitsize = GMP_INTS_BITS_PER_LIMB * abs_num_size; | ||
3126 | |||
3127 | i = abs_num_size - 1; | ||
3128 | |||
3129 | //We need to be extra careful here. One failure mode is that an integer | ||
3130 | //data structure is corrupted and the "size" field reflects limbs | ||
3131 | //that are zero. Need to watch that this kind of failure doesn't | ||
3132 | //cause memory access errors. | ||
3133 | assert(num->limbs[i] != 0); | ||
3134 | if (num->limbs[i] == 0) | ||
3135 | { | ||
3136 | quot->flags = GMP_INTS_EF_INTOVF_POS; | ||
3137 | rem->flags = GMP_INTS_EF_INTOVF_POS; | ||
3138 | return; | ||
3139 | } | ||
3140 | |||
3141 | temp_limb = 0x80000000; | ||
3142 | |||
3143 | while (((num->limbs[i] & temp_limb) == 0) && (temp_limb != 0)) | ||
3144 | { | ||
3145 | numerator_bitsize--; | ||
3146 | temp_limb >>= 1; | ||
3147 | } | ||
3148 | |||
3149 | denominator_bitsize = GMP_INTS_BITS_PER_LIMB * abs_den_size; | ||
3150 | |||
3151 | i = abs_den_size - 1; | ||
3152 | |||
3153 | //We need to be extra careful here. One failure mode is that an integer | ||
3154 | //data structure is corrupted and the "size" field reflects limbs | ||
3155 | //that are zero. Need to watch that this kind of failure doesn't | ||
3156 | //cause memory access errors. | ||
3157 | assert(den->limbs[i] != 0); | ||
3158 | if (den->limbs[i] == 0) | ||
3159 | { | ||
3160 | quot->flags = GMP_INTS_EF_INTOVF_POS; | ||
3161 | rem->flags = GMP_INTS_EF_INTOVF_POS; | ||
3162 | return; | ||
3163 | } | ||
3164 | |||
3165 | temp_limb = 0x80000000; | ||
3166 | |||
3167 | while (((den->limbs[i] & temp_limb) == 0) && (temp_limb != 0)) | ||
3168 | { | ||
3169 | denominator_bitsize--; | ||
3170 | temp_limb >>= 1; | ||
3171 | } | ||
3172 | |||
3173 | //The quotient starts off with the value of zero, but we consistently may | ||
3174 | //mask 1 into it and shift left. We need to be sure that we have as much | ||
3175 | //shift space there as is in the numerator. For this purpose we need to | ||
3176 | //prepare a block of clear memory as large as the numerator's. | ||
3177 | if (quot->n_allocd < abs_num_size) | ||
3178 | { | ||
3179 | GMP_INTS_mpz_realloc(quot, abs_num_size); //Make it big enough. | ||
3180 | } | ||
3181 | //Now, zero the memory. | ||
3182 | for (i=0; i<abs_num_size; i++) | ||
3183 | quot->limbs[i] = 0; | ||
3184 | |||
3185 | //Determine the division loop count. This is the difference | ||
3186 | //in bit sizes between the numerator and denominator. It is | ||
3187 | //possible for this number to be negative, which means that the | ||
3188 | //main division loop will be executed zero times. This gives the | ||
3189 | //right results. | ||
3190 | division_loop_count = numerator_bitsize - denominator_bitsize; | ||
3191 | |||
3192 | //We need to calculate some important numbers from the division loop | ||
3193 | //count. We need to know this number MOD 32 (which tells how far to | ||
3194 | //shift the divisor bitwise to line up with the numerator), and we | ||
3195 | //also need this number DIV 32 for the limb-wise shift. | ||
3196 | division_loop_count_mod_32 = division_loop_count % 32; | ||
3197 | division_loop_count_div_32 = division_loop_count / 32; | ||
3198 | |||
3199 | //We now need a shift register in which we shift the denominator up | ||
3200 | //for repeated comparisons. We should dynamically allocate this to | ||
3201 | //be the same size as the numerator. Using _alloca() is OK, as one | ||
3202 | //of the unit tests is to be sure that _alloca() will handle integer | ||
3203 | //of the maximum allowed size. | ||
3204 | trial_divisor = _alloca(abs_num_size * sizeof(GMP_INTS_limb_t)); | ||
3205 | |||
3206 | //Our trial divisor needs to start off with the divisor shifted up | ||
3207 | //so that the most significant bit is aligned with the numerator. | ||
3208 | for (i = 0; i < abs_num_size; i++) | ||
3209 | { | ||
3210 | if ((division_loop_count < 0) || (i < division_loop_count_div_32)) | ||
3211 | { | ||
3212 | trial_divisor[i] = 0; | ||
3213 | } | ||
3214 | else | ||
3215 | { | ||
3216 | if ((i-division_loop_count_div_32) < abs_den_size) | ||
3217 | trial_divisor[i] = den->limbs[i - division_loop_count_div_32]; | ||
3218 | else | ||
3219 | trial_divisor[i] = 0; | ||
3220 | } | ||
3221 | } | ||
3222 | |||
3223 | //The code above planted the limbs in the right place. Now need to shift bits | ||
3224 | //upward by the remaining number. | ||
3225 | if ((division_loop_count > 0) && (division_loop_count_mod_32 > 0)) | ||
3226 | { | ||
3227 | //There is an existing function we can call to do the left shift. | ||
3228 | GMP_INTS_mpn_lshift(trial_divisor, | ||
3229 | trial_divisor, | ||
3230 | abs_num_size, | ||
3231 | division_loop_count_mod_32); | ||
3232 | } | ||
3233 | |||
3234 | |||
3235 | //Everything is ready to go. Now begin the division loop itself. It is possible | ||
3236 | //for the loop to execute zero times, which will happen if the denominator is longer | ||
3237 | //in bits than the numerator. In such cases, we can't execute this loop even once | ||
3238 | //because the math assumes that the numerator is at least as long as the denominator. | ||
3239 | for (division_counter = 0; division_counter < division_loop_count+1; division_counter++) | ||
3240 | { | ||
3241 | //Shift the quotient left one bit. | ||
3242 | GMP_INTS_mpn_lshift(quot->limbs, | ||
3243 | quot->limbs, | ||
3244 | abs_num_size, | ||
3245 | 1); | ||
3246 | |||
3247 | //If the remainder is at least as large as the trial divisor, subtract the trial | ||
3248 | //divisor from the remainder and mask in the quotient. | ||
3249 | if (GMP_INTS_mpn_cmp(rem->limbs, | ||
3250 | trial_divisor, | ||
3251 | abs_num_size) >= 0) | ||
3252 | { | ||
3253 | GMP_INTS_mpn_sub(rem->limbs, | ||
3254 | rem->limbs, | ||
3255 | abs_num_size, | ||
3256 | trial_divisor, | ||
3257 | abs_num_size); | ||
3258 | quot->limbs[0] |= 1; | ||
3259 | } | ||
3260 | |||
3261 | //Shift the trial divisor right one bit. | ||
3262 | GMP_INTS_mpn_rshift(trial_divisor, | ||
3263 | trial_divisor, | ||
3264 | abs_num_size, | ||
3265 | 1); | ||
3266 | } //End for each iteration of the division loop. | ||
3267 | |||
3268 | //Normalize the quotient and the remainder. The normalization | ||
3269 | //process is to bring the sizes down if we have leading | ||
3270 | //zeros. | ||
3271 | quot->size = abs_num_size; | ||
3272 | GMP_INTS_mpn_normalize(quot->limbs, &(quot->size)); | ||
3273 | rem->size = abs_num_size; | ||
3274 | GMP_INTS_mpn_normalize(rem->limbs, &(rem->size)); | ||
3275 | |||
3276 | //Adjust the signs as required. | ||
3277 | if (quotient_sign < 0) | ||
3278 | quot->size = -(quot->size); | ||
3279 | if (remainder_sign < 0) | ||
3280 | rem->size = -(rem->size); | ||
3281 | } | ||
3282 | |||
3283 | |||
3284 | void GMP_INTS_mpz_fac_ui(GMP_INTS_mpz_struct *result, | ||
3285 | unsigned long int n) | ||
3286 | { | ||
3287 | //Just multiply the numbers in ascending order. The original | ||
3288 | //GNU library contained a much more elegant algorithm, but | ||
3289 | //this is more direct. | ||
3290 | |||
3291 | unsigned long int k; | ||
3292 | |||
3293 | GMP_INTS_mpz_set_ui (result, 1L); | ||
3294 | |||
3295 | for (k = 2; (k <= n) && !(result->flags); k++) | ||
3296 | GMP_INTS_mpz_mul_ui (result, result, k); | ||
3297 | } | ||
3298 | |||
3299 | |||
3300 | /******************************************************************/ | ||
3301 | /*** PUBLIC CONVERSION AND OUTPUT FUNCTIONS ********************/ | ||
3302 | /******************************************************************/ | ||
3303 | //07/18/01: Visual inspection OK. Function returns | ||
3304 | //reasonable values even out to 100,000 digits--seems OK. | ||
3305 | int GMP_INTS_mpz_size_in_base_10(const GMP_INTS_mpz_struct *arg) | ||
3306 | { | ||
3307 | _int64 n; | ||
3308 | |||
3309 | //Eyeball the input parameter. | ||
3310 | assert(arg != NULL); | ||
3311 | assert(arg->n_allocd > 0); | ||
3312 | assert(arg->limbs != NULL); | ||
3313 | |||
3314 | //Get the number of limbs occupied by the integer. | ||
3315 | //Because even the digit zero takes some space, | ||
3316 | //don't accept zero for an answer. | ||
3317 | n = GMP_INTS_abs_of_size_t(arg->size); | ||
3318 | if (n==0) | ||
3319 | n = 1; | ||
3320 | |||
3321 | //Convert this to the number of bits. Generously | ||
3322 | //ignore any unused leading bits. | ||
3323 | n *= 32; | ||
3324 | |||
3325 | //Used a slightly high best rational approximation in F_{65535} | ||
3326 | //to go from the number of bits to the number of | ||
3327 | //digits. The division discards, so bump the result | ||
3328 | //up by 1 to compensate for possible truncation. The number | ||
3329 | //we are aproximating is ln(2)/ln(10). | ||
3330 | n *= 12655; | ||
3331 | n /= 42039; | ||
3332 | n++; | ||
3333 | |||
3334 | //Compensate for possible commas in the result. Again, | ||
3335 | //consider truncation. | ||
3336 | n *= 4; | ||
3337 | n /= 3; | ||
3338 | n++; | ||
3339 | |||
3340 | //Compensate for the minus sign, the trailing zero, | ||
3341 | //cosmic rays striking the computer from the martian | ||
3342 | //listening post camoflaged on the moon, and the | ||
3343 | //possibility that we might need to put text in the | ||
3344 | //string if any flag is set. | ||
3345 | n += 100; | ||
3346 | |||
3347 | //And that should be a good return value. | ||
3348 | return((int) n); | ||
3349 | } | ||
3350 | |||
3351 | |||
3352 | //07/19/01: Visual inspection and unit test is OK. | ||
3353 | void GMP_INTS_mpz_to_string(char *out, | ||
3354 | const GMP_INTS_mpz_struct *in) | ||
3355 | { | ||
3356 | //Eyeball the input parameters. | ||
3357 | assert(out != NULL); | ||
3358 | assert(in != NULL); | ||
3359 | assert(in->n_allocd > 0); | ||
3360 | assert(in->limbs != NULL); | ||
3361 | |||
3362 | //If any of the flags are set, stuff in the text. | ||
3363 | if (in->flags) | ||
3364 | { | ||
3365 | if (in->flags & GMP_INTS_EF_INTOVF_POS) | ||
3366 | { | ||
3367 | strcpy(out, GMP_INTS_EF_INTOVF_POS_STRING); | ||
3368 | } | ||
3369 | else if (in->flags & GMP_INTS_EF_INTOVF_NEG) | ||
3370 | { | ||
3371 | strcpy(out, GMP_INTS_EF_INTOVF_NEG_STRING); | ||
3372 | } | ||
3373 | else if (in->flags & GMP_INTS_EF_INTOVF_TAINT_POS) | ||
3374 | { | ||
3375 | strcpy(out, GMP_INTS_EF_INTOVF_TAINT_POS_STRING); | ||
3376 | } | ||
3377 | else if (in->flags & GMP_INTS_EF_INTOVF_TAINT_NEG) | ||
3378 | { | ||
3379 | strcpy(out, GMP_INTS_EF_INTOVF_TAINT_NEG_STRING); | ||
3380 | } | ||
3381 | else | ||
3382 | { | ||
3383 | strcpy(out, "INTERNAL_ERROR"); | ||
3384 | } | ||
3385 | } | ||
3386 | else | ||
3387 | { | ||
3388 | //Ordinary integer conversion. | ||
3389 | GMP_INTS_mpz_struct num, den, quot, rem, k10; | ||
3390 | |||
3391 | //Allocate space for the temporary integers. | ||
3392 | GMP_INTS_mpz_init(&num); | ||
3393 | GMP_INTS_mpz_init(&den); | ||
3394 | GMP_INTS_mpz_init("); | ||
3395 | GMP_INTS_mpz_init(&rem); | ||
3396 | GMP_INTS_mpz_init(&k10); | ||
3397 | |||
3398 | //Assign the constant 10. | ||
3399 | GMP_INTS_mpz_set_ui(&k10, 10); | ||
3400 | |||
3401 | //If the integer is zero, assign that. | ||
3402 | if (in->size == 0) | ||
3403 | { | ||
3404 | strcpy(out, "0"); | ||
3405 | } | ||
3406 | else | ||
3407 | { | ||
3408 | //We have to do a full conversion. The algorithm | ||
3409 | //is division by 10, each time obtaining the least | ||
3410 | //significant digit, until finally the quotient is | ||
3411 | //zero. | ||
3412 | char *ptr; | ||
3413 | |||
3414 | ptr = out; | ||
3415 | |||
3416 | GMP_INTS_mpz_copy(&num, in); | ||
3417 | GMP_INTS_mpz_copy(&den, &k10); | ||
3418 | do | ||
3419 | { | ||
3420 | #if 0 | ||
3421 | printf("Values before division:\n"); | ||
3422 | FCMIOF_hline(); | ||
3423 | GMP_INTS_mpz_print_int(stdout, &num, "Numerator"); | ||
3424 | FCMIOF_hline(); | ||
3425 | GMP_INTS_mpz_print_int(stdout, &den, "Denominator"); | ||
3426 | FCMIOF_hline(); | ||
3427 | GMP_INTS_mpz_print_int(stdout, ", "Quotient"); | ||
3428 | FCMIOF_hline(); | ||
3429 | GMP_INTS_mpz_print_int(stdout, &rem, "Remainder"); | ||
3430 | FCMIOF_hline(); | ||
3431 | |||
3432 | if (num.size > 1) | ||
3433 | FCMIOF_hline(); | ||
3434 | #endif | ||
3435 | |||
3436 | GMP_INTS_mpz_tdiv_qr(", &rem, &num, &den); | ||
3437 | #if 0 | ||
3438 | printf("Values after division:\n"); | ||
3439 | FCMIOF_hline(); | ||
3440 | GMP_INTS_mpz_print_int(stdout, &num, "Numerator"); | ||
3441 | FCMIOF_hline(); | ||
3442 | GMP_INTS_mpz_print_int(stdout, &den, "Denominator"); | ||
3443 | FCMIOF_hline(); | ||
3444 | GMP_INTS_mpz_print_int(stdout, ", "Quotient"); | ||
3445 | FCMIOF_hline(); | ||
3446 | GMP_INTS_mpz_print_int(stdout, &rem, "Remainder"); | ||
3447 | FCMIOF_hline(); | ||
3448 | #endif | ||
3449 | |||
3450 | if (rem.size != 0) | ||
3451 | { | ||
3452 | *ptr = '0' + (char)(rem.limbs[0]); | ||
3453 | } | ||
3454 | else | ||
3455 | { | ||
3456 | *ptr = '0'; | ||
3457 | } | ||
3458 | ptr++; | ||
3459 | GMP_INTS_mpz_copy(&num, "); | ||
3460 | //printf("digit\n"); | ||
3461 | } | ||
3462 | while (!GMP_INTS_mpz_is_zero(")); | ||
3463 | |||
3464 | //Finally, if the input was negative, tack on the | ||
3465 | //minus sign. | ||
3466 | if (GMP_INTS_mpz_is_neg(in)) | ||
3467 | { | ||
3468 | *ptr = '-'; | ||
3469 | ptr++; | ||
3470 | } | ||
3471 | |||
3472 | //Finally, tack on the trailing zero terminator. | ||
3473 | *ptr = 0; | ||
3474 | ptr++; | ||
3475 | |||
3476 | //Reverse the string. | ||
3477 | BSTRFUNC_str_reverse(out); | ||
3478 | } | ||
3479 | |||
3480 | //Deallocate the integers. | ||
3481 | GMP_INTS_mpz_clear(&num); | ||
3482 | GMP_INTS_mpz_clear(&den); | ||
3483 | GMP_INTS_mpz_clear("); | ||
3484 | GMP_INTS_mpz_clear(&rem); | ||
3485 | GMP_INTS_mpz_clear(&k10); | ||
3486 | } | ||
3487 | } | ||
3488 | |||
3489 | |||
3490 | void GMP_INTS_mpz_long_int_format_to_stream(FILE *s, | ||
3491 | const GMP_INTS_mpz_struct *i, | ||
3492 | const char *desc) | ||
3493 | { | ||
3494 | int line_len; | ||
3495 | int digits_per_line; | ||
3496 | char *digits; | ||
3497 | int num_digits; | ||
3498 | int nlines; | ||
3499 | int cur_line; | ||
3500 | int number_desc_width; | ||
3501 | |||
3502 | //Eyeball the inputs, make sure the caller isn't doing | ||
3503 | //something stupid. | ||
3504 | assert(s != NULL); | ||
3505 | assert(i != NULL); | ||
3506 | assert(i->n_allocd > 0); | ||
3507 | assert(i->limbs != NULL); | ||
3508 | assert(desc != NULL); | ||
3509 | |||
3510 | //Obtain the line length assumed for formatted output. | ||
3511 | line_len = FCMIOF_get_line_len(); | ||
3512 | |||
3513 | //The description width allowed is 20. | ||
3514 | number_desc_width = 20; | ||
3515 | |||
3516 | /* The number of digits per line that we assume must be a multiple of | ||
3517 | ** three. The formula below was not examined very carefully, but it | ||
3518 | ** works fine for a line length of 78. If line length is changed, | ||
3519 | ** this formula may need to be examined very carefully and rewritten. | ||
3520 | */ | ||
3521 | digits_per_line = INTFUNC_max(3, ((((line_len-42)*3)/4)/3)*3); | ||
3522 | assert(digits_per_line >= 3); | ||
3523 | |||
3524 | /* We now need to get a digit string corresponding to this | ||
3525 | ** number. First, need to figure out how much and | ||
3526 | ** allocate the space. | ||
3527 | */ | ||
3528 | digits = GMP_INTS_malloc(GMP_INTS_mpz_size_in_base_10(i) * sizeof(char)); | ||
3529 | GMP_INTS_mpz_to_string(digits, i); | ||
3530 | |||
3531 | //If the number is negative, delete the leading minus sign. | ||
3532 | //The rest of the display algorithm needs an unsigned | ||
3533 | //series of digits. | ||
3534 | if (*digits == '-') | ||
3535 | { | ||
3536 | int i = 0; | ||
3537 | |||
3538 | do | ||
3539 | { | ||
3540 | digits[i] = digits[i+1]; | ||
3541 | i++; | ||
3542 | } | ||
3543 | while(digits[i-1]); | ||
3544 | } | ||
3545 | |||
3546 | //Figure out how many digits in the string representation. | ||
3547 | num_digits = strlen(digits); | ||
3548 | |||
3549 | /* As the first order of business, figure out how many lines the beast | ||
3550 | ** will require. | ||
3551 | */ | ||
3552 | if (i->flags) | ||
3553 | { | ||
3554 | nlines = 1; /* Only one line required for NAN verbeage. */ | ||
3555 | } | ||
3556 | else if (GMP_INTS_mpz_is_zero(i)) | ||
3557 | { | ||
3558 | nlines = 1; /* The zero value requires one line. */ | ||
3559 | } | ||
3560 | else | ||
3561 | { | ||
3562 | /* In any other case, have a formula. | ||
3563 | */ | ||
3564 | nlines = 1 + (num_digits - 1) / digits_per_line; | ||
3565 | } | ||
3566 | |||
3567 | /* Iterate through each line, spitting out whatever is appropriate. */ | ||
3568 | for (cur_line = 0; cur_line < nlines; cur_line++) | ||
3569 | { | ||
3570 | int cur_digit_on_line; | ||
3571 | |||
3572 | /* If this is the first line, spit out the description, right-aligned. | ||
3573 | ** Otherwise, spit spaces. | ||
3574 | */ | ||
3575 | if (!cur_line) | ||
3576 | { | ||
3577 | /* First line. */ | ||
3578 | int len; | ||
3579 | |||
3580 | len = strlen(desc); | ||
3581 | |||
3582 | if (len <= number_desc_width) | ||
3583 | { | ||
3584 | /* Description is shorter or equal, pad on left. */ | ||
3585 | FCMIOF_stream_repchar(s, ' ', number_desc_width - len); | ||
3586 | fprintf(s, "%s", desc); | ||
3587 | } | ||
3588 | else | ||
3589 | { | ||
3590 | /* Description is too long, truncate. */ | ||
3591 | int i; | ||
3592 | |||
3593 | for (i=0; i<number_desc_width; i++) | ||
3594 | fprintf(s, "%c", desc[i]); | ||
3595 | } | ||
3596 | |||
3597 | fprintf(s, ": "); | ||
3598 | |||
3599 | /* If the number is negative, throw in a minus sign. */ | ||
3600 | if (GMP_INTS_mpz_is_neg(i) && !(i->flags)) | ||
3601 | { | ||
3602 | fprintf(s, "- "); | ||
3603 | } | ||
3604 | else | ||
3605 | { | ||
3606 | fprintf(s, " "); | ||
3607 | } | ||
3608 | } | ||
3609 | else | ||
3610 | { | ||
3611 | /* Every line but first line. */ | ||
3612 | FCMIOF_stream_repchar(s, ' ', number_desc_width+4); | ||
3613 | } | ||
3614 | |||
3615 | for(cur_digit_on_line=0; cur_digit_on_line < digits_per_line; cur_digit_on_line++) | ||
3616 | { | ||
3617 | int idx_into_string; | ||
3618 | /* Index into the string which is our digit of interest. | ||
3619 | */ | ||
3620 | |||
3621 | /* Compute the index. The equation is based on the ordering | ||
3622 | ** of presentation, for example, | ||
3623 | ** | ||
3624 | ** 7 6 | ||
3625 | ** 5 4 3 | ||
3626 | ** 2 1 0. | ||
3627 | ** | ||
3628 | ** With a little thought, the equation should make sense. | ||
3629 | ** The index won't always be used to index into the string. | ||
3630 | */ | ||
3631 | idx_into_string = | ||
3632 | ((((nlines-1) - cur_line) * digits_per_line) | ||
3633 | + | ||
3634 | (digits_per_line - 1 - cur_digit_on_line)); | ||
3635 | |||
3636 | /* Print the appropriate digit or a space. The NAN case and the | ||
3637 | ** zero case need to be treated specially. | ||
3638 | */ | ||
3639 | if (i->flags) | ||
3640 | { | ||
3641 | /* Not a number. Everything is blank, except spell out | ||
3642 | ** description of condition at the end of the string of | ||
3643 | ** digits. | ||
3644 | */ | ||
3645 | int index_from_right; | ||
3646 | int virtual_index; | ||
3647 | |||
3648 | index_from_right = digits_per_line - 1 - cur_digit_on_line; | ||
3649 | //The index calculated above is calculated so that the | ||
3650 | //final position on the line has index [0]. | ||
3651 | assert(index_from_right >= 0 && index_from_right < digits_per_line); | ||
3652 | |||
3653 | //Now, calculate the "virtual index". The virtual index | ||
3654 | //is the actual number of characters from the right, taking | ||
3655 | //into account commas. | ||
3656 | virtual_index = index_from_right + index_from_right/3; | ||
3657 | |||
3658 | if (((index_from_right % 3) == 2) && cur_digit_on_line) | ||
3659 | { | ||
3660 | //We are one position past a comma. This means | ||
3661 | //that we might need a "fill" character to go | ||
3662 | //where the comma should have gone. | ||
3663 | |||
3664 | if (virtual_index + 1 < num_digits) | ||
3665 | { | ||
3666 | //The character we should print exists. | ||
3667 | fprintf(s, "%c", digits[num_digits - 2 - virtual_index]); | ||
3668 | } | ||
3669 | else | ||
3670 | { | ||
3671 | //The character doesn't exist, because the error | ||
3672 | //string is apparently too short. Must print a | ||
3673 | //space, instead. | ||
3674 | fprintf(s, " "); | ||
3675 | } | ||
3676 | } | ||
3677 | |||
3678 | //We've done the fill character, if the position we're in | ||
3679 | //is one past a comma. Now, do the ordinary character | ||
3680 | //corresponding to a digit position. | ||
3681 | if (virtual_index < num_digits) | ||
3682 | { | ||
3683 | //The character we should print exists. | ||
3684 | fprintf(s, "%c", digits[num_digits - 1 - virtual_index]); | ||
3685 | } | ||
3686 | else | ||
3687 | { | ||
3688 | //The character doesn't exist, because the error | ||
3689 | //string is apparently too short. Must print a | ||
3690 | //space, instead. | ||
3691 | fprintf(s, " "); | ||
3692 | } | ||
3693 | } | ||
3694 | else if (GMP_INTS_mpz_is_zero(i)) | ||
3695 | { | ||
3696 | /* This is the zero case. For zero, there is only one line, | ||
3697 | ** and every character except the last one is a blank. | ||
3698 | */ | ||
3699 | if (cur_digit_on_line == (digits_per_line - 1)) | ||
3700 | { | ||
3701 | fprintf(s, "0"); | ||
3702 | } | ||
3703 | else | ||
3704 | { | ||
3705 | fprintf(s, " "); | ||
3706 | } | ||
3707 | } | ||
3708 | else | ||
3709 | { | ||
3710 | /* This is a valid number which is not zero. Need to print | ||
3711 | ** the digits. | ||
3712 | */ | ||
3713 | |||
3714 | if (idx_into_string < num_digits) | ||
3715 | { | ||
3716 | int actual_index; | ||
3717 | |||
3718 | actual_index = num_digits - 1 - idx_into_string; | ||
3719 | //This is a string reversal mapping. The original | ||
3720 | //code stored strings least significant digit first, | ||
3721 | //but this code uses most significant digit first. | ||
3722 | assert((actual_index >= 0) && (actual_index < num_digits)); | ||
3723 | fprintf(s, "%c", digits[actual_index]); | ||
3724 | } | ||
3725 | else | ||
3726 | { | ||
3727 | fprintf(s, " "); | ||
3728 | } | ||
3729 | } /* End of digit case. | ||
3730 | |||
3731 | /* Now handle the commas. The rules for commas are straightforward. | ||
3732 | ** a)NAN never has a comma. | ||
3733 | ** b)Zeros never have a comma. | ||
3734 | ** c)The final line, last digit never has a comma. | ||
3735 | ** d)Everything else in multiples of three ... | ||
3736 | */ | ||
3737 | if (!(idx_into_string % 3) && (idx_into_string)) | ||
3738 | { | ||
3739 | if (i->flags) | ||
3740 | { | ||
3741 | //fprintf(s, " "); | ||
3742 | } | ||
3743 | else if (!num_digits) | ||
3744 | { | ||
3745 | fprintf(s, " "); | ||
3746 | } | ||
3747 | else | ||
3748 | { | ||
3749 | if (idx_into_string < num_digits) | ||
3750 | { | ||
3751 | fprintf(s, ","); | ||
3752 | } | ||
3753 | else | ||
3754 | { | ||
3755 | fprintf(s, " "); | ||
3756 | } | ||
3757 | } | ||
3758 | } | ||
3759 | } /* End for each digit on the current line. */ | ||
3760 | |||
3761 | /* For the first line, print out an informative message | ||
3762 | ** advising of the number of digits. For all other lines | ||
3763 | ** print nothing. | ||
3764 | */ | ||
3765 | if (!cur_line && !(i->flags)) | ||
3766 | { | ||
3767 | if (nlines == 1) | ||
3768 | fprintf(s, " "); | ||
3769 | |||
3770 | if (num_digits <= 1) | ||
3771 | { | ||
3772 | fprintf(s, " ( 1 digit )\n"); | ||
3773 | } | ||
3774 | else if (num_digits < 1000) | ||
3775 | { | ||
3776 | fprintf(s, " (%7d digits)\n", num_digits); | ||
3777 | } | ||
3778 | else | ||
3779 | { | ||
3780 | fprintf(s, " (%3d,%03d digits)\n", num_digits / 1000, num_digits % 1000); | ||
3781 | } | ||
3782 | } | ||
3783 | else | ||
3784 | { | ||
3785 | fprintf(s, "\n"); | ||
3786 | } | ||
3787 | } /* End for each line. */ | ||
3788 | |||
3789 | //Deallocate the string space. | ||
3790 | GMP_INTS_free(digits); | ||
3791 | } | ||
3792 | |||
3793 | |||
3794 | void GMP_INTS_mpz_arb_int_raw_to_stream(FILE *s, | ||
3795 | const GMP_INTS_mpz_struct *i) | ||
3796 | { | ||
3797 | int size_reqd; | ||
3798 | char *digits; | ||
3799 | |||
3800 | //Eyeball the input parameters. | ||
3801 | assert(s != NULL); | ||
3802 | assert(i != NULL); | ||
3803 | assert(i->n_allocd > 0); | ||
3804 | assert(i->limbs != NULL); | ||
3805 | |||
3806 | size_reqd = GMP_INTS_mpz_size_in_base_10(i); | ||
3807 | digits = GMP_INTS_malloc(size_reqd * sizeof(char)); | ||
3808 | GMP_INTS_mpz_to_string(digits, i); | ||
3809 | fprintf(s, "%s", digits); | ||
3810 | GMP_INTS_free(digits); | ||
3811 | } | ||
3812 | |||
3813 | |||
3814 | //07/24/01: Passed visual inspection and unit tests. | ||
3815 | void GMP_INTS_mpz_pow_ui( GMP_INTS_mpz_struct *result, | ||
3816 | const GMP_INTS_mpz_struct *base, | ||
3817 | unsigned exponent) | ||
3818 | { | ||
3819 | GMP_INTS_mpz_struct temp; | ||
3820 | //Temporary location to hold the base raised to | ||
3821 | //a binary power (repeated squaring). | ||
3822 | |||
3823 | //Eyeball the input parameters. | ||
3824 | assert(result != NULL); | ||
3825 | assert(result->n_allocd > 0); | ||
3826 | assert(result->limbs != NULL); | ||
3827 | assert(base != NULL); | ||
3828 | assert(base->n_allocd > 0); | ||
3829 | assert(base->limbs != NULL); | ||
3830 | |||
3831 | //For this function, the base and the result may not | ||
3832 | //be the same object. | ||
3833 | assert(result != base); | ||
3834 | |||
3835 | //If the base is tained, the output is tainted by association. | ||
3836 | { | ||
3837 | int taint; | ||
3838 | |||
3839 | taint = GMP_INTS_two_op_flags_map(base->flags, 0); | ||
3840 | |||
3841 | if (taint) | ||
3842 | { | ||
3843 | result->flags = taint; | ||
3844 | return; | ||
3845 | } | ||
3846 | } | ||
3847 | |||
3848 | //Allocate our temporary variable and set it to the base. | ||
3849 | GMP_INTS_mpz_init(&temp); | ||
3850 | GMP_INTS_mpz_copy(&temp, base); | ||
3851 | |||
3852 | //The result begins with the value of 1. | ||
3853 | GMP_INTS_mpz_set_ui(result, 1); | ||
3854 | |||
3855 | //Loop through, processing each bit of the exponent. This is a fairly effective | ||
3856 | //algorithm, but not the optimal one (Knuth points this out). | ||
3857 | while (exponent && !result->flags) | ||
3858 | { | ||
3859 | if (exponent & 0x1) | ||
3860 | { | ||
3861 | GMP_INTS_mpz_mul(result, result, &temp); | ||
3862 | } | ||
3863 | |||
3864 | //Square the temporary variable. Because squaring of arb integer | ||
3865 | //may be very expensive, the test against 1 (i.e. last iteration) | ||
3866 | //certainly pays for itself. | ||
3867 | if (exponent != 1) | ||
3868 | GMP_INTS_mpz_mul(&temp, &temp, &temp); | ||
3869 | |||
3870 | exponent >>= 1; | ||
3871 | } | ||
3872 | |||
3873 | //Deallocate our temporary variable. | ||
3874 | GMP_INTS_mpz_clear(&temp); | ||
3875 | } | ||
3876 | |||
3877 | |||
3878 | void GMP_INTS_mpz_abs(GMP_INTS_mpz_struct *arg) | ||
3879 | { | ||
3880 | //Eyeball the input parameter. | ||
3881 | assert(arg != NULL); | ||
3882 | assert(arg->n_allocd > 0); | ||
3883 | assert(arg->limbs != NULL); | ||
3884 | |||
3885 | //Take the absolute value. | ||
3886 | if (arg->size < 0) | ||
3887 | arg->size = -arg->size; | ||
3888 | } | ||
< |