1 |
//$Header$ |
2 |
//------------------------------------------------------------------------------------------------- |
3 |
//This file is part of "David T. Ashley's Shared Source Code", a set of shared components |
4 |
//integrated into many of David T. Ashley's projects. |
5 |
//------------------------------------------------------------------------------------------------- |
6 |
//This source code and any program in which it is compiled/used is provided under the MIT License, |
7 |
//reproduced below. |
8 |
//------------------------------------------------------------------------------------------------- |
9 |
//Permission is hereby granted, free of charge, to any person obtaining a copy of |
10 |
//this software and associated documentation files(the "Software"), to deal in the |
11 |
//Software without restriction, including without limitation the rights to use, |
12 |
//copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the |
13 |
//Software, and to permit persons to whom the Software is furnished to do so, |
14 |
//subject to the following conditions : |
15 |
// |
16 |
//The above copyright notice and this permission notice shall be included in all |
17 |
//copies or substantial portions of the Software. |
18 |
// |
19 |
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 |
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 |
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE |
22 |
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 |
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 |
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
25 |
//SOFTWARE. |
26 |
//------------------------------------------------------------------------------------------------- |
27 |
#define MODULE_GMP_INTS |
28 |
|
29 |
#include <assert.h> |
30 |
#include <ctype.h> |
31 |
#include <process.h> |
32 |
#include <stddef.h> |
33 |
#include <stdio.h> |
34 |
#include <string.h> |
35 |
#include <time.h> |
36 |
|
37 |
|
38 |
/* Only included the guarded allocation header if we are compiling |
39 |
** a DOS console type application. Other types of applications have |
40 |
** other ways of protecting for out of memory. Including the |
41 |
** header would do no harm in these cases, but do no good, either. |
42 |
*/ |
43 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
44 |
#include "ccmalloc.h" |
45 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
46 |
#include "tclalloc.h" |
47 |
#else |
48 |
/* Do nothing. */ |
49 |
#endif |
50 |
|
51 |
#include "bstrfunc.h" |
52 |
#include "charfunc.h" |
53 |
#include "fcmiof.h" |
54 |
#include "gmp_ints.h" |
55 |
#include "intfunc.h" |
56 |
|
57 |
|
58 |
/******************************************************************/ |
59 |
/*** CUSTOM ALLOCATION FUNCTIONS *******************************/ |
60 |
/******************************************************************/ |
61 |
/* We need to decide here on how memory not on the stack will be |
62 |
** allocated (i.e. what will become of the standard functions |
63 |
** like malloc, free, etc.). This is dependent on the type of |
64 |
** application we're making. The possible types are so far are: |
65 |
** APP_TYPE_SIMPLE_DOS_CONSOLE : |
66 |
** Simple DOS console application. |
67 |
** APP_TYPE_IJUSCRIPTER_IJUCONSOLE: |
68 |
** The Tcl tool build. |
69 |
** |
70 |
** The custom allocation functions here are a "portal" or "wrapper" |
71 |
** for how the integer and rational number functions should |
72 |
** get memory. |
73 |
** |
74 |
** The functions below are standard, except that the GNU MP team |
75 |
** built more generality into what allocation schemes could be |
76 |
** used by including size information in some calls that don't |
77 |
** normally get it. That is why there are some extra calls below |
78 |
** where the information is discarded. Other than that, these are |
79 |
** standard allocation calls. |
80 |
*/ |
81 |
//07/15/01: Visual inspection only. Function deemed too |
82 |
//simple for unit testing. |
83 |
void *GMP_INTS_malloc( size_t size ) |
84 |
{ |
85 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
86 |
return(CCMALLOC_malloc(size)); |
87 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
88 |
return(TclpAlloc(size)); |
89 |
#else |
90 |
return(malloc(size)); |
91 |
#endif |
92 |
} |
93 |
|
94 |
|
95 |
//07/15/01: Visual inspection only. Function deemed too |
96 |
//simple for unit testing. |
97 |
void *GMP_INTS_calloc( size_t num, size_t size ) |
98 |
{ |
99 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
100 |
return(CCMALLOC_calloc(num, size)); |
101 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
102 |
return(TclpCalloc(num, size)); |
103 |
#else |
104 |
return(calloc(num, size)); |
105 |
#endif |
106 |
} |
107 |
|
108 |
|
109 |
//07/15/01: Visual inspection only. Function deemed too |
110 |
//simple for unit testing. |
111 |
void *GMP_INTS_realloc( void *memblock, size_t size ) |
112 |
{ |
113 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
114 |
return(CCMALLOC_realloc(memblock, size)); |
115 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
116 |
return(TclpRealloc(memblock, size)); |
117 |
#else |
118 |
return(realloc(memblock, size)); |
119 |
#endif |
120 |
} |
121 |
|
122 |
|
123 |
//07/15/01: Visual inspection only. Function deemed too |
124 |
//simple for unit testing. |
125 |
void *GMP_INTS_realloc_w_size( void *memblock, |
126 |
size_t old_size, |
127 |
size_t size ) |
128 |
{ |
129 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
130 |
return(CCMALLOC_realloc(memblock, size)); |
131 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
132 |
return(TclpRealloc(memblock, size)); |
133 |
#else |
134 |
return(realloc(memblock, size)); |
135 |
#endif |
136 |
} |
137 |
|
138 |
|
139 |
//07/15/01: Visual inspection only. Function deemed too |
140 |
//simple for unit testing. |
141 |
void GMP_INTS_free( void *memblock ) |
142 |
{ |
143 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
144 |
CCMALLOC_free(memblock); |
145 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
146 |
TclpFree(memblock); |
147 |
#else |
148 |
free(memblock); |
149 |
#endif |
150 |
} |
151 |
|
152 |
|
153 |
//07/15/01: Visual inspection only. Function deemed too |
154 |
//simple for unit testing. |
155 |
void GMP_INTS_free_w_size( void *memblock, size_t size ) |
156 |
{ |
157 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
158 |
CCMALLOC_free(memblock); |
159 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
160 |
TclpFree(memblock); |
161 |
#else |
162 |
free(memblock); |
163 |
#endif |
164 |
} |
165 |
|
166 |
|
167 |
/******************************************************************/ |
168 |
/*** PORTABILITY CHECK FUNCTIONS *******************************/ |
169 |
/******************************************************************/ |
170 |
//Because there is the risk that Microsoft Visual C++ might |
171 |
//change in the future, the following function can be called |
172 |
//to see if the assumptions about data sizes are valid. This |
173 |
//function returns TRUE if there is a problem, or FALSE |
174 |
//otherwise. |
175 |
|
176 |
//07/15/01: Unit testing complete. |
177 |
int GMP_INTS_data_sizes_are_wrong(void) |
178 |
{ |
179 |
int i; |
180 |
GMP_INTS_limb_t tv; |
181 |
_int64 tv64; |
182 |
|
183 |
//Check the number of bit rolls required to get the limb |
184 |
//to go to zero again. This had better be 32. |
185 |
tv = 1; |
186 |
i = 0; |
187 |
while (tv) |
188 |
{ |
189 |
tv <<= 1; |
190 |
i++; |
191 |
} |
192 |
if (i != 32) |
193 |
return(1); |
194 |
|
195 |
//Check that an _int64 is really and truly 64 bits. |
196 |
tv64 = 1; |
197 |
i = 0; |
198 |
while (tv64) |
199 |
{ |
200 |
tv64 <<= 1; |
201 |
i++; |
202 |
} |
203 |
if (i != 64) |
204 |
return(1); |
205 |
|
206 |
//Room for additional tests here if needed later. |
207 |
|
208 |
return(0); |
209 |
} |
210 |
|
211 |
|
212 |
/******************************************************************/ |
213 |
/*** ERROR STRING IDENTIFICATION AND PROCESSING FUNCTIONS *******/ |
214 |
/******************************************************************/ |
215 |
|
216 |
int GMP_INTS_identify_nan_string(const char *s) |
217 |
{ |
218 |
assert(s != NULL); |
219 |
|
220 |
if (!strcmp(s, GMP_INTS_EF_INTOVF_POS_STRING)) |
221 |
return(0); |
222 |
else if (!strcmp(s, GMP_INTS_EF_INTOVF_NEG_STRING)) |
223 |
return(1); |
224 |
else if (!strcmp(s, GMP_INTS_EF_INTOVF_TAINT_POS_STRING)) |
225 |
return(2); |
226 |
else if (!strcmp(s, GMP_INTS_EF_INTOVF_TAINT_NEG_STRING)) |
227 |
return(3); |
228 |
else |
229 |
return(-1); |
230 |
} |
231 |
|
232 |
|
233 |
const char *GMP_INTS_supply_nan_string(int idx) |
234 |
{ |
235 |
assert((idx >= 0) && (idx <= 3)); |
236 |
|
237 |
if (idx==0) |
238 |
return(GMP_INTS_EF_INTOVF_POS_STRING); |
239 |
else if (idx==1) |
240 |
return(GMP_INTS_EF_INTOVF_NEG_STRING); |
241 |
else if (idx==2) |
242 |
return(GMP_INTS_EF_INTOVF_TAINT_POS_STRING); |
243 |
else |
244 |
return(GMP_INTS_EF_INTOVF_TAINT_NEG_STRING); |
245 |
} |
246 |
|
247 |
|
248 |
/******************************************************************/ |
249 |
/*** DEBUG PRINTING FUNCTIONS **********************************/ |
250 |
/******************************************************************/ |
251 |
//These functions are for printing out integers and limbs |
252 |
//and groups of limbs for unit testing and debugging. |
253 |
|
254 |
//07/15/01: Exempt from testing because debug/development |
255 |
//function. |
256 |
void GMP_INTS_print_limb_group(FILE *stream, |
257 |
GMP_INTS_limb_srcptr lg, |
258 |
GMP_INTS_size_t n, |
259 |
char *desc) |
260 |
{ |
261 |
int i; |
262 |
|
263 |
assert(stream != NULL); |
264 |
assert(n >= 0); |
265 |
assert(desc != NULL); |
266 |
|
267 |
if (!lg) |
268 |
{ |
269 |
fprintf(stream, " %s: NULL\n", desc); |
270 |
} |
271 |
else |
272 |
{ |
273 |
for (i=n-1; i>=0; i--) |
274 |
{ |
275 |
fprintf(stream, " %s[%2d]: 0x%8X\n", desc, i, lg[i]); |
276 |
} |
277 |
} |
278 |
} |
279 |
|
280 |
|
281 |
void GMP_INTS_mpz_print_int(FILE *stream, |
282 |
const GMP_INTS_mpz_struct *arg, |
283 |
char *desc) |
284 |
{ |
285 |
int i; |
286 |
|
287 |
assert(stream != NULL); |
288 |
assert(arg != NULL); |
289 |
assert(desc != NULL); |
290 |
|
291 |
fprintf(stream, "Printing integer:\n %s\n", desc); |
292 |
|
293 |
fprintf(stream, " flags: %d\n", arg->flags); |
294 |
fprintf(stream, " ptr value to body: %p\n", arg); |
295 |
fprintf(stream, " n_allocd: %d\n", arg->n_allocd); |
296 |
fprintf(stream, " size: %d\n", arg->size); |
297 |
fprintf(stream, " limbs (ptr val): %p\n", arg->limbs); |
298 |
|
299 |
for (i=arg->n_allocd-1; i>=0; i--) |
300 |
{ |
301 |
fprintf(stream, " limb[%3d]: %8X\n", i, arg->limbs[i]); |
302 |
} |
303 |
} |
304 |
|
305 |
|
306 |
/******************************************************************/ |
307 |
/*** LOW-LEVEL MACRO REPLACEMENTS ******************************/ |
308 |
/******************************************************************/ |
309 |
//The functions in this category are replacements for macros. |
310 |
//Clarity was gained at the expense of speed. |
311 |
|
312 |
int GMP_INTS_mpz_get_flags (const GMP_INTS_mpz_struct *arg) |
313 |
{ |
314 |
assert(arg != NULL); |
315 |
assert(arg->n_allocd > 0); |
316 |
|
317 |
return(arg->flags); |
318 |
} |
319 |
|
320 |
|
321 |
//07/15/01: Visual inspection only. Function deemed too |
322 |
//simple for unit testing. |
323 |
GMP_INTS_size_t GMP_INTS_abs_of_size_t(GMP_INTS_size_t arg) |
324 |
{ |
325 |
//Be sure that the bit pattern does not represent the maximum |
326 |
//negative argument. Negating this would give the result of |
327 |
//zero, which is not what is intended. |
328 |
assert(arg != 0x80000000); |
329 |
|
330 |
if (arg < 0) |
331 |
return(-arg); |
332 |
else |
333 |
return(arg); |
334 |
} |
335 |
|
336 |
|
337 |
//07/15/01: Visual inspection only. Function deemed too |
338 |
//simple for unit testing. |
339 |
int GMP_INTS_mpz_sgn(const GMP_INTS_mpz_struct *arg) |
340 |
{ |
341 |
assert(arg != NULL); |
342 |
assert(arg->n_allocd > 0); |
343 |
|
344 |
if (arg->size > 0) |
345 |
return(1); |
346 |
else if (arg->size == 0) |
347 |
return(0); |
348 |
else |
349 |
return(-1); |
350 |
} |
351 |
|
352 |
|
353 |
//07/15/01: Visual inspection only. Function deemed too |
354 |
//simple for unit testing. |
355 |
int GMP_INTS_mpz_is_neg(const GMP_INTS_mpz_struct *arg) |
356 |
{ |
357 |
assert(arg != NULL); |
358 |
assert(arg->n_allocd > 0); |
359 |
|
360 |
if (GMP_INTS_mpz_sgn(arg) == -1) |
361 |
return(1); |
362 |
else |
363 |
return(0); |
364 |
} |
365 |
|
366 |
|
367 |
//07/15/01: Visual inspection only. Function deemed too |
368 |
//simple for unit testing. |
369 |
int GMP_INTS_mpz_is_zero(const GMP_INTS_mpz_struct *arg) |
370 |
{ |
371 |
assert(arg != NULL); |
372 |
assert(arg->n_allocd > 0); |
373 |
|
374 |
if (GMP_INTS_mpz_sgn(arg) == 0) |
375 |
return(1); |
376 |
else |
377 |
return(0); |
378 |
} |
379 |
|
380 |
|
381 |
//07/15/01: Visual inspection only. Function deemed too |
382 |
//simple for unit testing. |
383 |
int GMP_INTS_mpz_is_pos(const GMP_INTS_mpz_struct *arg) |
384 |
{ |
385 |
assert(arg != NULL); |
386 |
assert(arg->n_allocd > 0); |
387 |
|
388 |
if (GMP_INTS_mpz_sgn(arg) == 1) |
389 |
return(1); |
390 |
else |
391 |
return(0); |
392 |
} |
393 |
|
394 |
|
395 |
//07/15/01: Visual inspection only. Function deemed too |
396 |
//simple for unit testing. |
397 |
int GMP_INTS_mpz_is_odd(const GMP_INTS_mpz_struct *arg) |
398 |
{ |
399 |
assert(arg != NULL); |
400 |
assert(arg->n_allocd > 0); |
401 |
|
402 |
if (arg->size == 0) |
403 |
return 0; |
404 |
else if ((arg->limbs[0] & 0x1) != 0) |
405 |
return 1; |
406 |
else |
407 |
return 0; |
408 |
} |
409 |
|
410 |
|
411 |
//07/15/01: Visual inspection only. Function deemed too |
412 |
//simple for unit testing. |
413 |
int GMP_INTS_mpz_is_even(const GMP_INTS_mpz_struct *arg) |
414 |
{ |
415 |
assert(arg != NULL); |
416 |
assert(arg->n_allocd > 0); |
417 |
|
418 |
if (GMP_INTS_mpz_is_odd(arg)) |
419 |
return 0; |
420 |
else |
421 |
return 1; |
422 |
} |
423 |
|
424 |
|
425 |
void GMP_INTS_mpz_negate(GMP_INTS_mpz_struct *arg) |
426 |
{ |
427 |
//Eyeball the input parameters. |
428 |
assert(arg != NULL); |
429 |
assert(arg->n_allocd > 0); |
430 |
assert(arg->limbs != NULL); |
431 |
|
432 |
arg->size = -(arg->size); |
433 |
} |
434 |
|
435 |
|
436 |
//07/15/01: Visual inspection only. Function deemed too |
437 |
//simple for unit testing. |
438 |
void GMP_INTS_mpn_normalize(GMP_INTS_limb_ptr limb_array, |
439 |
GMP_INTS_size_t *idx) |
440 |
{ |
441 |
assert(limb_array != NULL); |
442 |
assert(idx != NULL); |
443 |
assert(idx >= 0); |
444 |
|
445 |
while (*idx > 0) |
446 |
{ |
447 |
if (limb_array[*idx - 1] != 0) |
448 |
break; |
449 |
(*idx)--; |
450 |
} |
451 |
} |
452 |
|
453 |
|
454 |
//07/15/01: Visual inspection only. Function deemed too |
455 |
//simple for unit testing. |
456 |
void GMP_INTS_mpn_copy_limbs(GMP_INTS_limb_ptr dest, |
457 |
GMP_INTS_limb_srcptr src, |
458 |
GMP_INTS_size_t n) |
459 |
{ |
460 |
GMP_INTS_size_t i; |
461 |
|
462 |
assert(dest != NULL); |
463 |
assert(src != NULL); |
464 |
assert(n >= 0); |
465 |
|
466 |
for (i=0; i<n; i++) |
467 |
dest[i] = src[i]; |
468 |
} |
469 |
|
470 |
|
471 |
/******************************************************************/ |
472 |
/*** LOW-LEVEL ARITHMETIC FUNCTIONS ****************************/ |
473 |
/******************************************************************/ |
474 |
|
475 |
int GMP_INTS_two_op_flags_map(int flags1, int flags2) |
476 |
{ |
477 |
int cf; |
478 |
|
479 |
if (!flags1 && !flags2) |
480 |
{ |
481 |
return(0); |
482 |
} |
483 |
else |
484 |
{ |
485 |
cf = flags1 | flags2; |
486 |
|
487 |
if (cf & (GMP_INTS_EF_INTOVF_POS | GMP_INTS_EF_INTOVF_TAINT_POS)) |
488 |
{ |
489 |
//In either case here, the result will be tainted |
490 |
//positive. |
491 |
return(GMP_INTS_EF_INTOVF_TAINT_POS); |
492 |
} |
493 |
else if (cf & (GMP_INTS_EF_INTOVF_NEG | GMP_INTS_EF_INTOVF_TAINT_NEG)) |
494 |
{ |
495 |
//In either case here, the result will be tainted |
496 |
//negative. |
497 |
return(GMP_INTS_EF_INTOVF_TAINT_NEG); |
498 |
} |
499 |
else |
500 |
{ |
501 |
//This case is where the flags ints are non-zero, but |
502 |
//no known bits are set. This is surely some kind of |
503 |
//an internal software error. In debug mode, want to |
504 |
//alert to error. In actual operation, want to just |
505 |
//pretend an ordinary positive taint. |
506 |
assert(0); |
507 |
return(GMP_INTS_EF_INTOVF_TAINT_POS); |
508 |
} |
509 |
} |
510 |
} |
511 |
|
512 |
|
513 |
GMP_INTS_limb_t GMP_INTS_mpn_add_1 (GMP_INTS_limb_ptr res_ptr, |
514 |
GMP_INTS_limb_srcptr s1_ptr, |
515 |
GMP_INTS_size_t s1_size, |
516 |
GMP_INTS_limb_t s2_limb) |
517 |
{ |
518 |
GMP_INTS_limb_t x; |
519 |
|
520 |
assert(res_ptr != NULL); |
521 |
assert(s1_ptr != NULL); |
522 |
assert(s1_size > 0); |
523 |
|
524 |
x = *s1_ptr++; |
525 |
s2_limb = x + s2_limb; |
526 |
*res_ptr++ = s2_limb; |
527 |
//Since limbs are unsigned, the test below tests if there |
528 |
//was a carry, i.e. a positive rollover. |
529 |
if (s2_limb < x) |
530 |
{ |
531 |
while (--s1_size != 0) |
532 |
{ |
533 |
x = *s1_ptr++ + 1; |
534 |
*res_ptr++ = x; |
535 |
if (x != 0) |
536 |
goto fin; |
537 |
} |
538 |
|
539 |
return 1; |
540 |
} |
541 |
|
542 |
fin: |
543 |
if (res_ptr != s1_ptr) |
544 |
{ |
545 |
GMP_INTS_size_t i; |
546 |
for (i = 0; i < s1_size - 1; i++) |
547 |
{ |
548 |
res_ptr[i] = s1_ptr[i]; |
549 |
} |
550 |
} |
551 |
|
552 |
return 0; |
553 |
} |
554 |
|
555 |
|
556 |
GMP_INTS_limb_t GMP_INTS_mpn_sub_1(GMP_INTS_limb_ptr res_ptr, |
557 |
GMP_INTS_limb_srcptr s1_ptr, |
558 |
GMP_INTS_size_t s1_size, |
559 |
GMP_INTS_limb_t s2_limb) |
560 |
{ |
561 |
GMP_INTS_limb_t x; |
562 |
|
563 |
assert(res_ptr != NULL); |
564 |
assert(s1_ptr != NULL); |
565 |
assert(s1_size > 0); |
566 |
|
567 |
x = *s1_ptr++; |
568 |
s2_limb = x - s2_limb; |
569 |
*res_ptr++ = s2_limb; |
570 |
//The test below detects a borrow. |
571 |
if (s2_limb > x) |
572 |
{ |
573 |
while (--s1_size != 0) |
574 |
{ |
575 |
x = *s1_ptr++; |
576 |
*res_ptr++ = x - 1; |
577 |
if (x != 0) |
578 |
goto fin; |
579 |
} |
580 |
|
581 |
return 1; |
582 |
} |
583 |
|
584 |
fin: |
585 |
if (res_ptr != s1_ptr) |
586 |
{ |
587 |
GMP_INTS_size_t i; |
588 |
for (i = 0; i < s1_size - 1; i++) |
589 |
{ |
590 |
res_ptr[i] = s1_ptr[i]; |
591 |
} |
592 |
} |
593 |
return 0; |
594 |
} |
595 |
|
596 |
|
597 |
//07/15/01: Am willing to skip unit-testing on this. |
598 |
//Understand the logic (i.e. passes visual inspection), |
599 |
//and comes from GNU-MP. Hope any defects here will be |
600 |
//caught in testing of GMP_INTS_mpz_mul() and other |
601 |
//higher-level functions. |
602 |
GMP_INTS_limb_t GMP_INTS_mpn_mul_1 (GMP_INTS_limb_ptr res_ptr, |
603 |
GMP_INTS_limb_srcptr s1_ptr, |
604 |
GMP_INTS_size_t s1_size, |
605 |
GMP_INTS_limb_t s2_limb) |
606 |
{ |
607 |
GMP_INTS_limb_t cy_limb; |
608 |
GMP_INTS_size_t j; |
609 |
GMP_INTS_limb_t prod_high, prod_low; |
610 |
unsigned _int64 temp; |
611 |
|
612 |
assert(res_ptr != NULL); |
613 |
assert(s1_ptr != NULL); |
614 |
assert(s1_size > 0); |
615 |
|
616 |
/* The loop counter and index J goes from -S1_SIZE to -1. This way |
617 |
the loop becomes faster. */ |
618 |
j = -s1_size; |
619 |
|
620 |
/* Offset the base pointers to compensate for the negative indices. */ |
621 |
s1_ptr -= j; |
622 |
res_ptr -= j; |
623 |
|
624 |
cy_limb = 0; |
625 |
do |
626 |
{ |
627 |
//The original code here was the following macro: |
628 |
//umul_ppmm (prod_high, prod_low, s1_ptr[j], s2_limb); |
629 |
//Will use the 64-bit data type of MSVC++ to achieve |
630 |
//the same effect. |
631 |
// |
632 |
//NOTE AS OF 07/13/01: I have looked at the assembly- |
633 |
//language, and the lines below are a real sore spot. |
634 |
//The multiply is fairly direct (although there is a |
635 |
//function call), but the shift does not behave as |
636 |
//expected--there is a function call and a loop to |
637 |
//go through the 32 iterations. After logical testing, |
638 |
//may want to clean this out--this would surely |
639 |
//result in a speed increase. This is a sore spot. |
640 |
temp = ((unsigned _int64)s1_ptr[j]) * ((unsigned _int64)s2_limb); |
641 |
prod_low = (GMP_INTS_limb_t)temp; |
642 |
prod_high = (GMP_INTS_limb_t)(temp >> 32); |
643 |
|
644 |
prod_low += cy_limb; |
645 |
cy_limb = (prod_low < cy_limb) + prod_high; |
646 |
|
647 |
res_ptr[j] = prod_low; |
648 |
} |
649 |
while (++j != 0); |
650 |
|
651 |
return cy_limb; |
652 |
} |
653 |
|
654 |
|
655 |
//07/15/01: Am willing to skip unit-testing on this. |
656 |
//Understand the logic (i.e. passes visual inspection), |
657 |
//and comes from GNU-MP. Hope any defects here will be |
658 |
//caught in testing of GMP_INTS_mpz_add() and other |
659 |
//higher-level functions. |
660 |
GMP_INTS_limb_t GMP_INTS_mpn_add_n(GMP_INTS_limb_ptr res_ptr, |
661 |
GMP_INTS_limb_srcptr s1_ptr, |
662 |
GMP_INTS_limb_srcptr s2_ptr, |
663 |
GMP_INTS_size_t size) |
664 |
{ |
665 |
GMP_INTS_limb_t x, y, cy; |
666 |
GMP_INTS_size_t j; |
667 |
|
668 |
assert(res_ptr != NULL); |
669 |
assert(s1_ptr != NULL); |
670 |
assert(s2_ptr != NULL); |
671 |
|
672 |
/* The loop counter and index J goes from -SIZE to -1. This way |
673 |
the loop becomes faster. */ |
674 |
j = -size; |
675 |
|
676 |
/* Offset the base pointers to compensate for the negative indices. */ |
677 |
s1_ptr -= j; |
678 |
s2_ptr -= j; |
679 |
res_ptr -= j; |
680 |
|
681 |
cy = 0; |
682 |
do |
683 |
{ |
684 |
y = s2_ptr[j]; |
685 |
x = s1_ptr[j]; |
686 |
y += cy; /* add previous carry to one addend */ |
687 |
cy = (y < cy); /* get out carry from that addition */ |
688 |
y = x + y; /* add other addend */ |
689 |
cy = (y < x) + cy; /* get out carry from that add, combine */ |
690 |
res_ptr[j] = y; |
691 |
} |
692 |
while (++j != 0); |
693 |
|
694 |
return cy; |
695 |
} |
696 |
|
697 |
|
698 |
//07/15/01: Am willing to skip unit-testing on this. |
699 |
//Understand the logic (i.e. passes visual inspection), |
700 |
//and comes from GNU-MP. Hope any defects here will be |
701 |
//caught in testing of GMP_INTS_mpz_mul() and other |
702 |
//higher-level functions. |
703 |
GMP_INTS_limb_t GMP_INTS_mpn_addmul_1 (GMP_INTS_limb_ptr res_ptr, |
704 |
GMP_INTS_limb_srcptr s1_ptr, |
705 |
GMP_INTS_size_t s1_size, |
706 |
GMP_INTS_limb_t s2_limb) |
707 |
{ |
708 |
GMP_INTS_limb_t cy_limb; |
709 |
GMP_INTS_size_t j; |
710 |
GMP_INTS_limb_t prod_high, prod_low; |
711 |
GMP_INTS_limb_t x; |
712 |
unsigned _int64 temp; |
713 |
|
714 |
//Eyeball the inputs carefully. |
715 |
assert(res_ptr != NULL); |
716 |
assert(s1_ptr != NULL); |
717 |
assert(s1_size > 0); |
718 |
|
719 |
/* The loop counter and index J goes from -SIZE to -1. This way |
720 |
the loop becomes faster. */ |
721 |
j = -s1_size; |
722 |
|
723 |
/* Offset the base pointers to compensate for the negative indices. */ |
724 |
res_ptr -= j; |
725 |
s1_ptr -= j; |
726 |
|
727 |
cy_limb = 0; |
728 |
do |
729 |
{ |
730 |
//The original code here was the following macro: |
731 |
//umul_ppmm (prod_high, prod_low, s1_ptr[j], s2_limb); |
732 |
//Will use the 64-bit data type of MSVC++ to achieve |
733 |
//the same effect. |
734 |
// |
735 |
//NOTE AS OF 07/14/01: I have not looked at the assembly- |
736 |
//language, but the assembly-language generated by what |
737 |
//is below is suspected to have performance problems. |
738 |
//May want to come back to this. |
739 |
temp = ((unsigned _int64)s1_ptr[j]) * ((unsigned _int64)s2_limb); |
740 |
prod_low = (GMP_INTS_limb_t)temp; |
741 |
prod_high = (GMP_INTS_limb_t)(temp >> 32); |
742 |
|
743 |
prod_low += cy_limb; |
744 |
cy_limb = (prod_low < cy_limb) + prod_high; |
745 |
|
746 |
x = res_ptr[j]; |
747 |
prod_low = x + prod_low; |
748 |
cy_limb += (prod_low < x); |
749 |
res_ptr[j] = prod_low; |
750 |
} |
751 |
while (++j != 0); |
752 |
|
753 |
return cy_limb; |
754 |
} |
755 |
|
756 |
|
757 |
//07/15/01: Am willing to skip unit-testing on this. |
758 |
//Understand the logic (i.e. passes visual inspection), |
759 |
//and comes from GNU-MP. |
760 |
GMP_INTS_limb_t GMP_INTS_mpn_add (GMP_INTS_limb_ptr res_ptr, |
761 |
GMP_INTS_limb_srcptr s1_ptr, |
762 |
GMP_INTS_size_t s1_size, |
763 |
GMP_INTS_limb_srcptr s2_ptr, |
764 |
GMP_INTS_size_t s2_size) |
765 |
{ |
766 |
GMP_INTS_limb_t cy_limb = 0; |
767 |
|
768 |
assert(res_ptr != NULL); |
769 |
assert(s1_ptr != NULL); |
770 |
assert(s2_ptr != NULL); |
771 |
|
772 |
//Numbers apparently must be arranged with sizes so that |
773 |
//LIMBS(s1) >= LIMBS(s2). |
774 |
//Add the parts up to the most significant limb of S2. |
775 |
if (s2_size != 0) |
776 |
cy_limb = GMP_INTS_mpn_add_n (res_ptr, |
777 |
s1_ptr, |
778 |
s2_ptr, |
779 |
s2_size); |
780 |
|
781 |
//Process the carry result, and propagate the carries up through |
782 |
//the parts of S1 that don't exist in S2, i.e. propagate the |
783 |
//carries upward in S1. |
784 |
if (s1_size - s2_size != 0) |
785 |
cy_limb = GMP_INTS_mpn_add_1 (res_ptr + s2_size, |
786 |
s1_ptr + s2_size, |
787 |
s1_size - s2_size, |
788 |
cy_limb); |
789 |
return cy_limb; |
790 |
} |
791 |
|
792 |
|
793 |
//07/15/01: Am willing to skip unit-testing on this. |
794 |
//Understand the logic (i.e. passes visual inspection), |
795 |
//and comes from GNU-MP. |
796 |
GMP_INTS_limb_t GMP_INTS_mpn_sub_n(GMP_INTS_limb_ptr res_ptr, |
797 |
GMP_INTS_limb_srcptr s1_ptr, |
798 |
GMP_INTS_limb_srcptr s2_ptr, |
799 |
GMP_INTS_size_t size) |
800 |
{ |
801 |
GMP_INTS_limb_t x, y, cy; |
802 |
GMP_INTS_size_t j; |
803 |
|
804 |
assert(res_ptr != NULL); |
805 |
assert(s1_ptr != NULL); |
806 |
assert(s2_ptr != NULL); |
807 |
|
808 |
/* The loop counter and index J goes from -SIZE to -1. This way |
809 |
the loop becomes faster. */ |
810 |
j = -size; |
811 |
|
812 |
/* Offset the base pointers to compensate for the negative indices. */ |
813 |
s1_ptr -= j; |
814 |
s2_ptr -= j; |
815 |
res_ptr -= j; |
816 |
|
817 |
cy = 0; |
818 |
do |
819 |
{ |
820 |
y = s2_ptr[j]; |
821 |
x = s1_ptr[j]; |
822 |
y += cy; /* add previous carry to subtrahend */ |
823 |
cy = (y < cy); /* get out carry from that addition */ |
824 |
y = x - y; /* main subtract */ |
825 |
cy = (y > x) + cy; /* get out carry from the subtract, combine */ |
826 |
res_ptr[j] = y; |
827 |
} |
828 |
while (++j != 0); |
829 |
|
830 |
return cy; |
831 |
} |
832 |
|
833 |
|
834 |
//07/17/01: Am willing to skip unit-testing on this. |
835 |
//Understand the logic (i.e. passes visual inspection), |
836 |
//and comes from GNU-MP. |
837 |
GMP_INTS_limb_t GMP_INTS_mpn_sub (GMP_INTS_limb_ptr res_ptr, |
838 |
GMP_INTS_limb_srcptr s1_ptr, |
839 |
GMP_INTS_size_t s1_size, |
840 |
GMP_INTS_limb_srcptr s2_ptr, |
841 |
GMP_INTS_size_t s2_size) |
842 |
{ |
843 |
GMP_INTS_limb_t cy_limb = 0; |
844 |
|
845 |
assert(res_ptr != NULL); |
846 |
assert(s1_ptr != NULL); |
847 |
assert(s2_ptr != NULL); |
848 |
|
849 |
if (s2_size != 0) |
850 |
cy_limb = GMP_INTS_mpn_sub_n(res_ptr, |
851 |
s1_ptr, |
852 |
s2_ptr, |
853 |
s2_size); |
854 |
|
855 |
if (s1_size - s2_size != 0) |
856 |
cy_limb = GMP_INTS_mpn_sub_1(res_ptr + s2_size, |
857 |
s1_ptr + s2_size, |
858 |
s1_size - s2_size, |
859 |
cy_limb); |
860 |
return cy_limb; |
861 |
} |
862 |
|
863 |
|
864 |
//07/17/01: Am willing to skip unit-testing on this. |
865 |
//Understand the logic (i.e. passes visual inspection), |
866 |
//and comes from GNU-MP. |
867 |
GMP_INTS_limb_t GMP_INTS_mpn_lshift(GMP_INTS_limb_ptr wp, |
868 |
GMP_INTS_limb_srcptr up, |
869 |
GMP_INTS_size_t usize, |
870 |
unsigned int cnt) |
871 |
{ |
872 |
GMP_INTS_limb_t high_limb, low_limb; |
873 |
unsigned sh_1, sh_2; |
874 |
GMP_INTS_size_t i; |
875 |
GMP_INTS_limb_t retval; |
876 |
|
877 |
assert(wp != NULL); |
878 |
assert(up != NULL); |
879 |
assert(usize > 0); |
880 |
assert(cnt > 0); |
881 |
|
882 |
sh_1 = cnt; |
883 |
|
884 |
wp += 1; |
885 |
sh_2 = GMP_INTS_BITS_PER_LIMB - sh_1; |
886 |
//This automatically implies that can't call this function to shift more |
887 |
//than 31 places. |
888 |
i = usize - 1; |
889 |
low_limb = up[i]; |
890 |
retval = low_limb >> sh_2; //Return value is the amount shifted |
891 |
//off the top. |
892 |
high_limb = low_limb; |
893 |
while (--i >= 0) |
894 |
{ |
895 |
low_limb = up[i]; |
896 |
wp[i] = (high_limb << sh_1) | (low_limb >> sh_2); |
897 |
high_limb = low_limb; |
898 |
} |
899 |
wp[i] = high_limb << sh_1; |
900 |
|
901 |
return retval; |
902 |
} |
903 |
|
904 |
|
905 |
//07/17/01: Am willing to skip unit-testing on this. |
906 |
//Understand the logic more or less (i.e. passes visual inspection), |
907 |
//and comes from GNU-MP. |
908 |
/* Shift U (pointed to by UP and USIZE limbs long) CNT bits to the right |
909 |
and store the USIZE least significant limbs of the result at WP. |
910 |
The bits shifted out to the right are returned. |
911 |
|
912 |
Argument constraints: |
913 |
1. 0 < CNT < BITS_PER_MP_LIMB |
914 |
2. If the result is to be written over the input, WP must be <= UP. |
915 |
*/ |
916 |
GMP_INTS_limb_t GMP_INTS_mpn_rshift (GMP_INTS_limb_ptr wp, |
917 |
GMP_INTS_limb_srcptr up, |
918 |
GMP_INTS_size_t usize, |
919 |
unsigned int cnt) |
920 |
{ |
921 |
GMP_INTS_limb_t high_limb, low_limb; |
922 |
unsigned sh_1, sh_2; |
923 |
GMP_INTS_size_t i; |
924 |
GMP_INTS_limb_t retval; |
925 |
|
926 |
assert(wp != NULL); |
927 |
assert(up != NULL); |
928 |
assert(usize > 0); |
929 |
assert(cnt > 0); |
930 |
|
931 |
sh_1 = cnt; |
932 |
|
933 |
wp -= 1; |
934 |
sh_2 = GMP_INTS_BITS_PER_LIMB - sh_1; |
935 |
high_limb = up[0]; |
936 |
retval = high_limb << sh_2; |
937 |
low_limb = high_limb; |
938 |
|
939 |
for (i = 1; i < usize; i++) |
940 |
{ |
941 |
high_limb = up[i]; |
942 |
wp[i] = (low_limb >> sh_1) | (high_limb << sh_2); |
943 |
low_limb = high_limb; |
944 |
} |
945 |
wp[i] = low_limb >> sh_1; |
946 |
|
947 |
return retval; |
948 |
} |
949 |
|
950 |
|
951 |
//07/17/01: Am willing to skip unit-testing on this. |
952 |
//Understand the logic (i.e. passes visual inspection), |
953 |
//and comes from GNU-MP. |
954 |
int GMP_INTS_mpn_cmp (GMP_INTS_limb_srcptr op1_ptr, |
955 |
GMP_INTS_limb_srcptr op2_ptr, |
956 |
GMP_INTS_size_t size) |
957 |
{ |
958 |
GMP_INTS_size_t i; |
959 |
GMP_INTS_limb_t op1_word, op2_word; |
960 |
|
961 |
assert(op1_ptr != NULL); |
962 |
assert(op2_ptr != NULL); |
963 |
|
964 |
for (i = size - 1; i >= 0; i--) |
965 |
{ |
966 |
op1_word = op1_ptr[i]; |
967 |
op2_word = op2_ptr[i]; |
968 |
if (op1_word != op2_word) |
969 |
goto diff; |
970 |
} |
971 |
return 0; |
972 |
|
973 |
diff: |
974 |
//This can *not* be simplified to |
975 |
// op2_word - op2_word |
976 |
//since that expression might give signed overflow. |
977 |
return (op1_word > op2_word) ? 1 : -1; |
978 |
} |
979 |
|
980 |
|
981 |
//07/15/01: Am willing to skip unit-testing on this. |
982 |
//Understand the logic (i.e. passes visual inspection), |
983 |
//and comes from GNU-MP. Hope any defects here will be |
984 |
//caught in testing of GMP_INTS_mpz_mul() and other |
985 |
//higher-level functions. |
986 |
void GMP_INTS_mpn_mul_basecase (GMP_INTS_limb_ptr prodp, |
987 |
GMP_INTS_limb_srcptr up, |
988 |
GMP_INTS_size_t usize, |
989 |
GMP_INTS_limb_srcptr vp, |
990 |
GMP_INTS_size_t vsize) |
991 |
{ |
992 |
assert(prodp != NULL); |
993 |
assert(up != NULL); |
994 |
assert(usize > 0); |
995 |
assert(vp != NULL); |
996 |
assert(vsize > 0); |
997 |
|
998 |
/* We first multiply by the low order one or two limbs, as the result can |
999 |
be stored, not added, to PROD. We also avoid a loop for zeroing this |
1000 |
way. */ |
1001 |
prodp[usize] = GMP_INTS_mpn_mul_1 (prodp, up, usize, vp[0]); |
1002 |
prodp++; |
1003 |
vp++; |
1004 |
vsize--; |
1005 |
|
1006 |
/* For each iteration in the loop, multiply U with one limb from V, and |
1007 |
add the result to PROD. */ |
1008 |
while (vsize != 0) |
1009 |
{ |
1010 |
prodp[usize] = GMP_INTS_mpn_addmul_1 (prodp, up, usize, vp[0]); |
1011 |
prodp++, |
1012 |
vp++, |
1013 |
vsize--; |
1014 |
} |
1015 |
} |
1016 |
|
1017 |
|
1018 |
//07/15/01: No unit testing possible--this is a passthrough. |
1019 |
//In the original GNU MP code, there were several multiplication |
1020 |
//algorithms, and this function would select one based on the |
1021 |
//size of the operands and other considerations. The code has been |
1022 |
//pared so that only simple multiplication is used, which is why |
1023 |
//this function contains only a single pass-thru function call. |
1024 |
void GMP_INTS_mpn_mul_n (GMP_INTS_limb_ptr p, |
1025 |
GMP_INTS_limb_srcptr a, |
1026 |
GMP_INTS_limb_srcptr b, |
1027 |
GMP_INTS_size_t n) |
1028 |
{ |
1029 |
GMP_INTS_mpn_mul_basecase (p, a, n, b, n); |
1030 |
} |
1031 |
|
1032 |
|
1033 |
//07/16/01: Visual inspection OK. Will not perform unit testing. |
1034 |
GMP_INTS_limb_t GMP_INTS_mpn_mul(GMP_INTS_limb_ptr prodp, |
1035 |
GMP_INTS_limb_srcptr up, |
1036 |
GMP_INTS_size_t un, |
1037 |
GMP_INTS_limb_srcptr vp, |
1038 |
GMP_INTS_size_t vn) |
1039 |
{ |
1040 |
//This is a gutted version of the GNU MP function. The GNU |
1041 |
//MP function considered the case of a square, and also |
1042 |
//better algorithms that pay off with large operands. |
1043 |
//This gutted version uses only basic multiplication |
1044 |
//(O(N**2)). |
1045 |
|
1046 |
//Eyeball the input parameters. |
1047 |
assert(prodp != NULL); |
1048 |
assert(up != NULL); |
1049 |
assert(un >= 0); |
1050 |
assert(vp != NULL); |
1051 |
assert(vn >= 0); |
1052 |
|
1053 |
/* Basic long multiplication. */ |
1054 |
GMP_INTS_mpn_mul_basecase (prodp, up, un, vp, vn); |
1055 |
|
1056 |
//Return the most significant limb (which might be zero). |
1057 |
//This is different than |
1058 |
//most other functions, which return the spillover. |
1059 |
return prodp[un + vn - 1]; |
1060 |
} |
1061 |
|
1062 |
|
1063 |
/******************************************************************/ |
1064 |
/*** LIMB SPACE REALLOCATION FUNCTIONS *************************/ |
1065 |
/******************************************************************/ |
1066 |
|
1067 |
void *GMP_INTS_mpz_realloc (GMP_INTS_mpz_struct *m, |
1068 |
GMP_INTS_size_t new_size) |
1069 |
{ |
1070 |
/* Never allocate zero space. */ |
1071 |
if (new_size <= 0) |
1072 |
new_size = 1; |
1073 |
|
1074 |
m->limbs = (GMP_INTS_limb_ptr) |
1075 |
GMP_INTS_realloc_w_size (m->limbs, |
1076 |
m->n_allocd * sizeof(GMP_INTS_limb_t), |
1077 |
new_size * sizeof(GMP_INTS_limb_t)); |
1078 |
m->n_allocd = new_size; |
1079 |
|
1080 |
return (void *) m->limbs; |
1081 |
} |
1082 |
|
1083 |
|
1084 |
/******************************************************************/ |
1085 |
/*** PUBLIC INITIALIZATION AND MEMORY MANAGEMENT FUNCTIONS *****/ |
1086 |
/******************************************************************/ |
1087 |
|
1088 |
void GMP_INTS_mpz_init (GMP_INTS_mpz_struct *x) |
1089 |
{ |
1090 |
assert(x != NULL); |
1091 |
|
1092 |
//The structure (the header block) exists in the |
1093 |
//caller's area. Most likely it is a local variable. |
1094 |
//This is OK, because it doesn't take up much space. |
1095 |
|
1096 |
//Start off with no errors. |
1097 |
x->flags = 0; |
1098 |
|
1099 |
//Allocate space for one limb, which is the most |
1100 |
//basic amount. This will grow, almost certainly. |
1101 |
x->limbs = GMP_INTS_malloc(sizeof(GMP_INTS_limb_t)); |
1102 |
|
1103 |
//Indicate that one limb was allocated. |
1104 |
x->n_allocd = 1; |
1105 |
|
1106 |
//Set the size to 0. This signals a value of zero. |
1107 |
x->size = 0; |
1108 |
} |
1109 |
|
1110 |
|
1111 |
void GMP_INTS_mpz_clear (GMP_INTS_mpz_struct *x) |
1112 |
{ |
1113 |
//Be sure the passed pointer is not NULL. |
1114 |
assert(x != NULL); |
1115 |
|
1116 |
//Be sure that the amount allocated is also above zero. |
1117 |
//Anything else represents a logical error. |
1118 |
assert(x->n_allocd > 0); |
1119 |
|
1120 |
//Be sure that the pointer to the allocated limbs |
1121 |
//is not NULL. Anything else would be a logical |
1122 |
//error. |
1123 |
assert(x->limbs != NULL); |
1124 |
|
1125 |
//Deallocate the space for the limbs. The pointer is |
1126 |
//set NULL and the allocated amount set to zero |
1127 |
// so in case clear is called again it will be |
1128 |
//a detectable error. |
1129 |
GMP_INTS_free_w_size(x->limbs, |
1130 |
x->n_allocd * sizeof(GMP_INTS_limb_t)); |
1131 |
x->limbs = NULL; |
1132 |
x->n_allocd = 0; |
1133 |
} |
1134 |
|
1135 |
|
1136 |
/******************************************************************/ |
1137 |
/*** PUBLIC ASSIGNMENT FUNCTIONS *******************************/ |
1138 |
/******************************************************************/ |
1139 |
|
1140 |
void GMP_INTS_mpz_copy( GMP_INTS_mpz_struct *dst, |
1141 |
const GMP_INTS_mpz_struct *src) |
1142 |
{ |
1143 |
GMP_INTS_size_t i, n; |
1144 |
|
1145 |
//Eyeball the input parameters. |
1146 |
assert(dst != NULL); |
1147 |
assert(dst->n_allocd > 0); |
1148 |
assert(dst->limbs != NULL); |
1149 |
assert(src != NULL); |
1150 |
assert(src->n_allocd > 0); |
1151 |
assert(src->limbs != NULL); |
1152 |
|
1153 |
//Source and destination may not be the same. |
1154 |
assert(src != dst); |
1155 |
|
1156 |
//Figure out the real size of the source. We need to take the absolute |
1157 |
//value. |
1158 |
n = GMP_INTS_abs_of_size_t(src->size); |
1159 |
|
1160 |
//Reallocate the destination to be bigger if necessary. |
1161 |
if (dst->n_allocd < n) |
1162 |
{ |
1163 |
GMP_INTS_mpz_realloc (dst, n); |
1164 |
} |
1165 |
|
1166 |
//Copy the non-dynamic fields in the header. |
1167 |
dst->flags = src->flags; |
1168 |
dst->size = src->size; |
1169 |
|
1170 |
//Copy the limbs. |
1171 |
for (i=0; i<n; i++) |
1172 |
dst->limbs[i] = src->limbs[i]; |
1173 |
} |
1174 |
|
1175 |
|
1176 |
void GMP_INTS_mpz_set_ui (GMP_INTS_mpz_struct *dest, |
1177 |
unsigned long int val) |
1178 |
{ |
1179 |
assert(dest != NULL); |
1180 |
|
1181 |
/* We don't check if the allocation is enough, since the rest of the |
1182 |
package ensures it's at least 1, which is what we need here. */ |
1183 |
|
1184 |
dest->flags = 0; |
1185 |
//A set operation resets any errors. |
1186 |
|
1187 |
if (val > 0) |
1188 |
{ |
1189 |
dest->limbs[0] = val; |
1190 |
dest->size = 1; |
1191 |
} |
1192 |
else |
1193 |
{ |
1194 |
dest->size = 0; |
1195 |
} |
1196 |
} |
1197 |
|
1198 |
|
1199 |
void GMP_INTS_mpz_set_si (GMP_INTS_mpz_struct *dest, |
1200 |
signed long int val) |
1201 |
{ |
1202 |
assert(dest != NULL); |
1203 |
|
1204 |
/* We don't check if the allocation is enough, since the rest of the |
1205 |
package ensures it's at least 1, which is what we need here. */ |
1206 |
|
1207 |
dest->flags = 0; |
1208 |
//A set operation resets any errors. |
1209 |
|
1210 |
if (val > 0) |
1211 |
{ |
1212 |
dest->limbs[0] = val; |
1213 |
dest->size = 1; |
1214 |
} |
1215 |
else if (val < 0) |
1216 |
{ |
1217 |
dest->limbs[0] = (unsigned long) -val; |
1218 |
dest->size = -1; |
1219 |
} |
1220 |
else |
1221 |
{ |
1222 |
dest->size = 0; |
1223 |
} |
1224 |
} |
1225 |
|
1226 |
|
1227 |
void GMP_INTS_mpz_set_simple_char_str(GMP_INTS_mpz_struct *z, |
1228 |
const char *s) |
1229 |
{ |
1230 |
int sign=1; |
1231 |
int digval; |
1232 |
GMP_INTS_mpz_struct digvalz, k10; |
1233 |
|
1234 |
//Eyeball the arguments. |
1235 |
assert(z != NULL); |
1236 |
assert(z->n_allocd > 0); |
1237 |
assert(z->limbs != NULL); |
1238 |
assert(s != NULL); |
1239 |
|
1240 |
//Set the arbitrary integer to zero. This will also kill |
1241 |
//any error flags. |
1242 |
GMP_INTS_mpz_set_ui(z, 0); |
1243 |
|
1244 |
//Allocate an integer for our private use to hold each digit |
1245 |
//value. |
1246 |
GMP_INTS_mpz_init(&digvalz); |
1247 |
|
1248 |
//Allocate the constant 10, which we will use often. |
1249 |
GMP_INTS_mpz_init(&k10); |
1250 |
GMP_INTS_mpz_set_ui(&k10, 10); |
1251 |
|
1252 |
//As long as there are are digits and no flags set, keep |
1253 |
//multiplying and adding the value of the digit. Non- |
1254 |
//digits are simply ignored. |
1255 |
while (!(z->flags) && (*s)) |
1256 |
{ |
1257 |
if (*s == '-') |
1258 |
{ |
1259 |
sign = -sign; |
1260 |
} |
1261 |
else |
1262 |
{ |
1263 |
digval = CHARFUNC_digit_to_val(*s); |
1264 |
if (digval >= 0) |
1265 |
{ |
1266 |
GMP_INTS_mpz_set_ui(&digvalz, digval); |
1267 |
GMP_INTS_mpz_mul(z, z, &k10); |
1268 |
GMP_INTS_mpz_add(z, z, &digvalz); |
1269 |
} |
1270 |
} |
1271 |
s++; |
1272 |
} |
1273 |
|
1274 |
//Adjust the final sign of the result. |
1275 |
if (sign < 0) |
1276 |
z->size = -(z->size); |
1277 |
|
1278 |
//Deallocate our temporary integers. |
1279 |
GMP_INTS_mpz_clear(&digvalz); |
1280 |
GMP_INTS_mpz_clear(&k10); |
1281 |
} |
1282 |
|
1283 |
|
1284 |
void GMP_INTS_mpz_set_sci_not_num(GMP_INTS_mpz_struct *z, |
1285 |
int *failure, |
1286 |
const char *s) |
1287 |
{ |
1288 |
int parse_failure; |
1289 |
//Return code from the floating point parsing |
1290 |
//function. |
1291 |
char mant_sign; |
1292 |
//Sign character, if any, from the mantissa, |
1293 |
//or N otherwise. |
1294 |
size_t mant_bdp; |
1295 |
//The index to the start of the mantissa before |
1296 |
//the decimal point. |
1297 |
size_t mant_bdp_len; |
1298 |
//The length of the mantissa before the decimal |
1299 |
//point. Zero means not defined, i.e. that |
1300 |
//no characters were parsed and interpreted as |
1301 |
//that part of a floating point number. |
1302 |
size_t mant_adp; |
1303 |
size_t mant_adp_len; |
1304 |
//Similar fields for after the decimal point. |
1305 |
char exp_sign; |
1306 |
//Sign of the exponent, if any, or N otherwise. |
1307 |
size_t exp; |
1308 |
size_t exp_len; |
1309 |
//Similar fields as to the mantissa, but for the |
1310 |
//exponent. |
1311 |
size_t si; |
1312 |
//Iteration variable. |
1313 |
int exponent_val; |
1314 |
//The value of the exponent. We can't accept |
1315 |
//an exponent outside the range of a 24-bit |
1316 |
//signed integer. The 24-bit limit is arbitrary. |
1317 |
//For one thing, it gives room to detect overflow |
1318 |
//as are adding and multiplying by 10. |
1319 |
|
1320 |
//Eyeball the input parameters. |
1321 |
assert(z != NULL); |
1322 |
assert(z->n_allocd > 0); |
1323 |
assert(z->limbs != NULL); |
1324 |
assert(failure != NULL); |
1325 |
assert(s != NULL); |
1326 |
|
1327 |
//Start off believing no failure. |
1328 |
*failure = 0; |
1329 |
|
1330 |
//Set the output to zero. This is the default case for some |
1331 |
//steps below. |
1332 |
GMP_INTS_mpz_set_ui(z, 0); |
1333 |
|
1334 |
//Attempt to parse the number as a general number |
1335 |
//in scientific notation. |
1336 |
BSTRFUNC_parse_gen_sci_not_num(s, |
1337 |
&parse_failure, |
1338 |
&mant_sign, |
1339 |
&mant_bdp, |
1340 |
&mant_bdp_len, |
1341 |
&mant_adp, |
1342 |
&mant_adp_len, |
1343 |
&exp_sign, |
1344 |
&exp, |
1345 |
&exp_len); |
1346 |
|
1347 |
//If it wouldn't parse as a general number, can't go further. |
1348 |
if (parse_failure) |
1349 |
{ |
1350 |
*failure = 1; |
1351 |
return; |
1352 |
} |
1353 |
else if (!exp_len && !mant_adp_len) |
1354 |
{ |
1355 |
//There was no exponent, and no portion after |
1356 |
//the decimal point. Can just parse as an integer. |
1357 |
char *temp_buf; |
1358 |
|
1359 |
//Allocate the temporary buffer to be one character longer |
1360 |
//than the length specified for the parsed mantissa. |
1361 |
temp_buf = GMP_INTS_malloc(sizeof(char) * (mant_bdp_len + 1)); |
1362 |
|
1363 |
//Copy from the parsed area into the temporary buffer. |
1364 |
for (si=mant_bdp; si<(mant_bdp+mant_bdp_len); si++) |
1365 |
temp_buf[si-mant_bdp] = s[si]; |
1366 |
temp_buf[mant_bdp_len] = 0; |
1367 |
|
1368 |
//Set the arbitrary integer to the value of the character |
1369 |
//string. |
1370 |
GMP_INTS_mpz_set_simple_char_str(z, temp_buf); |
1371 |
|
1372 |
//If the number parsed as negative, invert. |
1373 |
if (mant_sign == '-') |
1374 |
z->size = -z->size; |
1375 |
|
1376 |
//Deallocate the temporary buffer. |
1377 |
GMP_INTS_free(temp_buf); |
1378 |
} |
1379 |
else if (!exp_len && mant_adp_len) |
1380 |
{ |
1381 |
char *temp_buf; |
1382 |
|
1383 |
//In this case, there are digits after the decimal point, |
1384 |
//but no exponent specified. The only way this makes |
1385 |
//sense is if all of the digits are zero--otherwise it |
1386 |
//cannot be an integer. |
1387 |
for (si=mant_adp; si<(mant_adp+mant_adp_len); si++) |
1388 |
{ |
1389 |
if (s[si] != '0') |
1390 |
{ |
1391 |
*failure = 1; |
1392 |
return; |
1393 |
} |
1394 |
} |
1395 |
|
1396 |
//We're clean. They are only zeros. Execute as per |
1397 |
//integer code. |
1398 |
|
1399 |
//Allocate the temporary buffer to be one character longer |
1400 |
//than the length specified for the parsed mantissa. |
1401 |
temp_buf = GMP_INTS_malloc(sizeof(char) * (mant_bdp_len + 1)); |
1402 |
|
1403 |
//Copy from the parsed area into the temporary buffer. |
1404 |
for (si=mant_bdp; si<(mant_bdp+mant_bdp_len); si++) |
1405 |
temp_buf[si-mant_bdp] = s[si]; |
1406 |
temp_buf[mant_bdp_len] = 0; |
1407 |
|
1408 |
//Set the arbitrary integer to the value of the character |
1409 |
//string. |
1410 |
GMP_INTS_mpz_set_simple_char_str(z, temp_buf); |
1411 |
|
1412 |
//If the number parsed as negative, invert. |
1413 |
if (mant_sign == '-') |
1414 |
z->size = -z->size; |
1415 |
|
1416 |
//Deallocate the temporary buffer. |
1417 |
GMP_INTS_free(temp_buf); |
1418 |
} |
1419 |
else if (exp_len) |
1420 |
{ |
1421 |
//This is the most difficult case, where an exponent |
1422 |
//is specified. There are several complex subcases, |
1423 |
//such as: |
1424 |
// a)If the exponent is too positive or too negative, |
1425 |
// we can't use it. In general, we won't tackle |
1426 |
// an exponent that won't fit in a signed 24-bit |
1427 |
// integer. This provides a range of from |
1428 |
// -8,388,608 to +8,388,607. This dwarfs the |
1429 |
// 100,000 or so digit preprocessor limit, |
1430 |
// and should be adequate for any practical |
1431 |
// application. |
1432 |
// b)If the exponent is zero, we ignore it. |
1433 |
// c)If the exponent is positive, it has to |
1434 |
// be large enough to overcome any |
1435 |
// digits past the decimal point, otherwise |
1436 |
// we don't end up with an integer. |
1437 |
// d)If the exponent is negative, there have to |
1438 |
// be enough digits so that an integer remains |
1439 |
// after the exponent is applied. This |
1440 |
// generally requires trailing zeros on the |
1441 |
// part before the decimal point. |
1442 |
|
1443 |
//First, tackle the exponent. Process the |
1444 |
//exponent into a signed integer. We have to |
1445 |
//balk at anything outside of 24 bits. The |
1446 |
//procedure used automatically handles |
1447 |
//leading zeros correctly. |
1448 |
exponent_val = 0; |
1449 |
for (si=exp; si<(exp+exp_len); si++) |
1450 |
{ |
1451 |
int val; |
1452 |
|
1453 |
val = CHARFUNC_digit_to_val(s[si]); |
1454 |
|
1455 |
assert(val >= 0 && val <= 9); |
1456 |
|
1457 |
exponent_val *= 10; |
1458 |
exponent_val += val; |
1459 |
|
1460 |
if (((exp_sign=='-') && (exponent_val>8388608)) |
1461 |
|| |
1462 |
((exp_sign != '-') && (exponent_val>8388607))) |
1463 |
{ |
1464 |
*failure = 1; |
1465 |
return; |
1466 |
} |
1467 |
} |
1468 |
|
1469 |
//If we're here, the exponent has been computed and |
1470 |
//is within 24 bits. However, we need to adjust for |
1471 |
//the sign. |
1472 |
if (exp_sign == '-') |
1473 |
exponent_val = -exponent_val; |
1474 |
|
1475 |
//We need to make accurate assertions about the |
1476 |
//portion of the number, if any, after the decimal point. |
1477 |
//This means that we need to effectively discard |
1478 |
//trailing zeros. To do this, we do not need to |
1479 |
//relocate the string, we can just back off the index |
1480 |
//to bypass any trailing zeros. |
1481 |
while ((mant_adp_len > 0) && (s[mant_adp + mant_adp_len - 1]=='0')) |
1482 |
mant_adp_len--; |
1483 |
|
1484 |
//We also need to make accurate assertions about the |
1485 |
//portion of the number, if any, before the decimal |
1486 |
//point. It is known that the parsing function |
1487 |
//isn't tolerant of multiple zeros, but zero is a |
1488 |
//special case. Let's advance the pointer to the |
1489 |
//part before the decimal point so that zero will |
1490 |
//have zero length. |
1491 |
while ((mant_bdp_len > 0) && (s[mant_bdp]=='0')) |
1492 |
{ |
1493 |
mant_bdp++; |
1494 |
mant_bdp_len--; |
1495 |
} |
1496 |
|
1497 |
//If we are dealing with zero, who cares about the |
1498 |
//exponent? Just return the value of zero. |
1499 |
if (!mant_bdp_len && !mant_adp_len) |
1500 |
{ |
1501 |
*failure = 0; |
1502 |
GMP_INTS_mpz_set_ui(z, 0); |
1503 |
return; |
1504 |
} |
1505 |
|
1506 |
//Beyond this point, we have something non-zero. |
1507 |
//If the exponent is positive, it must be at least |
1508 |
//as large as the number of digits beyond the |
1509 |
//decimal point in order to form an integer. If the |
1510 |
//exponent is zero, there must be no digits after the |
1511 |
//decimal point. If the exponent is negative, there |
1512 |
//must be no digits after the decimal point, and the |
1513 |
//trailing zeros on the part before the decimal point |
1514 |
//must be adequate to handle the right decimal shift. |
1515 |
if (exponent_val == 0) |
1516 |
{ |
1517 |
if (mant_adp_len) |
1518 |
{ |
1519 |
*failure = 1; |
1520 |
return; |
1521 |
} |
1522 |
} |
1523 |
else if (exponent_val > 0) |
1524 |
{ |
1525 |
if ((int)mant_adp_len > exponent_val) |
1526 |
{ |
1527 |
*failure = 1; |
1528 |
return; |
1529 |
} |
1530 |
} |
1531 |
else //exponent_val < 0 |
1532 |
{ |
1533 |
if (mant_adp_len) |
1534 |
{ |
1535 |
*failure = 1; |
1536 |
return; |
1537 |
} |
1538 |
else |
1539 |
{ |
1540 |
//Count the number of trailing zeros on the part |
1541 |
//before the decimal point. |
1542 |
size_t trailing_zero_count; |
1543 |
int idx; |
1544 |
|
1545 |
trailing_zero_count = 0; |
1546 |
|
1547 |
for(idx = mant_bdp + mant_bdp_len - 1; |
1548 |
(mant_bdp_len != 0) && (idx >= (int)mant_bdp); |
1549 |
idx--) |
1550 |
{ |
1551 |
if (s[idx] == '0') |
1552 |
trailing_zero_count++; |
1553 |
else |
1554 |
break; |
1555 |
} |
1556 |
|
1557 |
//Check on the assertion about trailing zeros. |
1558 |
if ((int)trailing_zero_count < -exponent_val) |
1559 |
{ |
1560 |
*failure = 1; |
1561 |
return; |
1562 |
} |
1563 |
} |
1564 |
} |
1565 |
|
1566 |
{ |
1567 |
//Create a string long enough to hold the digits |
1568 |
//before the decimal point plus the ones after and |
1569 |
//convert that to an arbitrary integer. |
1570 |
//Form a power of 10 which is 10 exponentiated to |
1571 |
//the absolute value of the exponent. If the |
1572 |
//exponent was positive, multiply by it. If the |
1573 |
//exponent was negative, divide by it. |
1574 |
char *conv_str; |
1575 |
size_t sidx; |
1576 |
GMP_INTS_mpz_struct power_of_ten, k10, trash; |
1577 |
|
1578 |
GMP_INTS_mpz_init(&power_of_ten); |
1579 |
GMP_INTS_mpz_init(&k10); |
1580 |
GMP_INTS_mpz_init(&trash); |
1581 |
|
1582 |
conv_str = GMP_INTS_malloc(sizeof(char) * (mant_bdp_len + mant_adp_len + 1)); |
1583 |
|
1584 |
sidx=0; |
1585 |
|
1586 |
for (si=mant_bdp; si<(mant_bdp+mant_bdp_len); si++) |
1587 |
{ |
1588 |
conv_str[sidx] = s[si]; |
1589 |
sidx++; |
1590 |
} |
1591 |
for (si=mant_adp; si<(mant_adp+mant_adp_len); si++) |
1592 |
{ |
1593 |
conv_str[sidx] = s[si]; |
1594 |
sidx++; |
1595 |
} |
1596 |
conv_str[sidx] = 0; |
1597 |
|
1598 |
assert(sidx == (mant_bdp_len + mant_adp_len)); |
1599 |
|
1600 |
GMP_INTS_mpz_set_simple_char_str(z, conv_str); |
1601 |
|
1602 |
GMP_INTS_mpz_set_ui(&k10, 10); |
1603 |
|
1604 |
if (exponent_val > 0) |
1605 |
GMP_INTS_mpz_pow_ui(&power_of_ten, &k10, exponent_val-mant_adp_len); |
1606 |
else |
1607 |
GMP_INTS_mpz_pow_ui(&power_of_ten, &k10, -exponent_val); |
1608 |
|
1609 |
if (exponent_val >= 0) |
1610 |
{ |
1611 |
GMP_INTS_mpz_mul(z, z, &power_of_ten); |
1612 |
} |
1613 |
else |
1614 |
{ |
1615 |
GMP_INTS_mpz_tdiv_qr (&k10, |
1616 |
&trash, |
1617 |
z, |
1618 |
&power_of_ten); |
1619 |
GMP_INTS_mpz_copy(z, &k10); |
1620 |
} |
1621 |
|
1622 |
//If the argument had a minus sign, invert. |
1623 |
if (mant_sign == '-') |
1624 |
z->size = -z->size; |
1625 |
|
1626 |
GMP_INTS_free(conv_str); |
1627 |
|
1628 |
GMP_INTS_mpz_clear(&trash); |
1629 |
GMP_INTS_mpz_clear(&k10); |
1630 |
GMP_INTS_mpz_clear(&power_of_ten); |
1631 |
|
1632 |
//Finally, if the arbitrary integer has overflowed, this is |
1633 |
//a parse failure. Must declare as such. |
1634 |
if (z->flags) |
1635 |
*failure = 1; |
1636 |
} |
1637 |
} |
1638 |
else |
1639 |
{ |
1640 |
*failure = 1; |
1641 |
return; |
1642 |
} |
1643 |
} |
1644 |
|
1645 |
|
1646 |
void GMP_INTS_mpz_set_general_int(GMP_INTS_mpz_struct *z, |
1647 |
int *failure, |
1648 |
const char *s) |
1649 |
{ |
1650 |
//Eyeball the input parameters. |
1651 |
assert(z != NULL); |
1652 |
assert(z->n_allocd > 0); |
1653 |
assert(z->limbs != NULL); |
1654 |
assert(failure != NULL); |
1655 |
assert(s != NULL); |
1656 |
|
1657 |
//Try to parse it as a simple integer. |
1658 |
if (BSTRFUNC_is_sint_wo_commas(s)) |
1659 |
{ |
1660 |
GMP_INTS_mpz_set_simple_char_str(z, s); |
1661 |
*failure = 0; |
1662 |
return; |
1663 |
} |
1664 |
//If that didn't work, try to parse it as a simple |
1665 |
//integer with commas. |
1666 |
else if (BSTRFUNC_is_sint_w_commas(s)) |
1667 |
{ |
1668 |
GMP_INTS_mpz_set_simple_char_str(z, s); |
1669 |
*failure = 0; |
1670 |
return; |
1671 |
} |
1672 |
//If neither of those worked, try to parse it as |
1673 |
//something containing scientific notation. |
1674 |
else |
1675 |
{ |
1676 |
GMP_INTS_mpz_set_sci_not_num(z, failure, s); |
1677 |
|
1678 |
if (!*failure) |
1679 |
{ |
1680 |
//We were able to parse it that way. |
1681 |
//Everything is set up, just return. |
1682 |
return; |
1683 |
} |
1684 |
else |
1685 |
{ |
1686 |
//We're out of options. All parsing failed. |
1687 |
GMP_INTS_mpz_set_ui(z, 0); |
1688 |
*failure = 1; |
1689 |
return; |
1690 |
} |
1691 |
} |
1692 |
} |
1693 |
|
1694 |
|
1695 |
void GMP_INTS_mpz_parse_into_uint32(unsigned *result, |
1696 |
int *failure, |
1697 |
char *s) |
1698 |
{ |
1699 |
GMP_INTS_mpz_struct arb_int; |
1700 |
|
1701 |
//Eyeball the input parameters. |
1702 |
assert(result != NULL); |
1703 |
assert(failure != NULL); |
1704 |
assert(s != NULL); |
1705 |
|
1706 |
//Allocate space for the one arbitrary integer we need. |
1707 |
GMP_INTS_mpz_init(&arb_int); |
1708 |
|
1709 |
//Try to parse the string into an arbitrary length integer |
1710 |
//using all methods known to man. |
1711 |
GMP_INTS_mpz_set_general_int(&arb_int, failure, s); |
1712 |
|
1713 |
//If the parse failed, we must declare failure and return |
1714 |
//0. |
1715 |
if (*failure) |
1716 |
{ |
1717 |
*result = 0; |
1718 |
*failure = 1; |
1719 |
} |
1720 |
else |
1721 |
{ |
1722 |
//We might have success, but it might be negative or |
1723 |
//too big. |
1724 |
if (arb_int.size == 1) |
1725 |
{ |
1726 |
*result = arb_int.limbs[0]; |
1727 |
*failure = 0; |
1728 |
} |
1729 |
else if (arb_int.size == 0) |
1730 |
{ |
1731 |
*result = 0; |
1732 |
*failure = 0; |
1733 |
} |
1734 |
else |
1735 |
{ |
1736 |
*result = 0; |
1737 |
*failure = 1; |
1738 |
} |
1739 |
} |
1740 |
|
1741 |
//Deallocate the arbitrary integer. |
1742 |
GMP_INTS_mpz_clear(&arb_int); |
1743 |
} |
1744 |
|
1745 |
|
1746 |
void GMP_INTS_mpz_swap(GMP_INTS_mpz_struct *a, |
1747 |
GMP_INTS_mpz_struct *b) |
1748 |
{ |
1749 |
GMP_INTS_mpz_struct temp; |
1750 |
|
1751 |
//Eyeball the input parameters. |
1752 |
assert(a != NULL); |
1753 |
assert(a->n_allocd > 0); |
1754 |
assert(a->limbs != NULL); |
1755 |
assert(b != NULL); |
1756 |
assert(b->n_allocd > 0); |
1757 |
assert(b->limbs != NULL); |
1758 |
|
1759 |
//Make the swap via memory copy. |
1760 |
memcpy(&temp, a, sizeof(GMP_INTS_mpz_struct)); |
1761 |
memcpy(a, b, sizeof(GMP_INTS_mpz_struct)); |
1762 |
memcpy(b, &temp, sizeof(GMP_INTS_mpz_struct)); |
1763 |
} |
1764 |
|
1765 |
|
1766 |
/******************************************************************/ |
1767 |
/*** PUBLIC ARITHMETIC FUNCTIONS *******************************/ |
1768 |
/******************************************************************/ |
1769 |
|
1770 |
//07/15/01: Unit test and visual inspection passed. |
1771 |
void GMP_INTS_mpz_add ( GMP_INTS_mpz_struct *w, |
1772 |
const GMP_INTS_mpz_struct *u, |
1773 |
const GMP_INTS_mpz_struct *v) |
1774 |
{ |
1775 |
GMP_INTS_limb_srcptr up, vp; |
1776 |
GMP_INTS_limb_ptr wp; |
1777 |
GMP_INTS_size_t usize, vsize, wsize; |
1778 |
GMP_INTS_size_t abs_usize; |
1779 |
GMP_INTS_size_t abs_vsize; |
1780 |
|
1781 |
//Look at the input parameters carefully. |
1782 |
assert(w != NULL); |
1783 |
assert(u != NULL); |
1784 |
assert(v != NULL); |
1785 |
assert(w->n_allocd > 0); |
1786 |
assert(u->n_allocd > 0); |
1787 |
assert(v->n_allocd > 0); |
1788 |
assert(w->limbs != NULL); |
1789 |
assert(u->limbs != NULL); |
1790 |
assert(v->limbs != NULL); |
1791 |
|
1792 |
//Handle the case of a tainted result. If either of the |
1793 |
//two inputs are either direct overflows or tainted by |
1794 |
//an overflow, mark the result tainted and do not perform |
1795 |
//any arithmetic operation. |
1796 |
{ |
1797 |
int taint; |
1798 |
|
1799 |
taint = GMP_INTS_two_op_flags_map(u->flags, v->flags); |
1800 |
|
1801 |
w->flags = 0; |
1802 |
//"w" starts off with a clean slate. Must do this |
1803 |
//after taint calculation in case locations of u or v |
1804 |
//are the same as w. |
1805 |
if (taint) |
1806 |
{ |
1807 |
w->flags = taint; |
1808 |
return; |
1809 |
} |
1810 |
} |
1811 |
|
1812 |
usize = u->size; |
1813 |
vsize = v->size; |
1814 |
abs_usize = GMP_INTS_abs_of_size_t(usize); |
1815 |
abs_vsize = GMP_INTS_abs_of_size_t(vsize); |
1816 |
|
1817 |
//Arrange things so that U has at least as many |
1818 |
//limbs as V, i.e. limbs(U) >= limbs(V); |
1819 |
if (abs_usize < abs_vsize) |
1820 |
{ |
1821 |
const GMP_INTS_mpz_struct *tmp_ptr; |
1822 |
GMP_INTS_size_t tmp_size; |
1823 |
|
1824 |
//Swap U and V. This does no harm, because we are |
1825 |
//manipulating only local variables. This does not |
1826 |
//affect the caller. |
1827 |
tmp_ptr = u; |
1828 |
u = v; |
1829 |
v = tmp_ptr; |
1830 |
tmp_size = usize; |
1831 |
usize = vsize; |
1832 |
vsize = tmp_size; |
1833 |
tmp_size = abs_usize; |
1834 |
abs_usize = abs_vsize; |
1835 |
abs_vsize = tmp_size; |
1836 |
} |
1837 |
|
1838 |
/* True: ABS_USIZE >= ABS_VSIZE. */ |
1839 |
|
1840 |
/* If not space for w (and possible carry), increase space. */ |
1841 |
wsize = abs_usize + 1; |
1842 |
if (w->n_allocd < wsize) |
1843 |
GMP_INTS_mpz_realloc(w, wsize); |
1844 |
|
1845 |
//These pointers must be obtained after realloc. At this point, |
1846 |
//u or v may be the same as w. |
1847 |
up = u->limbs; |
1848 |
vp = v->limbs; |
1849 |
wp = w->limbs; |
1850 |
|
1851 |
if ((usize ^ vsize) < 0) |
1852 |
{ |
1853 |
//U and V have different sign. Need to compare them to determine |
1854 |
//which operand to subtract from which. |
1855 |
|
1856 |
//This test is right since ABS_USIZE >= ABS_VSIZE. |
1857 |
//If the equality case is ruled out, then U has more limbs |
1858 |
//than V, which means that it is bigger in magnitude. |
1859 |
if (abs_usize != abs_vsize) |
1860 |
{ |
1861 |
GMP_INTS_mpn_sub (wp, up, abs_usize, vp, abs_vsize); |
1862 |
wsize = abs_usize; |
1863 |
|
1864 |
//Normalize the result. This was formerly a macro. |
1865 |
//To normalize in this context means to trim the size |
1866 |
//down to eliminate any leading zero limbs that came |
1867 |
//about because the size of the result of an operation |
1868 |
//was overestimated. |
1869 |
GMP_INTS_mpn_normalize(wp, &wsize); |
1870 |
|
1871 |
if (usize < 0) |
1872 |
wsize = -wsize; |
1873 |
} |
1874 |
else if (GMP_INTS_mpn_cmp (up, vp, abs_usize) < 0) |
1875 |
{ |
1876 |
GMP_INTS_mpn_sub_n (wp, vp, up, abs_usize); |
1877 |
wsize = abs_usize; |
1878 |
GMP_INTS_mpn_normalize(wp, &wsize); |
1879 |
if (usize >= 0) |
1880 |
wsize = -wsize; |
1881 |
} |
1882 |
else |
1883 |
{ |
1884 |
GMP_INTS_mpn_sub_n (wp, up, vp, abs_usize); |
1885 |
wsize = abs_usize; |
1886 |
GMP_INTS_mpn_normalize(wp, &wsize); |
1887 |
if (usize < 0) |
1888 |
wsize = -wsize; |
1889 |
} |
1890 |
} |
1891 |
else |
1892 |
{ |
1893 |
/* U and V have same sign. Add them. */ |
1894 |
GMP_INTS_limb_t cy_limb |
1895 |
= GMP_INTS_mpn_add (wp, up, abs_usize, vp, abs_vsize); |
1896 |
wp[abs_usize] = cy_limb; |
1897 |
wsize = abs_usize + cy_limb; |
1898 |
if (usize < 0) |
1899 |
wsize = -wsize; |
1900 |
} |
1901 |
|
1902 |
w->size = wsize; |
1903 |
|
1904 |
//Handle the case of an overflowed result. If the result |
1905 |
//of the addition is too big or too small, mark it as |
1906 |
//overflowed. |
1907 |
if (w->size > GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
1908 |
{ |
1909 |
w->flags = GMP_INTS_EF_INTOVF_POS; |
1910 |
} |
1911 |
else if (w->size < -GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
1912 |
{ |
1913 |
w->flags = GMP_INTS_EF_INTOVF_NEG; |
1914 |
} |
1915 |
} |
1916 |
|
1917 |
|
1918 |
//07/15/01: Unit testing skipped because of recursive |
1919 |
//nature. Visual inspection OK. |
1920 |
void GMP_INTS_mpz_add_ui ( GMP_INTS_mpz_struct *w, |
1921 |
const GMP_INTS_mpz_struct *u, |
1922 |
unsigned long int v) |
1923 |
{ |
1924 |
//The GNU MP version of this is quite efficient, and this |
1925 |
//makes sense since it is a common operation. However, |
1926 |
//for simplicity just define this recursively in terms |
1927 |
//of the ADD function. This can always be made quicker |
1928 |
//later (by changing back to the GNU MP version). |
1929 |
GMP_INTS_mpz_struct temp; |
1930 |
|
1931 |
//Eyeball the inputs carefully. |
1932 |
assert(w != NULL); |
1933 |
assert(w->n_allocd > 0); |
1934 |
assert(w->limbs != NULL); |
1935 |
assert(u != NULL); |
1936 |
assert(u->n_allocd > 0); |
1937 |
assert(u->limbs != NULL); |
1938 |
|
1939 |
//Create a temporary integer. |
1940 |
GMP_INTS_mpz_init(&temp); |
1941 |
|
1942 |
//Set the temporary integer to the value of the input |
1943 |
//argument. |
1944 |
GMP_INTS_mpz_set_ui(&temp, v); |
1945 |
|
1946 |
//Do the actual addition. This recursive definition |
1947 |
//is inherently wasteful, but I'm after clarity, not |
1948 |
//warp speed. |
1949 |
GMP_INTS_mpz_add(w, u, &temp); |
1950 |
|
1951 |
//Destroy the temporary integer (this will reclaim the |
1952 |
//memory). |
1953 |
GMP_INTS_mpz_clear(&temp); |
1954 |
} |
1955 |
|
1956 |
|
1957 |
//07/15/01: Visual inspection passed. Not unit tested |
1958 |
//because of symmetry with GMP_INTS_mpz_add(). |
1959 |
void GMP_INTS_mpz_sub ( GMP_INTS_mpz_struct *w, |
1960 |
const GMP_INTS_mpz_struct *u, |
1961 |
const GMP_INTS_mpz_struct *v) |
1962 |
{ |
1963 |
GMP_INTS_limb_srcptr up, vp; |
1964 |
GMP_INTS_limb_ptr wp; |
1965 |
GMP_INTS_size_t usize, vsize, wsize; |
1966 |
GMP_INTS_size_t abs_usize; |
1967 |
GMP_INTS_size_t abs_vsize; |
1968 |
|
1969 |
//Look at the input parameters carefully. |
1970 |
assert(w != NULL); |
1971 |
assert(u != NULL); |
1972 |
assert(v != NULL); |
1973 |
assert(w->n_allocd > 0); |
1974 |
assert(u->n_allocd > 0); |
1975 |
assert(v->n_allocd > 0); |
1976 |
assert(w->limbs != NULL); |
1977 |
assert(u->limbs != NULL); |
1978 |
assert(v->limbs != NULL); |
1979 |
|
1980 |
//Handle the case of a tainted result. If either of the |
1981 |
//two inputs are either direct overflows or tainted by |
1982 |
//an overflow, mark the result tainted and do not perform |
1983 |
//any arithmetic operation. |
1984 |
{ |
1985 |
int taint; |
1986 |
|
1987 |
taint = GMP_INTS_two_op_flags_map(u->flags, v->flags); |
1988 |
|
1989 |
w->flags = 0; |
1990 |
//"w" starts off with a clean slate. Must do this |
1991 |
//after taint calculation in case locations of u or v |
1992 |
//are the same as w. |
1993 |
if (taint) |
1994 |
{ |
1995 |
w->flags = taint; |
1996 |
return; |
1997 |
} |
1998 |
} |
1999 |
|
2000 |
usize = u->size; |
2001 |
vsize = -(v->size); /* The "-" makes the difference from mpz_add */ |
2002 |
abs_usize = GMP_INTS_abs_of_size_t(usize); |
2003 |
abs_vsize = GMP_INTS_abs_of_size_t(vsize); |
2004 |
|
2005 |
if (abs_usize < abs_vsize) |
2006 |
{ |
2007 |
const GMP_INTS_mpz_struct *tmp_ptr; |
2008 |
GMP_INTS_size_t tmp_size; |
2009 |
|
2010 |
//Swap U and V. This does no harm, because we are |
2011 |
//manipulating only local variables. This does not |
2012 |
//affect the caller. |
2013 |
tmp_ptr = u; |
2014 |
u = v; |
2015 |
v = tmp_ptr; |
2016 |
tmp_size = usize; |
2017 |
usize = vsize; |
2018 |
vsize = tmp_size; |
2019 |
tmp_size = abs_usize; |
2020 |
abs_usize = abs_vsize; |
2021 |
abs_vsize = tmp_size; |
2022 |
} |
2023 |
|
2024 |
/* True: ABS_USIZE >= ABS_VSIZE. */ |
2025 |
|
2026 |
/* If not space for w (and possible carry), increase space. */ |
2027 |
wsize = abs_usize + 1; |
2028 |
if (w->n_allocd < wsize) |
2029 |
GMP_INTS_mpz_realloc (w, wsize); |
2030 |
|
2031 |
/* These must be after realloc (u or v may be the same as w). */ |
2032 |
up = u->limbs; |
2033 |
vp = v->limbs; |
2034 |
wp = w->limbs; |
2035 |
|
2036 |
if ((usize ^ vsize) < 0) |
2037 |
{ |
2038 |
//U and V have different sign. Need to compare them to determine |
2039 |
//which operand to subtract from which. |
2040 |
|
2041 |
//This test is right since ABS_USIZE >= ABS_VSIZE. |
2042 |
if (abs_usize != abs_vsize) |
2043 |
{ |
2044 |
GMP_INTS_mpn_sub (wp, up, abs_usize, vp, abs_vsize); |
2045 |
wsize = abs_usize; |
2046 |
GMP_INTS_mpn_normalize(wp, &wsize); |
2047 |
if (usize < 0) |
2048 |
wsize = -wsize; |
2049 |
} |
2050 |
else if (GMP_INTS_mpn_cmp (up, vp, abs_usize) < 0) |
2051 |
{ |
2052 |
GMP_INTS_mpn_sub_n (wp, vp, up, abs_usize); |
2053 |
wsize = abs_usize; |
2054 |
GMP_INTS_mpn_normalize(wp, &wsize); |
2055 |
if (usize >= 0) |
2056 |
wsize = -wsize; |
2057 |
} |
2058 |
else |
2059 |
{ |
2060 |
GMP_INTS_mpn_sub_n (wp, up, vp, abs_usize); |
2061 |
wsize = abs_usize; |
2062 |
GMP_INTS_mpn_normalize (wp, &wsize); |
2063 |
if (usize < 0) |
2064 |
wsize = -wsize; |
2065 |
} |
2066 |
} |
2067 |
else |
2068 |
{ |
2069 |
/* U and V have same sign. Add them. */ |
2070 |
GMP_INTS_limb_t cy_limb |
2071 |
= GMP_INTS_mpn_add (wp, up, abs_usize, vp, abs_vsize); |
2072 |
wp[abs_usize] = cy_limb; |
2073 |
wsize = abs_usize + cy_limb; |
2074 |
if (usize < 0) |
2075 |
wsize = -wsize; |
2076 |
} |
2077 |
|
2078 |
w->size = wsize; |
2079 |
|
2080 |
//Handle the case of an overflowed result. If the result |
2081 |
//of the addition is too big or too small, mark it as |
2082 |
//overflowed. |
2083 |
if (w->size > GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
2084 |
{ |
2085 |
w->flags = GMP_INTS_EF_INTOVF_POS; |
2086 |
} |
2087 |
else if (w->size < -GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
2088 |
{ |
2089 |
w->flags = GMP_INTS_EF_INTOVF_NEG; |
2090 |
} |
2091 |
} |
2092 |
|
2093 |
|
2094 |
//07/15/01: Unit testing skipped because of recursive |
2095 |
//nature. Visual inspection OK. |
2096 |
void GMP_INTS_mpz_sub_ui ( GMP_INTS_mpz_struct *w, |
2097 |
const GMP_INTS_mpz_struct *u, |
2098 |
unsigned long int v) |
2099 |
{ |
2100 |
//The GNU MP version of this is quite efficient, and this |
2101 |
//makes sense since it is a common operation. However, |
2102 |
//for simplicity just define this recursively in terms |
2103 |
//of the SUB function. This can always be made quicker |
2104 |
//later (by changing back to the GNU MP version). |
2105 |
GMP_INTS_mpz_struct temp; |
2106 |
|
2107 |
//Eyeball the inputs carefully. |
2108 |
assert(w != NULL); |
2109 |
assert(w->n_allocd > 0); |
2110 |
assert(w->limbs != NULL); |
2111 |
assert(u != NULL); |
2112 |
assert(u->n_allocd > 0); |
2113 |
assert(u->limbs != NULL); |
2114 |
|
2115 |
//Create a temporary integer. |
2116 |
GMP_INTS_mpz_init(&temp); |
2117 |
|
2118 |
//Set the temporary integer to the value of the input |
2119 |
//argument. |
2120 |
GMP_INTS_mpz_set_ui(&temp, v); |
2121 |
|
2122 |
//Do the actual subtraction. This recursive definition |
2123 |
//is inherently wasteful, but I'm after clarity, not |
2124 |
//warp speed. |
2125 |
GMP_INTS_mpz_sub(w, u, &temp); |
2126 |
|
2127 |
//Destroy the temporary integer (this will reclaim the |
2128 |
//memory). |
2129 |
GMP_INTS_mpz_clear(&temp); |
2130 |
} |
2131 |
|
2132 |
|
2133 |
void GMP_INTS_mpz_mul ( GMP_INTS_mpz_struct *w, |
2134 |
const GMP_INTS_mpz_struct *u, |
2135 |
const GMP_INTS_mpz_struct *v) |
2136 |
{ |
2137 |
GMP_INTS_size_t usize = u->size; |
2138 |
GMP_INTS_size_t vsize = v->size; |
2139 |
GMP_INTS_size_t wsize; |
2140 |
GMP_INTS_size_t sign_product; |
2141 |
GMP_INTS_limb_ptr up, vp; |
2142 |
GMP_INTS_limb_ptr wp; |
2143 |
GMP_INTS_limb_ptr free_me = NULL; |
2144 |
GMP_INTS_size_t free_me_size; |
2145 |
GMP_INTS_limb_t cy_limb; |
2146 |
|
2147 |
//Eyeball the inputs. |
2148 |
assert(w != NULL); |
2149 |
assert(w->n_allocd > 0); |
2150 |
assert(w->limbs != NULL); |
2151 |
assert(u != NULL); |
2152 |
assert(u->n_allocd > 0); |
2153 |
assert(u->limbs != NULL); |
2154 |
assert(v != NULL); |
2155 |
assert(v->n_allocd > 0); |
2156 |
assert(v->limbs != NULL); |
2157 |
|
2158 |
//Handle the case of a tainted result. If either of the |
2159 |
//two inputs are either direct overflows or tainted by |
2160 |
//an overflow, mark the result tainted and do not perform |
2161 |
//any arithmetic operation. |
2162 |
{ |
2163 |
int taint; |
2164 |
|
2165 |
taint = GMP_INTS_two_op_flags_map(u->flags, v->flags); |
2166 |
|
2167 |
w->flags = 0; |
2168 |
//"w" starts off with a clean slate. Must do this |
2169 |
//after taint calculation in case locations of u or v |
2170 |
//are the same as w. |
2171 |
if (taint) |
2172 |
{ |
2173 |
w->flags = taint; |
2174 |
return; |
2175 |
} |
2176 |
} |
2177 |
|
2178 |
sign_product = usize ^ vsize; |
2179 |
usize = GMP_INTS_abs_of_size_t(usize); |
2180 |
vsize = GMP_INTS_abs_of_size_t(vsize); |
2181 |
|
2182 |
//Handle the case of a certain result overflow (why do the math when |
2183 |
//the result is certain?). In general, when multiplying two inputs |
2184 |
//whose sizes are M limbs and N limbs, the size of the result will be |
2185 |
//either M+N or M+N-1 limbs. If M+N-1 > MAX_ALLOWED, then can declare |
2186 |
//an early overflow. |
2187 |
if ((usize + vsize - 1) > GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
2188 |
{ |
2189 |
if (sign_product < 0) |
2190 |
w->flags = GMP_INTS_EF_INTOVF_NEG; |
2191 |
else |
2192 |
w->flags = GMP_INTS_EF_INTOVF_POS; |
2193 |
|
2194 |
return; |
2195 |
} |
2196 |
|
2197 |
|
2198 |
if (usize < vsize) |
2199 |
{ |
2200 |
//Temporary variables just for the swap. |
2201 |
const GMP_INTS_mpz_struct *tmp_ptr; |
2202 |
GMP_INTS_size_t tmp_size; |
2203 |
|
2204 |
//Swap U and V. |
2205 |
tmp_ptr = u; |
2206 |
u = v; |
2207 |
v = tmp_ptr; |
2208 |
tmp_size = usize; |
2209 |
usize = vsize; |
2210 |
vsize = tmp_size; |
2211 |
} |
2212 |
|
2213 |
//Grab pointers to the arrays of limbs. |
2214 |
up = u->limbs; |
2215 |
vp = v->limbs; |
2216 |
wp = w->limbs; |
2217 |
|
2218 |
/* Ensure W has space enough to store the result. */ |
2219 |
wsize = usize + vsize; |
2220 |
if (w->n_allocd < wsize) |
2221 |
{ |
2222 |
if (wp == up || wp == vp) |
2223 |
{ |
2224 |
free_me = wp; |
2225 |
free_me_size = w->n_allocd; |
2226 |
} |
2227 |
else |
2228 |
{ |
2229 |
GMP_INTS_free_w_size (wp, w->n_allocd * sizeof(GMP_INTS_limb_t)); |
2230 |
} |
2231 |
|
2232 |
w->n_allocd = wsize; |
2233 |
wp = (GMP_INTS_limb_ptr) |
2234 |
GMP_INTS_malloc (wsize * sizeof(GMP_INTS_limb_t)); |
2235 |
w->limbs = wp; |
2236 |
} |
2237 |
else |
2238 |
{ |
2239 |
/* Make U and V not overlap with W. */ |
2240 |
if (wp == up) |
2241 |
{ |
2242 |
/* W and U are identical. Allocate temporary space for U. */ |
2243 |
up = (GMP_INTS_limb_ptr) |
2244 |
_alloca(usize * sizeof(GMP_INTS_limb_t)); |
2245 |
/* Is V identical too? Keep it identical with U. */ |
2246 |
if (wp == vp) |
2247 |
vp = up; |
2248 |
/* Copy to the temporary space. */ |
2249 |
GMP_INTS_mpn_copy_limbs(up, wp, usize); |
2250 |
} |
2251 |
else if (wp == vp) |
2252 |
{ |
2253 |
/* W and V are identical. Allocate temporary space for V. */ |
2254 |
vp = (GMP_INTS_limb_ptr) |
2255 |
_alloca(vsize * sizeof(GMP_INTS_limb_t)); |
2256 |
/* Copy to the temporary space. */ |
2257 |
GMP_INTS_mpn_copy_limbs(vp, wp, vsize); |
2258 |
} |
2259 |
} |
2260 |
|
2261 |
if (vsize == 0) |
2262 |
{ |
2263 |
wsize = 0; |
2264 |
} |
2265 |
else |
2266 |
{ |
2267 |
cy_limb = GMP_INTS_mpn_mul (wp, up, usize, vp, vsize); |
2268 |
wsize = usize + vsize; |
2269 |
wsize -= cy_limb == 0; |
2270 |
} |
2271 |
|
2272 |
w->size = sign_product < 0 ? -wsize : wsize; |
2273 |
|
2274 |
if (free_me != NULL) |
2275 |
GMP_INTS_free_w_size (free_me, free_me_size * sizeof(GMP_INTS_limb_t)); |
2276 |
|
2277 |
//Final check for overflow. |
2278 |
if (w->size > GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
2279 |
w->flags = GMP_INTS_EF_INTOVF_POS; |
2280 |
else if (w->size < -GMP_INTS_MAXIMUM_LIMBS_PER_INT) |
2281 |
w->flags = GMP_INTS_EF_INTOVF_NEG; |
2282 |
} |
2283 |
|
2284 |
|
2285 |
//07/15/01: Unit testing skipped because of recursive |
2286 |
//nature. Visual inspection OK. |
2287 |
void GMP_INTS_mpz_mul_si ( GMP_INTS_mpz_struct *w, |
2288 |
const GMP_INTS_mpz_struct *u, |
2289 |
long int v) |
2290 |
{ |
2291 |
GMP_INTS_mpz_struct temp; |
2292 |
|
2293 |
//Eyeball the inputs carefully. |
2294 |
assert(w != NULL); |
2295 |
assert(w->n_allocd > 0); |
2296 |
assert(w->limbs != NULL); |
2297 |
assert(u != NULL); |
2298 |
assert(u->n_allocd > 0); |
2299 |
assert(u->limbs != NULL); |
2300 |
|
2301 |
//Create a temporary integer. |
2302 |
GMP_INTS_mpz_init(&temp); |
2303 |
|
2304 |
//Set the temporary integer to the value of the input |
2305 |
//argument. |
2306 |
GMP_INTS_mpz_set_si(&temp, v); |
2307 |
|
2308 |
//Do the actual multiplication. This recursive definition |
2309 |
//is inherently wasteful, but I'm after clarity, not |
2310 |
//warp speed. |
2311 |
GMP_INTS_mpz_mul(w, u, &temp); |
2312 |
|
2313 |
//Destroy the temporary integer (this will reclaim the |
2314 |
//memory). |
2315 |
GMP_INTS_mpz_clear(&temp); |
2316 |
} |
2317 |
|
2318 |
|
2319 |
//07/15/01: Unit testing skipped because of recursive |
2320 |
//nature. Visual inspection OK. |
2321 |
void GMP_INTS_mpz_mul_ui ( GMP_INTS_mpz_struct *w, |
2322 |
const GMP_INTS_mpz_struct *u, |
2323 |
unsigned long int v) |
2324 |
{ |
2325 |
GMP_INTS_mpz_struct temp; |
2326 |
|
2327 |
//Eyeball the inputs carefully. |
2328 |
assert(w != NULL); |
2329 |
assert(w->size >= 0); |
2330 |
assert(w->limbs != NULL); |
2331 |
assert(u != NULL); |
2332 |
assert(u->size >= 0); |
2333 |
assert(u->limbs != NULL); |
2334 |
|
2335 |
//Create a temporary integer. |
2336 |
GMP_INTS_mpz_init(&temp); |
2337 |
|
2338 |
//Set the temporary integer to the value of the input |
2339 |
//argument. |
2340 |
GMP_INTS_mpz_set_ui(&temp, v); |
2341 |
|
2342 |
//Do the actual multiplication. This recursive definition |
2343 |
//is inherently wasteful, but I'm after clarity, not |
2344 |
//warp speed. |
2345 |
GMP_INTS_mpz_mul(w, u, &temp); |
2346 |
|
2347 |
//Destroy the temporary integer (this will reclaim the |
2348 |
//memory). |
2349 |
GMP_INTS_mpz_clear(&temp); |
2350 |
} |
2351 |
|
2352 |
|
2353 |
void GMP_INTS_mpz_tdiv_qr ( GMP_INTS_mpz_struct *quot, |
2354 |
GMP_INTS_mpz_struct *rem, |
2355 |
const GMP_INTS_mpz_struct *num, |
2356 |
const GMP_INTS_mpz_struct *den) |
2357 |
{ |
2358 |
GMP_INTS_size_t abs_num_size, |
2359 |
abs_den_size, |
2360 |
quotient_sign, |
2361 |
remainder_sign, |
2362 |
numerator_bitsize, |
2363 |
denominator_bitsize, |
2364 |
division_loop_count, |
2365 |
division_loop_count_mod_32, |
2366 |
division_loop_count_div_32, |
2367 |
division_counter, |
2368 |
i; |
2369 |
GMP_INTS_limb_t temp_limb; |
2370 |
GMP_INTS_limb_ptr trial_divisor; |
2371 |
|
2372 |
//Eyeball the input parameters. |
2373 |
assert(quot != NULL); |
2374 |
assert(quot->n_allocd > 0); |
2375 |
assert(quot->limbs != NULL); |
2376 |
assert(rem != NULL); |
2377 |
assert(rem->n_allocd > 0); |
2378 |
assert(rem->limbs != NULL); |
2379 |
assert(num != NULL); |
2380 |
assert(num->n_allocd > 0); |
2381 |
assert(num->limbs != NULL); |
2382 |
assert(den != NULL); |
2383 |
assert(den->n_allocd > 0); |
2384 |
assert(den->limbs != NULL); |
2385 |
|
2386 |
//We require for this function that the numerator, denominator, quotient, and |
2387 |
//remainder all be distinct. |
2388 |
assert(quot != rem); |
2389 |
assert(quot != num); |
2390 |
assert(quot != den); |
2391 |
assert(rem != num); |
2392 |
assert(rem != den); |
2393 |
assert(num != den); |
2394 |
|
2395 |
//The GNU code was probably very efficient, but exceeded |
2396 |
//my abilities to analyze. This is the classic |
2397 |
//division algorithm. |
2398 |
|
2399 |
//First, start off with the quotient and remainder having |
2400 |
//no error flags set. These will be set if appropriate. |
2401 |
quot->flags = 0; |
2402 |
rem->flags = 0; |
2403 |
|
2404 |
//First, handle tainted inputs. If the numerator or denominator |
2405 |
//are bad or tainted, the quotient and remainder get tainted |
2406 |
//automatically. |
2407 |
{ |
2408 |
int taint; |
2409 |
|
2410 |
taint = GMP_INTS_two_op_flags_map(num->flags, den->flags); |
2411 |
|
2412 |
if (taint) |
2413 |
{ |
2414 |
quot->flags = taint; |
2415 |
rem->flags = taint; |
2416 |
return; |
2417 |
} |
2418 |
} |
2419 |
|
2420 |
//The second possible cause for taint is if the divisor is |
2421 |
//zero. This will get both the value of positive overflow. |
2422 |
if (den->size == 0) |
2423 |
{ |
2424 |
quot->flags = GMP_INTS_EF_INTOVF_POS; |
2425 |
rem->flags = GMP_INTS_EF_INTOVF_POS; |
2426 |
return; |
2427 |
} |
2428 |
|
2429 |
//Handle the special case of a numerator of zero. If the numerator |
2430 |
//is zero, the quotient and remainder are zero automatically. |
2431 |
if (num->size == 0) |
2432 |
{ |
2433 |
GMP_INTS_mpz_set_ui(quot, 0); |
2434 |
GMP_INTS_mpz_set_ui(rem, 0); |
2435 |
return; |
2436 |
} |
2437 |
|
2438 |
//Generally, nothing else can go wrong as far as taint. The |
2439 |
//value of the quotient is confined to be no larger than the |
2440 |
//numerator, and the value of the remainder is confined to |
2441 |
//be no larger than denominator-1. So, generally, if the |
2442 |
//inputs are in size bounds, the outputs will be also. |
2443 |
|
2444 |
//Figure out how large in limbs the numerator and denominator actually |
2445 |
//are. |
2446 |
abs_num_size = GMP_INTS_abs_of_size_t(num->size); |
2447 |
abs_den_size = GMP_INTS_abs_of_size_t(den->size); |
2448 |
|
2449 |
//Figure out the sign of things. We want the following relationship |
2450 |
//to be true: |
2451 |
// num/den = quot + rem/den. |
2452 |
//The way to achieve this is to assign the sign of the quotient in the traditional |
2453 |
//way, then to assign the remainder to have the same sign as the numerator. |
2454 |
quotient_sign = num->size ^ den->size; |
2455 |
remainder_sign = num->size; |
2456 |
|
2457 |
//The remainder starts off with the absolute value of the numerator, and then |
2458 |
//we subtract from it as part of the division loop. |
2459 |
GMP_INTS_mpz_copy(rem, num); |
2460 |
//We know after the copy that the amount of space allocated in the remainder |
2461 |
//MUST be at least as large as the absolute value of the numerator. So from |
2462 |
//this point forward we use the space. |
2463 |
assert(rem->n_allocd >= abs_num_size); |
2464 |
|
2465 |
//Figure out the number of significant bits in the numerator and denominator. |
2466 |
//This determines the loop count over which we do the shift division loop. |
2467 |
numerator_bitsize = GMP_INTS_BITS_PER_LIMB * abs_num_size; |
2468 |
|
2469 |
i = abs_num_size - 1; |
2470 |
|
2471 |
//We need to be extra careful here. One failure mode is that an integer |
2472 |
//data structure is corrupted and the "size" field reflects limbs |
2473 |
//that are zero. Need to watch that this kind of failure doesn't |
2474 |
//cause memory access errors. |
2475 |
assert(num->limbs[i] != 0); |
2476 |
if (num->limbs[i] == 0) |
2477 |
{ |
2478 |
quot->flags = GMP_INTS_EF_INTOVF_POS; |
2479 |
rem->flags = GMP_INTS_EF_INTOVF_POS; |
2480 |
return; |
2481 |
} |
2482 |
|
2483 |
temp_limb = 0x80000000; |
2484 |
|
2485 |
while (((num->limbs[i] & temp_limb) == 0) && (temp_limb != 0)) |
2486 |
{ |
2487 |
numerator_bitsize--; |
2488 |
temp_limb >>= 1; |
2489 |
} |
2490 |
|
2491 |
denominator_bitsize = GMP_INTS_BITS_PER_LIMB * abs_den_size; |
2492 |
|
2493 |
i = abs_den_size - 1; |
2494 |
|
2495 |
//We need to be extra careful here. One failure mode is that an integer |
2496 |
//data structure is corrupted and the "size" field reflects limbs |
2497 |
//that are zero. Need to watch that this kind of failure doesn't |
2498 |
//cause memory access errors. |
2499 |
assert(den->limbs[i] != 0); |
2500 |
if (den->limbs[i] == 0) |
2501 |
{ |
2502 |
quot->flags = GMP_INTS_EF_INTOVF_POS; |
2503 |
rem->flags = GMP_INTS_EF_INTOVF_POS; |
2504 |
return; |
2505 |
} |
2506 |
|
2507 |
temp_limb = 0x80000000; |
2508 |
|
2509 |
while (((den->limbs[i] & temp_limb) == 0) && (temp_limb != 0)) |
2510 |
{ |
2511 |
denominator_bitsize--; |
2512 |
temp_limb >>= 1; |
2513 |
} |
2514 |
|
2515 |
//The quotient starts off with the value of zero, but we consistently may |
2516 |
//mask 1 into it and shift left. We need to be sure that we have as much |
2517 |
//shift space there as is in the numerator. For this purpose we need to |
2518 |
//prepare a block of clear memory as large as the numerator's. |
2519 |
if (quot->n_allocd < abs_num_size) |
2520 |
{ |
2521 |
GMP_INTS_mpz_realloc(quot, abs_num_size); //Make it big enough. |
2522 |
} |
2523 |
//Now, zero the memory. |
2524 |
for (i=0; i<abs_num_size; i++) |
2525 |
quot->limbs[i] = 0; |
2526 |
|
2527 |
//Determine the division loop count. This is the difference |
2528 |
//in bit sizes between the numerator and denominator. It is |
2529 |
//possible for this number to be negative, which means that the |
2530 |
//main division loop will be executed zero times. This gives the |
2531 |
//right results. |
2532 |
division_loop_count = numerator_bitsize - denominator_bitsize; |
2533 |
|
2534 |
//We need to calculate some important numbers from the division loop |
2535 |
//count. We need to know this number MOD 32 (which tells how far to |
2536 |
//shift the divisor bitwise to line up with the numerator), and we |
2537 |
//also need this number DIV 32 for the limb-wise shift. |
2538 |
division_loop_count_mod_32 = division_loop_count % 32; |
2539 |
division_loop_count_div_32 = division_loop_count / 32; |
2540 |
|
2541 |
//We now need a shift register in which we shift the denominator up |
2542 |
//for repeated comparisons. We should dynamically allocate this to |
2543 |
//be the same size as the numerator. Using _alloca() is OK, as one |
2544 |
//of the unit tests is to be sure that _alloca() will handle integer |
2545 |
//of the maximum allowed size. |
2546 |
trial_divisor = _alloca(abs_num_size * sizeof(GMP_INTS_limb_t)); |
2547 |
|
2548 |
//Our trial divisor needs to start off with the divisor shifted up |
2549 |
//so that the most significant bit is aligned with the numerator. |
2550 |
for (i = 0; i < abs_num_size; i++) |
2551 |
{ |
2552 |
if ((division_loop_count < 0) || (i < division_loop_count_div_32)) |
2553 |
{ |
2554 |
trial_divisor[i] = 0; |
2555 |
} |
2556 |
else |
2557 |
{ |
2558 |
if ((i-division_loop_count_div_32) < abs_den_size) |
2559 |
trial_divisor[i] = den->limbs[i - division_loop_count_div_32]; |
2560 |
else |
2561 |
trial_divisor[i] = 0; |
2562 |
} |
2563 |
} |
2564 |
|
2565 |
//The code above planted the limbs in the right place. Now need to shift bits |
2566 |
//upward by the remaining number. |
2567 |
if ((division_loop_count > 0) && (division_loop_count_mod_32 > 0)) |
2568 |
{ |
2569 |
//There is an existing function we can call to do the left shift. |
2570 |
GMP_INTS_mpn_lshift(trial_divisor, |
2571 |
trial_divisor, |
2572 |
abs_num_size, |
2573 |
division_loop_count_mod_32); |
2574 |
} |
2575 |
|
2576 |
|
2577 |
//Everything is ready to go. Now begin the division loop itself. It is possible |
2578 |
//for the loop to execute zero times, which will happen if the denominator is longer |
2579 |
//in bits than the numerator. In such cases, we can't execute this loop even once |
2580 |
//because the math assumes that the numerator is at least as long as the denominator. |
2581 |
for (division_counter = 0; division_counter < division_loop_count+1; division_counter++) |
2582 |
{ |
2583 |
//Shift the quotient left one bit. |
2584 |
GMP_INTS_mpn_lshift(quot->limbs, |
2585 |
quot->limbs, |
2586 |
abs_num_size, |
2587 |
1); |
2588 |
|
2589 |
//If the remainder is at least as large as the trial divisor, subtract the trial |
2590 |
//divisor from the remainder and mask in the quotient. |
2591 |
if (GMP_INTS_mpn_cmp(rem->limbs, |
2592 |
trial_divisor, |
2593 |
abs_num_size) >= 0) |
2594 |
{ |
2595 |
GMP_INTS_mpn_sub(rem->limbs, |
2596 |
rem->limbs, |
2597 |
abs_num_size, |
2598 |
trial_divisor, |
2599 |
abs_num_size); |
2600 |
quot->limbs[0] |= 1; |
2601 |
} |
2602 |
|
2603 |
//Shift the trial divisor right one bit. |
2604 |
GMP_INTS_mpn_rshift(trial_divisor, |
2605 |
trial_divisor, |
2606 |
abs_num_size, |
2607 |
1); |
2608 |
} //End for each iteration of the division loop. |
2609 |
|
2610 |
//Normalize the quotient and the remainder. The normalization |
2611 |
//process is to bring the sizes down if we have leading |
2612 |
//zeros. |
2613 |
quot->size = abs_num_size; |
2614 |
GMP_INTS_mpn_normalize(quot->limbs, &(quot->size)); |
2615 |
rem->size = abs_num_size; |
2616 |
GMP_INTS_mpn_normalize(rem->limbs, &(rem->size)); |
2617 |
|
2618 |
//Adjust the signs as required. |
2619 |
if (quotient_sign < 0) |
2620 |
quot->size = -(quot->size); |
2621 |
if (remainder_sign < 0) |
2622 |
rem->size = -(rem->size); |
2623 |
} |
2624 |
|
2625 |
|
2626 |
void GMP_INTS_mpz_fac_ui(GMP_INTS_mpz_struct *result, |
2627 |
unsigned long int n) |
2628 |
{ |
2629 |
//Just multiply the numbers in ascending order. The original |
2630 |
//GNU library contained a much more elegant algorithm, but |
2631 |
//this is more direct. |
2632 |
|
2633 |
unsigned long int k; |
2634 |
|
2635 |
GMP_INTS_mpz_set_ui (result, 1L); |
2636 |
|
2637 |
for (k = 2; (k <= n) && !(result->flags); k++) |
2638 |
GMP_INTS_mpz_mul_ui (result, result, k); |
2639 |
} |
2640 |
|
2641 |
|
2642 |
/******************************************************************/ |
2643 |
/*** PUBLIC CONVERSION AND OUTPUT FUNCTIONS ********************/ |
2644 |
/******************************************************************/ |
2645 |
//07/18/01: Visual inspection OK. Function returns |
2646 |
//reasonable values even out to 100,000 digits--seems OK. |
2647 |
int GMP_INTS_mpz_size_in_base_10(const GMP_INTS_mpz_struct *arg) |
2648 |
{ |
2649 |
_int64 n; |
2650 |
|
2651 |
//Eyeball the input parameter. |
2652 |
assert(arg != NULL); |
2653 |
assert(arg->n_allocd > 0); |
2654 |
assert(arg->limbs != NULL); |
2655 |
|
2656 |
//Get the number of limbs occupied by the integer. |
2657 |
//Because even the digit zero takes some space, |
2658 |
//don't accept zero for an answer. |
2659 |
n = GMP_INTS_abs_of_size_t(arg->size); |
2660 |
if (n==0) |
2661 |
n = 1; |
2662 |
|
2663 |
//Convert this to the number of bits. Generously |
2664 |
//ignore any unused leading bits. |
2665 |
n *= 32; |
2666 |
|
2667 |
//Used a slightly high best rational approximation in F_{65535} |
2668 |
//to go from the number of bits to the number of |
2669 |
//digits. The division discards, so bump the result |
2670 |
//up by 1 to compensate for possible truncation. The number |
2671 |
//we are aproximating is ln(2)/ln(10). |
2672 |
n *= 12655; |
2673 |
n /= 42039; |
2674 |
n++; |
2675 |
|
2676 |
//Compensate for possible commas in the result. Again, |
2677 |
//consider truncation. |
2678 |
n *= 4; |
2679 |
n /= 3; |
2680 |
n++; |
2681 |
|
2682 |
//Compensate for the minus sign, the trailing zero, |
2683 |
//cosmic rays striking the computer from the martian |
2684 |
//listening post camoflaged on the moon, and the |
2685 |
//possibility that we might need to put text in the |
2686 |
//string if any flag is set. |
2687 |
n += 100; |
2688 |
|
2689 |
//And that should be a good return value. |
2690 |
return((int) n); |
2691 |
} |
2692 |
|
2693 |
|
2694 |
//07/19/01: Visual inspection and unit test is OK. |
2695 |
void GMP_INTS_mpz_to_string(char *out, |
2696 |
const GMP_INTS_mpz_struct *in) |
2697 |
{ |
2698 |
//Eyeball the input parameters. |
2699 |
assert(out != NULL); |
2700 |
assert(in != NULL); |
2701 |
assert(in->n_allocd > 0); |
2702 |
assert(in->limbs != NULL); |
2703 |
|
2704 |
//If any of the flags are set, stuff in the text. |
2705 |
if (in->flags) |
2706 |
{ |
2707 |
if (in->flags & GMP_INTS_EF_INTOVF_POS) |
2708 |
{ |
2709 |
strcpy(out, GMP_INTS_EF_INTOVF_POS_STRING); |
2710 |
} |
2711 |
else if (in->flags & GMP_INTS_EF_INTOVF_NEG) |
2712 |
{ |
2713 |
strcpy(out, GMP_INTS_EF_INTOVF_NEG_STRING); |
2714 |
} |
2715 |
else if (in->flags & GMP_INTS_EF_INTOVF_TAINT_POS) |
2716 |
{ |
2717 |
strcpy(out, GMP_INTS_EF_INTOVF_TAINT_POS_STRING); |
2718 |
} |
2719 |
else if (in->flags & GMP_INTS_EF_INTOVF_TAINT_NEG) |
2720 |
{ |
2721 |
strcpy(out, GMP_INTS_EF_INTOVF_TAINT_NEG_STRING); |
2722 |
} |
2723 |
else |
2724 |
{ |
2725 |
strcpy(out, "INTERNAL_ERROR"); |
2726 |
} |
2727 |
} |
2728 |
else |
2729 |
{ |
2730 |
//Ordinary integer conversion. |
2731 |
GMP_INTS_mpz_struct num, den, quot, rem, k10; |
2732 |
|
2733 |
//Allocate space for the temporary integers. |
2734 |
GMP_INTS_mpz_init(&num); |
2735 |
GMP_INTS_mpz_init(&den); |
2736 |
GMP_INTS_mpz_init("); |
2737 |
GMP_INTS_mpz_init(&rem); |
2738 |
GMP_INTS_mpz_init(&k10); |
2739 |
|
2740 |
//Assign the constant 10. |
2741 |
GMP_INTS_mpz_set_ui(&k10, 10); |
2742 |
|
2743 |
//If the integer is zero, assign that. |
2744 |
if (in->size == 0) |
2745 |
{ |
2746 |
strcpy(out, "0"); |
2747 |
} |
2748 |
else |
2749 |
{ |
2750 |
//We have to do a full conversion. The algorithm |
2751 |
//is division by 10, each time obtaining the least |
2752 |
//significant digit, until finally the quotient is |
2753 |
//zero. |
2754 |
char *ptr; |
2755 |
|
2756 |
ptr = out; |
2757 |
|
2758 |
GMP_INTS_mpz_copy(&num, in); |
2759 |
GMP_INTS_mpz_copy(&den, &k10); |
2760 |
do |
2761 |
{ |
2762 |
#if 0 |
2763 |
printf("Values before division:\n"); |
2764 |
FCMIOF_hline(); |
2765 |
GMP_INTS_mpz_print_int(stdout, &num, "Numerator"); |
2766 |
FCMIOF_hline(); |
2767 |
GMP_INTS_mpz_print_int(stdout, &den, "Denominator"); |
2768 |
FCMIOF_hline(); |
2769 |
GMP_INTS_mpz_print_int(stdout, ", "Quotient"); |
2770 |
FCMIOF_hline(); |
2771 |
GMP_INTS_mpz_print_int(stdout, &rem, "Remainder"); |
2772 |
FCMIOF_hline(); |
2773 |
|
2774 |
if (num.size > 1) |
2775 |
FCMIOF_hline(); |
2776 |
#endif |
2777 |
|
2778 |
GMP_INTS_mpz_tdiv_qr(", &rem, &num, &den); |
2779 |
#if 0 |
2780 |
printf("Values after division:\n"); |
2781 |
FCMIOF_hline(); |
2782 |
GMP_INTS_mpz_print_int(stdout, &num, "Numerator"); |
2783 |
FCMIOF_hline(); |
2784 |
GMP_INTS_mpz_print_int(stdout, &den, "Denominator"); |
2785 |
FCMIOF_hline(); |
2786 |
GMP_INTS_mpz_print_int(stdout, ", "Quotient"); |
2787 |
FCMIOF_hline(); |
2788 |
GMP_INTS_mpz_print_int(stdout, &rem, "Remainder"); |
2789 |
FCMIOF_hline(); |
2790 |
#endif |
2791 |
|
2792 |
if (rem.size != 0) |
2793 |
{ |
2794 |
*ptr = '0' + (char)(rem.limbs[0]); |
2795 |
} |
2796 |
else |
2797 |
{ |
2798 |
*ptr = '0'; |
2799 |
} |
2800 |
ptr++; |
2801 |
GMP_INTS_mpz_copy(&num, "); |
2802 |
//printf("digit\n"); |
2803 |
} |
2804 |
while (!GMP_INTS_mpz_is_zero(")); |
2805 |
|
2806 |
//Finally, if the input was negative, tack on the |
2807 |
//minus sign. |
2808 |
if (GMP_INTS_mpz_is_neg(in)) |
2809 |
{ |
2810 |
*ptr = '-'; |
2811 |
ptr++; |
2812 |
} |
2813 |
|
2814 |
//Finally, tack on the trailing zero terminator. |
2815 |
*ptr = 0; |
2816 |
ptr++; |
2817 |
|
2818 |
//Reverse the string. |
2819 |
BSTRFUNC_str_reverse(out); |
2820 |
} |
2821 |
|
2822 |
//Deallocate the integers. |
2823 |
GMP_INTS_mpz_clear(&num); |
2824 |
GMP_INTS_mpz_clear(&den); |
2825 |
GMP_INTS_mpz_clear("); |
2826 |
GMP_INTS_mpz_clear(&rem); |
2827 |
GMP_INTS_mpz_clear(&k10); |
2828 |
} |
2829 |
} |
2830 |
|
2831 |
|
2832 |
void GMP_INTS_mpz_long_int_format_to_stream(FILE *s, |
2833 |
const GMP_INTS_mpz_struct *i, |
2834 |
const char *desc) |
2835 |
{ |
2836 |
int line_len; |
2837 |
int digits_per_line; |
2838 |
char *digits; |
2839 |
int num_digits; |
2840 |
int nlines; |
2841 |
int cur_line; |
2842 |
int number_desc_width; |
2843 |
|
2844 |
//Eyeball the inputs, make sure the caller isn't doing |
2845 |
//something stupid. |
2846 |
assert(s != NULL); |
2847 |
assert(i != NULL); |
2848 |
assert(i->n_allocd > 0); |
2849 |
assert(i->limbs != NULL); |
2850 |
assert(desc != NULL); |
2851 |
|
2852 |
//Obtain the line length assumed for formatted output. |
2853 |
line_len = FCMIOF_get_line_len(); |
2854 |
|
2855 |
//The description width allowed is 20. |
2856 |
number_desc_width = 20; |
2857 |
|
2858 |
/* The number of digits per line that we assume must be a multiple of |
2859 |
** three. The formula below was not examined very carefully, but it |
2860 |
** works fine for a line length of 78. If line length is changed, |
2861 |
** this formula may need to be examined very carefully and rewritten. |
2862 |
*/ |
2863 |
digits_per_line = INTFUNC_max(3, ((((line_len-42)*3)/4)/3)*3); |
2864 |
assert(digits_per_line >= 3); |
2865 |
|
2866 |
/* We now need to get a digit string corresponding to this |
2867 |
** number. First, need to figure out how much and |
2868 |
** allocate the space. |
2869 |
*/ |
2870 |
digits = GMP_INTS_malloc(GMP_INTS_mpz_size_in_base_10(i) * sizeof(char)); |
2871 |
GMP_INTS_mpz_to_string(digits, i); |
2872 |
|
2873 |
//If the number is negative, delete the leading minus sign. |
2874 |
//The rest of the display algorithm needs an unsigned |
2875 |
//series of digits. |
2876 |
if (*digits == '-') |
2877 |
{ |
2878 |
int i = 0; |
2879 |
|
2880 |
do |
2881 |
{ |
2882 |
digits[i] = digits[i+1]; |
2883 |
i++; |
2884 |
} |
2885 |
while(digits[i-1]); |
2886 |
} |
2887 |
|
2888 |
//Figure out how many digits in the string representation. |
2889 |
num_digits = strlen(digits); |
2890 |
|
2891 |
/* As the first order of business, figure out how many lines the beast |
2892 |
** will require. |
2893 |
*/ |
2894 |
if (i->flags) |
2895 |
{ |
2896 |
nlines = 1; /* Only one line required for NAN verbeage. */ |
2897 |
} |
2898 |
else if (GMP_INTS_mpz_is_zero(i)) |
2899 |
{ |
2900 |
nlines = 1; /* The zero value requires one line. */ |
2901 |
} |
2902 |
else |
2903 |
{ |
2904 |
/* In any other case, have a formula. |
2905 |
*/ |
2906 |
nlines = 1 + (num_digits - 1) / digits_per_line; |
2907 |
} |
2908 |
|
2909 |
/* Iterate through each line, spitting out whatever is appropriate. */ |
2910 |
for (cur_line = 0; cur_line < nlines; cur_line++) |
2911 |
{ |
2912 |
int cur_digit_on_line; |
2913 |
|
2914 |
/* If this is the first line, spit out the description, right-aligned. |
2915 |
** Otherwise, spit spaces. |
2916 |
*/ |
2917 |
if (!cur_line) |
2918 |
{ |
2919 |
/* First line. */ |
2920 |
int len; |
2921 |
|
2922 |
len = strlen(desc); |
2923 |
|
2924 |
if (len <= number_desc_width) |
2925 |
{ |
2926 |
/* Description is shorter or equal, pad on left. */ |
2927 |
FCMIOF_stream_repchar(s, ' ', number_desc_width - len); |
2928 |
fprintf(s, "%s", desc); |
2929 |
} |
2930 |
else |
2931 |
{ |
2932 |
/* Description is too long, truncate. */ |
2933 |
int i; |
2934 |
|
2935 |
for (i=0; i<number_desc_width; i++) |
2936 |
fprintf(s, "%c", desc[i]); |
2937 |
} |
2938 |
|
2939 |
fprintf(s, ": "); |
2940 |
|
2941 |
/* If the number is negative, throw in a minus sign. */ |
2942 |
if (GMP_INTS_mpz_is_neg(i) && !(i->flags)) |
2943 |
{ |
2944 |
fprintf(s, "- "); |
2945 |
} |
2946 |
else |
2947 |
{ |
2948 |
fprintf(s, " "); |
2949 |
} |
2950 |
} |
2951 |
else |
2952 |
{ |
2953 |
/* Every line but first line. */ |
2954 |
FCMIOF_stream_repchar(s, ' ', number_desc_width+4); |
2955 |
} |
2956 |
|
2957 |
for(cur_digit_on_line=0; cur_digit_on_line < digits_per_line; cur_digit_on_line++) |
2958 |
{ |
2959 |
int idx_into_string; |
2960 |
/* Index into the string which is our digit of interest. |
2961 |
*/ |
2962 |
|
2963 |
/* Compute the index. The equation is based on the ordering |
2964 |
** of presentation, for example, |
2965 |
** |
2966 |
** 7 6 |
2967 |
** 5 4 3 |
2968 |
** 2 1 0. |
2969 |
** |
2970 |
** With a little thought, the equation should make sense. |
2971 |
** The index won't always be used to index into the string. |
2972 |
*/ |
2973 |
idx_into_string = |
2974 |
((((nlines-1) - cur_line) * digits_per_line) |
2975 |
+ |
2976 |
(digits_per_line - 1 - cur_digit_on_line)); |
2977 |
|
2978 |
/* Print the appropriate digit or a space. The NAN case and the |
2979 |
** zero case need to be treated specially. |
2980 |
*/ |
2981 |
if (i->flags) |
2982 |
{ |
2983 |
/* Not a number. Everything is blank, except spell out |
2984 |
** description of condition at the end of the string of |
2985 |
** digits. |
2986 |
*/ |
2987 |
int index_from_right; |
2988 |
int virtual_index; |
2989 |
|
2990 |
index_from_right = digits_per_line - 1 - cur_digit_on_line; |
2991 |
//The index calculated above is calculated so that the |
2992 |
//final position on the line has index [0]. |
2993 |
assert(index_from_right >= 0 && index_from_right < digits_per_line); |
2994 |
|
2995 |
//Now, calculate the "virtual index". The virtual index |
2996 |
//is the actual number of characters from the right, taking |
2997 |
//into account commas. |
2998 |
virtual_index = index_from_right + index_from_right/3; |
2999 |
|
3000 |
if (((index_from_right % 3) == 2) && cur_digit_on_line) |
3001 |
{ |
3002 |
//We are one position past a comma. This means |
3003 |
//that we might need a "fill" character to go |
3004 |
//where the comma should have gone. |
3005 |
|
3006 |
if (virtual_index + 1 < num_digits) |
3007 |
{ |
3008 |
//The character we should print exists. |
3009 |
fprintf(s, "%c", digits[num_digits - 2 - virtual_index]); |
3010 |
} |
3011 |
else |
3012 |
{ |
3013 |
//The character doesn't exist, because the error |
3014 |
//string is apparently too short. Must print a |
3015 |
//space, instead. |
3016 |
fprintf(s, " "); |
3017 |
} |
3018 |
} |
3019 |
|
3020 |
//We've done the fill character, if the position we're in |
3021 |
//is one past a comma. Now, do the ordinary character |
3022 |
//corresponding to a digit position. |
3023 |
if (virtual_index < num_digits) |
3024 |
{ |
3025 |
//The character we should print exists. |
3026 |
fprintf(s, "%c", digits[num_digits - 1 - virtual_index]); |
3027 |
} |
3028 |
else |
3029 |
{ |
3030 |
//The character doesn't exist, because the error |
3031 |
//string is apparently too short. Must print a |
3032 |
//space, instead. |
3033 |
fprintf(s, " "); |
3034 |
} |
3035 |
} |
3036 |
else if (GMP_INTS_mpz_is_zero(i)) |
3037 |
{ |
3038 |
/* This is the zero case. For zero, there is only one line, |
3039 |
** and every character except the last one is a blank. |
3040 |
*/ |
3041 |
if (cur_digit_on_line == (digits_per_line - 1)) |
3042 |
{ |
3043 |
fprintf(s, "0"); |
3044 |
} |
3045 |
else |
3046 |
{ |
3047 |
fprintf(s, " "); |
3048 |
} |
3049 |
} |
3050 |
else |
3051 |
{ |
3052 |
/* This is a valid number which is not zero. Need to print |
3053 |
** the digits. |
3054 |
*/ |
3055 |
|
3056 |
if (idx_into_string < num_digits) |
3057 |
{ |
3058 |
int actual_index; |
3059 |
|
3060 |
actual_index = num_digits - 1 - idx_into_string; |
3061 |
//This is a string reversal mapping. The original |
3062 |
//code stored strings least significant digit first, |
3063 |
//but this code uses most significant digit first. |
3064 |
assert((actual_index >= 0) && (actual_index < num_digits)); |
3065 |
fprintf(s, "%c", digits[actual_index]); |
3066 |
} |
3067 |
else |
3068 |
{ |
3069 |
fprintf(s, " "); |
3070 |
} |
3071 |
} /* End of digit case. |
3072 |
|
3073 |
/* Now handle the commas. The rules for commas are straightforward. |
3074 |
** a)NAN never has a comma. |
3075 |
** b)Zeros never have a comma. |
3076 |
** c)The final line, last digit never has a comma. |
3077 |
** d)Everything else in multiples of three ... |
3078 |
*/ |
3079 |
if (!(idx_into_string % 3) && (idx_into_string)) |
3080 |
{ |
3081 |
if (i->flags) |
3082 |
{ |
3083 |
//fprintf(s, " "); |
3084 |
} |
3085 |
else if (!num_digits) |
3086 |
{ |
3087 |
fprintf(s, " "); |
3088 |
} |
3089 |
else |
3090 |
{ |
3091 |
if (idx_into_string < num_digits) |
3092 |
{ |
3093 |
fprintf(s, ","); |
3094 |
} |
3095 |
else |
3096 |
{ |
3097 |
fprintf(s, " "); |
3098 |
} |
3099 |
} |
3100 |
} |
3101 |
} /* End for each digit on the current line. */ |
3102 |
|
3103 |
/* For the first line, print out an informative message |
3104 |
** advising of the number of digits. For all other lines |
3105 |
** print nothing. |
3106 |
*/ |
3107 |
if (!cur_line && !(i->flags)) |
3108 |
{ |
3109 |
if (nlines == 1) |
3110 |
fprintf(s, " "); |
3111 |
|
3112 |
if (num_digits <= 1) |
3113 |
{ |
3114 |
fprintf(s, " ( 1 digit )\n"); |
3115 |
} |
3116 |
else if (num_digits < 1000) |
3117 |
{ |
3118 |
fprintf(s, " (%7d digits)\n", num_digits); |
3119 |
} |
3120 |
else |
3121 |
{ |
3122 |
fprintf(s, " (%3d,%03d digits)\n", num_digits / 1000, num_digits % 1000); |
3123 |
} |
3124 |
} |
3125 |
else |
3126 |
{ |
3127 |
fprintf(s, "\n"); |
3128 |
} |
3129 |
} /* End for each line. */ |
3130 |
|
3131 |
//Deallocate the string space. |
3132 |
GMP_INTS_free(digits); |
3133 |
} |
3134 |
|
3135 |
|
3136 |
void GMP_INTS_mpz_arb_int_raw_to_stream(FILE *s, |
3137 |
const GMP_INTS_mpz_struct *i) |
3138 |
{ |
3139 |
int size_reqd; |
3140 |
char *digits; |
3141 |
|
3142 |
//Eyeball the input parameters. |
3143 |
assert(s != NULL); |
3144 |
assert(i != NULL); |
3145 |
assert(i->n_allocd > 0); |
3146 |
assert(i->limbs != NULL); |
3147 |
|
3148 |
size_reqd = GMP_INTS_mpz_size_in_base_10(i); |
3149 |
digits = GMP_INTS_malloc(size_reqd * sizeof(char)); |
3150 |
GMP_INTS_mpz_to_string(digits, i); |
3151 |
fprintf(s, "%s", digits); |
3152 |
GMP_INTS_free(digits); |
3153 |
} |
3154 |
|
3155 |
|
3156 |
//07/24/01: Passed visual inspection and unit tests. |
3157 |
void GMP_INTS_mpz_pow_ui( GMP_INTS_mpz_struct *result, |
3158 |
const GMP_INTS_mpz_struct *base, |
3159 |
unsigned exponent) |
3160 |
{ |
3161 |
GMP_INTS_mpz_struct temp; |
3162 |
//Temporary location to hold the base raised to |
3163 |
//a binary power (repeated squaring). |
3164 |
|
3165 |
//Eyeball the input parameters. |
3166 |
assert(result != NULL); |
3167 |
assert(result->n_allocd > 0); |
3168 |
assert(result->limbs != NULL); |
3169 |
assert(base != NULL); |
3170 |
assert(base->n_allocd > 0); |
3171 |
assert(base->limbs != NULL); |
3172 |
|
3173 |
//For this function, the base and the result may not |
3174 |
//be the same object. |
3175 |
assert(result != base); |
3176 |
|
3177 |
//If the base is tained, the output is tainted by association. |
3178 |
{ |
3179 |
int taint; |
3180 |
|
3181 |
taint = GMP_INTS_two_op_flags_map(base->flags, 0); |
3182 |
|
3183 |
if (taint) |
3184 |
{ |
3185 |
result->flags = taint; |
3186 |
return; |
3187 |
} |
3188 |
} |
3189 |
|
3190 |
//Allocate our temporary variable and set it to the base. |
3191 |
GMP_INTS_mpz_init(&temp); |
3192 |
GMP_INTS_mpz_copy(&temp, base); |
3193 |
|
3194 |
//The result begins with the value of 1. |
3195 |
GMP_INTS_mpz_set_ui(result, 1); |
3196 |
|
3197 |
//Loop through, processing each bit of the exponent. This is a fairly effective |
3198 |
//algorithm, but not the optimal one (Knuth points this out). |
3199 |
while (exponent && !result->flags) |
3200 |
{ |
3201 |
if (exponent & 0x1) |
3202 |
{ |
3203 |
GMP_INTS_mpz_mul(result, result, &temp); |
3204 |
} |
3205 |
|
3206 |
//Square the temporary variable. Because squaring of arb integer |
3207 |
//may be very expensive, the test against 1 (i.e. last iteration) |
3208 |
//certainly pays for itself. |
3209 |
if (exponent != 1) |
3210 |
GMP_INTS_mpz_mul(&temp, &temp, &temp); |
3211 |
|
3212 |
exponent >>= 1; |
3213 |
} |
3214 |
|
3215 |
//Deallocate our temporary variable. |
3216 |
GMP_INTS_mpz_clear(&temp); |
3217 |
} |
3218 |
|
3219 |
|
3220 |
void GMP_INTS_mpz_abs(GMP_INTS_mpz_struct *arg) |
3221 |
{ |
3222 |
//Eyeball the input parameter. |
3223 |
assert(arg != NULL); |
3224 |
assert(arg->n_allocd > 0); |
3225 |
assert(arg->limbs != NULL); |
3226 |
|
3227 |
//Take the absolute value. |
3228 |
if (arg->size < 0) |
3229 |
arg->size = -arg->size; |
3230 |
} |
3231 |
|
3232 |
|
3233 |
//07/29/01: Visual inspection passed. Seems to work fine--not explicitly unit-tested |
3234 |
//directly, but was tested from Tcl. |
3235 |
void GMP_INTS_mpz_gcd(GMP_INTS_mpz_struct *result, |
3236 |
const GMP_INTS_mpz_struct *arg1, |
3237 |
const GMP_INTS_mpz_struct *arg2) |
3238 |
{ |
3239 |
GMP_INTS_mpz_struct u, v, q, r; |
3240 |
int loop_count; |
3241 |
|
3242 |
//Eyeball the inputs carefully. |
3243 |
assert(result != NULL); |
3244 |
assert(result->n_allocd > 0); |
3245 |
assert(result->limbs != NULL); |
3246 |
assert(arg1 != NULL); |
3247 |
assert(arg1->n_allocd > 0); |
3248 |
assert(arg1->limbs != NULL); |
3249 |
assert(arg2 != NULL); |
3250 |
assert(arg2->n_allocd > 0); |
3251 |
assert(arg2->limbs != NULL); |
3252 |
|
3253 |
//Args are not allowed to be same object. |
3254 |
assert(arg1 != arg2); |
3255 |
|
3256 |
//If either input is error or taint, taint the output. |
3257 |
{ |
3258 |
int taint; |
3259 |
|
3260 |
taint = GMP_INTS_two_op_flags_map(arg1->flags, arg2->flags); |
3261 |
|
3262 |
result->flags = 0; |
3263 |
//"result" starts off with a clean slate. Must do this |
3264 |
//after taint calculation in case locations of arg1 or arg2 |
3265 |
//are the same as result. |
3266 |
if (taint) |
3267 |
{ |
3268 |
result->flags = taint; |
3269 |
return; |
3270 |
} |
3271 |
} |
3272 |
|
3273 |
//If either input is zero, the result is 1. |
3274 |
if (GMP_INTS_mpz_is_zero(arg1) || GMP_INTS_mpz_is_zero(arg2)) |
3275 |
{ |
3276 |
GMP_INTS_mpz_set_ui(result, 1); |
3277 |
return; |
3278 |
} |
3279 |
|
3280 |
//Allocate space for locals. |
3281 |
GMP_INTS_mpz_init(&u); |
3282 |
GMP_INTS_mpz_init(&v); |
3283 |
GMP_INTS_mpz_init(&q); |
3284 |
GMP_INTS_mpz_init(&r); |
3285 |
|
3286 |
//We are following Knuth Vol 2, p. 337, the modern Euclidian algorithm. |
3287 |
//Note: There are faster algorithms for GCD, but because I hacked up the |
3288 |
//GMP multiple-precision library so badly, those aren't included. This one |
3289 |
//is logically correct but sub-optimal. Perhaps at a later time faster |
3290 |
//algorithms will be re-included. |
3291 |
//Copy inputs to u and v. |
3292 |
GMP_INTS_mpz_copy(&u, arg1); |
3293 |
GMP_INTS_mpz_copy(&v, arg2); |
3294 |
|
3295 |
//Take the absolute value of each argument. We know that neither is zero, |
3296 |
//but one or both might be negative. |
3297 |
GMP_INTS_mpz_abs(&u); |
3298 |
GMP_INTS_mpz_abs(&v); |
3299 |
|
3300 |
//Begin Euclid's algorithm. There are really three possibilities: |
3301 |
// a)We terminate normally. |
3302 |
// b)Somehow we generate a math error and terminate based on flags. |
3303 |
// c)Due to some unknown error in the math functions, we go on forever, |
3304 |
// and the program locks up. |
3305 |
GMP_INTS_mpz_set_ui(&r, 1); |
3306 |
loop_count = 0; |
3307 |
while (!GMP_INTS_mpz_is_zero(&r) && !q.flags && !r.flags && (loop_count < 100000)) |
3308 |
{ |
3309 |
loop_count++; |
3310 |
|
3311 |
GMP_INTS_mpz_tdiv_qr(&q, &r, &u, &v); |
3312 |
GMP_INTS_mpz_copy(&u, &v); |
3313 |
GMP_INTS_mpz_copy(&v, &r); |
3314 |
} |
3315 |
|
3316 |
//Let's hope we didn't get out of the loop based on loop count. |
3317 |
assert(loop_count != 100000); |
3318 |
|
3319 |
//u now contains the answer. |
3320 |
GMP_INTS_mpz_copy(result, &u); |
3321 |
|
3322 |
//Deallocate space for locals. |
3323 |
GMP_INTS_mpz_clear(&u); |
3324 |
GMP_INTS_mpz_clear(&v); |
3325 |
GMP_INTS_mpz_clear(&q); |
3326 |
GMP_INTS_mpz_clear(&r); |
3327 |
} |
3328 |
|
3329 |
|
3330 |
/******************************************************************/ |
3331 |
/*** COMPARISON AND SIZING FUNCTIONS ***************************/ |
3332 |
/******************************************************************/ |
3333 |
//07/24/01: Visual inspection only, due to simplicity. |
3334 |
int GMP_INTS_mpz_fits_uint_p (const GMP_INTS_mpz_struct *src) |
3335 |
{ |
3336 |
GMP_INTS_size_t size; |
3337 |
GMP_INTS_limb_t mpl; |
3338 |
|
3339 |
//Eyeball the input parameter. |
3340 |
assert(src != NULL); |
3341 |
assert(src->n_allocd > 0); |
3342 |
assert(src->limbs != NULL); |
3343 |
|
3344 |
mpl = src->limbs[0]; |
3345 |
size = src->size; |
3346 |
if (size < 0 || size > 1) |
3347 |
return(0); |
3348 |
|
3349 |
//The following line came from the original GNU code. |
3350 |
//It isn't necessary in our case since limbs and ints are |
3351 |
//both 32 bits, but it will do no harm. |
3352 |
return (mpl <= (~(unsigned int) 0)); |
3353 |
} |
3354 |
|
3355 |
|
3356 |
unsigned GMP_INTS_mpz_get_limb_zero(const GMP_INTS_mpz_struct *src) |
3357 |
{ |
3358 |
//Eyeball the inputs. |
3359 |
assert(src != NULL); |
3360 |
assert(src->n_allocd > 0); |
3361 |
assert(src->limbs != NULL); |
3362 |
|
3363 |
if (!src->size) |
3364 |
return(0); |
3365 |
else |
3366 |
return(src->limbs[0]); |
3367 |
} |
3368 |
|
3369 |
|
3370 |
//07/24/01: Visual inspection only. Understood the comparisons |
3371 |
//and seems like they should work, but ... a little beyond my |
3372 |
//comfort zone without testing. Trusting GNU on this one ... |
3373 |
int GMP_INTS_mpz_fits_sint_p (const GMP_INTS_mpz_struct *src) |
3374 |
{ |
3375 |
GMP_INTS_size_t size; |
3376 |
GMP_INTS_limb_t mpl; |
3377 |
|
3378 |
//Eyeball the input parameter. |
3379 |
assert(src != NULL); |
3380 |
assert(src->n_allocd > 0); |
3381 |
assert(src->limbs != NULL); |
3382 |
|
3383 |
mpl = src->limbs[0]; |
3384 |
size = src->size; |
3385 |
if (size > 0) |
3386 |
{ |
3387 |
if (size > 1) |
3388 |
return 0; |
3389 |
return mpl < ~((~(unsigned int) 0) >> 1); |
3390 |
} |
3391 |
else |
3392 |
{ |
3393 |
if (size < -1) |
3394 |
return 0; |
3395 |
return mpl <= ~((~(unsigned int) 0) >> 1); |
3396 |
} |
3397 |
} |
3398 |
|
3399 |
|
3400 |
//07/24/01: Visual inspection only. One issue that caught |
3401 |
//my eye is that in one place function returned neg value if |
3402 |
//< and pos value if >. Was within spec, but corrected because |
3403 |
//it concerned me as I often test against -1 and 1. Seems |
3404 |
//to invite accidents. |
3405 |
int GMP_INTS_mpz_cmp (const GMP_INTS_mpz_struct *u, |
3406 |
const GMP_INTS_mpz_struct *v) |
3407 |
{ |
3408 |
GMP_INTS_size_t usize = u->size; |
3409 |
GMP_INTS_size_t vsize = v->size; |
3410 |
GMP_INTS_size_t size; |
3411 |
GMP_INTS_limb_srcptr up, vp; |
3412 |
int cmp; |
3413 |
|
3414 |
//Eyeball the input parameters. |
3415 |
assert(u != NULL); |
3416 |
assert(u->n_allocd > 0); |
3417 |
assert(u->limbs != NULL); |
3418 |
assert(v != NULL); |
3419 |
assert(v->n_allocd > 0); |
3420 |
assert(v->limbs != NULL); |
3421 |
|
3422 |
if (usize < vsize) |
3423 |
return(-1); |
3424 |
else if (usize > vsize) |
3425 |
return(1); |
3426 |
|
3427 |
if (usize == 0) |
3428 |
return(0); |
3429 |
|
3430 |
size = GMP_INTS_abs_of_size_t(usize); |
3431 |
|
3432 |
up = u->limbs; |
3433 |
vp = v->limbs; |
3434 |
|
3435 |
cmp = GMP_INTS_mpn_cmp (up, vp, size); |
3436 |
|
3437 |
if (cmp == 0) |
3438 |
return(0); |
3439 |
|
3440 |
if ((cmp < 0) == (usize < 0)) |
3441 |
return(1); |
3442 |
else |
3443 |
return(-1); |
3444 |
} |
3445 |
|
3446 |
|
3447 |
//07/24/01: Not visually inspected. Relying on |
3448 |
//GNU ... |
3449 |
int GMP_INTS_mpz_cmp_ui (const GMP_INTS_mpz_struct *u, |
3450 |
unsigned long int v_digit) |
3451 |
{ |
3452 |
GMP_INTS_size_t usize = u->size; |
3453 |
|
3454 |
//Eyeball the input parameter. |
3455 |
assert(u != NULL); |
3456 |
assert(u->n_allocd > 0); |
3457 |
assert(u->limbs != NULL); |
3458 |
|
3459 |
if (usize == 0) |
3460 |
return -(v_digit != 0); |
3461 |
|
3462 |
if (usize == 1) |
3463 |
{ |
3464 |
GMP_INTS_limb_t u_digit; |
3465 |
|
3466 |
u_digit = u->limbs[0]; |
3467 |
if (u_digit > v_digit) |
3468 |
return 1; |
3469 |
if (u_digit < v_digit) |
3470 |
return -1; |
3471 |
return 0; |
3472 |
} |
3473 |
|
3474 |
return (usize > 0) ? 1 : -1; |
3475 |
} |
3476 |
|
3477 |
|
3478 |
//07/24/01: Not visually inspected. Relying on GNU. |
3479 |
int GMP_INTS_mpz_cmp_si (const GMP_INTS_mpz_struct *u, |
3480 |
signed long int v_digit) |
3481 |
{ |
3482 |
GMP_INTS_size_t usize = u->size; |
3483 |
GMP_INTS_size_t vsize; |
3484 |
GMP_INTS_limb_t u_digit; |
3485 |
|
3486 |
//Eyeball the input parameter. |
3487 |
assert(u != NULL); |
3488 |
assert(u->n_allocd > 0); |
3489 |
assert(u->limbs != NULL); |
3490 |
|
3491 |
vsize = 0; |
3492 |
if (v_digit > 0) |
3493 |
vsize = 1; |
3494 |
else if (v_digit < 0) |
3495 |
{ |
3496 |
vsize = -1; |
3497 |
v_digit = -v_digit; |
3498 |
} |
3499 |
|
3500 |
if (usize != vsize) |
3501 |
return usize - vsize; |
3502 |
|
3503 |
if (usize == 0) |
3504 |
return 0; |
3505 |
|
3506 |
u_digit = u->limbs[0]; |
3507 |
|
3508 |
if (u_digit == (GMP_INTS_limb_t) (unsigned long) v_digit) |
3509 |
return 0; |
3510 |
|
3511 |
if (u_digit > (GMP_INTS_limb_t) (unsigned long) v_digit) |
3512 |
return usize; |
3513 |
else |
3514 |
return -usize; |
3515 |
} |
3516 |
|
3517 |
|
3518 |
//07/24/01: Not visually inspected. Counting on GNU. |
3519 |
int GMP_INTS_mpz_cmpabs (const GMP_INTS_mpz_struct *u, |
3520 |
const GMP_INTS_mpz_struct *v) |
3521 |
{ |
3522 |
GMP_INTS_size_t usize = u->size; |
3523 |
GMP_INTS_size_t vsize = v->size; |
3524 |
GMP_INTS_limb_srcptr up, vp; |
3525 |
int cmp; |
3526 |
|
3527 |
//Eyeball the input parameters. |
3528 |
assert(u != NULL); |
3529 |
assert(u->n_allocd > 0); |
3530 |
assert(u->limbs != NULL); |
3531 |
assert(v != NULL); |
3532 |
assert(v->n_allocd > 0); |
3533 |
assert(v->limbs != NULL); |
3534 |
|
3535 |
usize = GMP_INTS_abs_of_size_t(usize); |
3536 |
vsize = GMP_INTS_abs_of_size_t(vsize); |
3537 |
|
3538 |
if (usize != vsize) |
3539 |
return usize - vsize; |
3540 |
|
3541 |
if (usize == 0) |
3542 |
return 0; |
3543 |
|
3544 |
up = u->limbs; |
3545 |
vp = v->limbs; |
3546 |
|
3547 |
cmp = GMP_INTS_mpn_cmp (up, vp, usize); |
3548 |
|
3549 |
return cmp; |
3550 |
} |
3551 |
|
3552 |
//07/24/01: Not visually inspected. Counting on GNU. |
3553 |
int GMP_INTS_mpz_cmpabs_ui(const GMP_INTS_mpz_struct *u, |
3554 |
unsigned long int v_digit) |
3555 |
{ |
3556 |
GMP_INTS_size_t usize = u->size; |
3557 |
|
3558 |
//Eyeball the input parameter. |
3559 |
assert(u != NULL); |
3560 |
assert(u->n_allocd > 0); |
3561 |
assert(u->limbs != NULL); |
3562 |
|
3563 |
if (usize == 0) |
3564 |
return -(v_digit != 0); |
3565 |
|
3566 |
usize = GMP_INTS_abs_of_size_t(usize); |
3567 |
|
3568 |
if (usize == 1) |
3569 |
{ |
3570 |
GMP_INTS_limb_t u_digit; |
3571 |
|
3572 |
u_digit = u->limbs[0]; |
3573 |
if (u_digit > v_digit) |
3574 |
return 1; |
3575 |
if (u_digit < v_digit) |
3576 |
return -1; |
3577 |
return 0; |
3578 |
} |
3579 |
|
3580 |
return 1; |
3581 |
} |
3582 |
|
3583 |
|
3584 |
/******************************************************************/ |
3585 |
/*** VERSION CONTROL IDENTITY FUNCTIONS ************************/ |
3586 |
/******************************************************************/ |
3587 |
|
3588 |
//07/18/01: Visual inspection only. Function deemed too |
3589 |
//simple for unit testing. |
3590 |
const char *GMP_INTS_cvcinfo(void) |
3591 |
{ |
3592 |
return("$Header$"); |
3593 |
} |
3594 |
|
3595 |
|
3596 |
//07/18/01: Visual inspection only. Function deemed too |
3597 |
//simple for unit testing. |
3598 |
const char *GMP_INTS_hvcinfo(void) |
3599 |
{ |
3600 |
return(GMP_INTS_H_VERSION); |
3601 |
} |
3602 |
|
3603 |
//End of gmp_ints.c. |