// $Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/c_datd/gmp_ralg.c,v 1.10 2002/01/27 17:58:15 dtashley Exp $ //-------------------------------------------------------------------------------- //Copyright 2001 David T. Ashley //------------------------------------------------------------------------------------------------- //This source code and any program in which it is compiled/used is provided under the GNU GENERAL //PUBLIC LICENSE, Version 3, full license text below. //------------------------------------------------------------------------------------------------- // GNU GENERAL PUBLIC LICENSE // Version 3, 29 June 2007 // // Copyright (C) 2007 Free Software Foundation, Inc. // Everyone is permitted to copy and distribute verbatim copies // of this license document, but changing it is not allowed. // // Preamble // // The GNU General Public License is a free, copyleft license for //software and other kinds of works. // // The licenses for most software and other practical works are designed //to take away your freedom to share and change the works. By contrast, //the GNU General Public License is intended to guarantee your freedom to //share and change all versions of a program--to make sure it remains free //software for all its users. We, the Free Software Foundation, use the //GNU General Public License for most of our software; it applies also to //any other work released this way by its authors. You can apply it to //your programs, too. // // When we speak of free software, we are referring to freedom, not //price. Our General Public Licenses are designed to make sure that you //have the freedom to distribute copies of free software (and charge for //them if you wish), that you receive source code or can get it if you //want it, that you can change the software or use pieces of it in new //free programs, and that you know you can do these things. // // To protect your rights, we need to prevent others from denying you //these rights or asking you to surrender the rights. Therefore, you have //certain responsibilities if you distribute copies of the software, or if //you modify it: responsibilities to respect the freedom of others. // // For example, if you distribute copies of such a program, whether //gratis or for a fee, you must pass on to the recipients the same //freedoms that you received. You must make sure that they, too, receive //or can get the source code. And you must show them these terms so they //know their rights. // // Developers that use the GNU GPL protect your rights with two steps: //(1) assert copyright on the software, and (2) offer you this License //giving you legal permission to copy, distribute and/or modify it. // // For the developers' and authors' protection, the GPL clearly explains //that there is no warranty for this free software. For both users' and //authors' sake, the GPL requires that modified versions be marked as //changed, so that their problems will not be attributed erroneously to //authors of previous versions. // // Some devices are designed to deny users access to install or run //modified versions of the software inside them, although the manufacturer //can do so. This is fundamentally incompatible with the aim of //protecting users' freedom to change the software. The systematic //pattern of such abuse occurs in the area of products for individuals to //use, which is precisely where it is most unacceptable. Therefore, we //have designed this version of the GPL to prohibit the practice for those //products. If such problems arise substantially in other domains, we //stand ready to extend this provision to those domains in future versions //of the GPL, as needed to protect the freedom of users. // // Finally, every program is threatened constantly by software patents. //States should not allow patents to restrict development and use of //software on general-purpose computers, but in those that do, we wish to //avoid the special danger that patents applied to a free program could //make it effectively proprietary. To prevent this, the GPL assures that //patents cannot be used to render the program non-free. // // The precise terms and conditions for copying, distribution and //modification follow. // // TERMS AND CONDITIONS // // 0. Definitions. // // "This License" refers to version 3 of the GNU General Public License. // // "Copyright" also means copyright-like laws that apply to other kinds of //works, such as semiconductor masks. // // "The Program" refers to any copyrightable work licensed under this //License. Each licensee is addressed as "you". "Licensees" and //"recipients" may be individuals or organizations. // // To "modify" a work means to copy from or adapt all or part of the work //in a fashion requiring copyright permission, other than the making of an //exact copy. The resulting work is called a "modified version" of the //earlier work or a work "based on" the earlier work. // // A "covered work" means either the unmodified Program or a work based //on the Program. // // To "propagate" a work means to do anything with it that, without //permission, would make you directly or secondarily liable for //infringement under applicable copyright law, except executing it on a //computer or modifying a private copy. Propagation includes copying, //distribution (with or without modification), making available to the //public, and in some countries other activities as well. // // To "convey" a work means any kind of propagation that enables other //parties to make or receive copies. Mere interaction with a user through //a computer network, with no transfer of a copy, is not conveying. // // An interactive user interface displays "Appropriate Legal Notices" //to the extent that it includes a convenient and prominently visible //feature that (1) displays an appropriate copyright notice, and (2) //tells the user that there is no warranty for the work (except to the //extent that warranties are provided), that licensees may convey the //work under this License, and how to view a copy of this License. If //the interface presents a list of user commands or options, such as a //menu, a prominent item in the list meets this criterion. // // 1. Source Code. // // The "source code" for a work means the preferred form of the work //for making modifications to it. "Object code" means any non-source //form of a work. // // A "Standard Interface" means an interface that either is an official //standard defined by a recognized standards body, or, in the case of //interfaces specified for a particular programming language, one that //is widely used among developers working in that language. // // The "System Libraries" of an executable work include anything, other //than the work as a whole, that (a) is included in the normal form of //packaging a Major Component, but which is not part of that Major //Component, and (b) serves only to enable use of the work with that //Major Component, or to implement a Standard Interface for which an //implementation is available to the public in source code form. A //"Major Component", in this context, means a major essential component //(kernel, window system, and so on) of the specific operating system //(if any) on which the executable work runs, or a compiler used to //produce the work, or an object code interpreter used to run it. // // The "Corresponding Source" for a work in object code form means all //the source code needed to generate, install, and (for an executable //work) run the object code and to modify the work, including scripts to //control those activities. However, it does not include the work's //System Libraries, or general-purpose tools or generally available free //programs which are used unmodified in performing those activities but //which are not part of the work. For example, Corresponding Source //includes interface definition files associated with source files for //the work, and the source code for shared libraries and dynamically //linked subprograms that the work is specifically designed to require, //such as by intimate data communication or control flow between those //subprograms and other parts of the work. // // The Corresponding Source need not include anything that users //can regenerate automatically from other parts of the Corresponding //Source. // // The Corresponding Source for a work in source code form is that //same work. // // 2. Basic Permissions. // // All rights granted under this License are granted for the term of //copyright on the Program, and are irrevocable provided the stated //conditions are met. This License explicitly affirms your unlimited //permission to run the unmodified Program. The output from running a //covered work is covered by this License only if the output, given its //content, constitutes a covered work. This License acknowledges your //rights of fair use or other equivalent, as provided by copyright law. // // You may make, run and propagate covered works that you do not //convey, without conditions so long as your license otherwise remains //in force. You may convey covered works to others for the sole purpose //of having them make modifications exclusively for you, or provide you //with facilities for running those works, provided that you comply with //the terms of this License in conveying all material for which you do //not control copyright. Those thus making or running the covered works //for you must do so exclusively on your behalf, under your direction //and control, on terms that prohibit them from making any copies of //your copyrighted material outside their relationship with you. // // Conveying under any other circumstances is permitted solely under //the conditions stated below. Sublicensing is not allowed; section 10 //makes it unnecessary. // // 3. Protecting Users' Legal Rights From Anti-Circumvention Law. // // No covered work shall be deemed part of an effective technological //measure under any applicable law fulfilling obligations under article //11 of the WIPO copyright treaty adopted on 20 December 1996, or //similar laws prohibiting or restricting circumvention of such //measures. // // When you convey a covered work, you waive any legal power to forbid //circumvention of technological measures to the extent such circumvention //is effected by exercising rights under this License with respect to //the covered work, and you disclaim any intention to limit operation or //modification of the work as a means of enforcing, against the work's //users, your or third parties' legal rights to forbid circumvention of //technological measures. // // 4. Conveying Verbatim Copies. // // You may convey verbatim copies of the Program's source code as you //receive it, in any medium, provided that you conspicuously and //appropriately publish on each copy an appropriate copyright notice; //keep intact all notices stating that this License and any //non-permissive terms added in accord with section 7 apply to the code; //keep intact all notices of the absence of any warranty; and give all //recipients a copy of this License along with the Program. // // You may charge any price or no price for each copy that you convey, //and you may offer support or warranty protection for a fee. // // 5. Conveying Modified Source Versions. // // You may convey a work based on the Program, or the modifications to //produce it from the Program, in the form of source code under the //terms of section 4, provided that you also meet all of these conditions: // // a) The work must carry prominent notices stating that you modified // it, and giving a relevant date. // // b) The work must carry prominent notices stating that it is // released under this License and any conditions added under section // 7. This requirement modifies the requirement in section 4 to // "keep intact all notices". // // c) You must license the entire work, as a whole, under this // License to anyone who comes into possession of a copy. This // License will therefore apply, along with any applicable section 7 // additional terms, to the whole of the work, and all its parts, // regardless of how they are packaged. This License gives no // permission to license the work in any other way, but it does not // invalidate such permission if you have separately received it. // // d) If the work has interactive user interfaces, each must display // Appropriate Legal Notices; however, if the Program has interactive // interfaces that do not display Appropriate Legal Notices, your // work need not make them do so. // // A compilation of a covered work with other separate and independent //works, which are not by their nature extensions of the covered work, //and which are not combined with it such as to form a larger program, //in or on a volume of a storage or distribution medium, is called an //"aggregate" if the compilation and its resulting copyright are not //used to limit the access or legal rights of the compilation's users //beyond what the individual works permit. Inclusion of a covered work //in an aggregate does not cause this License to apply to the other //parts of the aggregate. // // 6. Conveying Non-Source Forms. // // You may convey a covered work in object code form under the terms //of sections 4 and 5, provided that you also convey the //machine-readable Corresponding Source under the terms of this License, //in one of these ways: // // a) Convey the object code in, or embodied in, a physical product // (including a physical distribution medium), accompanied by the // Corresponding Source fixed on a durable physical medium // customarily used for software interchange. // // b) Convey the object code in, or embodied in, a physical product // (including a physical distribution medium), accompanied by a // written offer, valid for at least three years and valid for as // long as you offer spare parts or customer support for that product // model, to give anyone who possesses the object code either (1) a // copy of the Corresponding Source for all the software in the // product that is covered by this License, on a durable physical // medium customarily used for software interchange, for a price no // more than your reasonable cost of physically performing this // conveying of source, or (2) access to copy the // Corresponding Source from a network server at no charge. // // c) Convey individual copies of the object code with a copy of the // written offer to provide the Corresponding Source. This // alternative is allowed only occasionally and noncommercially, and // only if you received the object code with such an offer, in accord // with subsection 6b. // // d) Convey the object code by offering access from a designated // place (gratis or for a charge), and offer equivalent access to the // Corresponding Source in the same way through the same place at no // further charge. You need not require recipients to copy the // Corresponding Source along with the object code. If the place to // copy the object code is a network server, the Corresponding Source // may be on a different server (operated by you or a third party) // that supports equivalent copying facilities, provided you maintain // clear directions next to the object code saying where to find the // Corresponding Source. Regardless of what server hosts the // Corresponding Source, you remain obligated to ensure that it is // available for as long as needed to satisfy these requirements. // // e) Convey the object code using peer-to-peer transmission, provided // you inform other peers where the object code and Corresponding // Source of the work are being offered to the general public at no // charge under subsection 6d. // // A separable portion of the object code, whose source code is excluded //from the Corresponding Source as a System Library, need not be //included in conveying the object code work. // // A "User Product" is either (1) a "consumer product", which means any //tangible personal property which is normally used for personal, family, //or household purposes, or (2) anything designed or sold for incorporation //into a dwelling. In determining whether a product is a consumer product, //doubtful cases shall be resolved in favor of coverage. For a particular //product received by a particular user, "normally used" refers to a //typical or common use of that class of product, regardless of the status //of the particular user or of the way in which the particular user //actually uses, or expects or is expected to use, the product. A product //is a consumer product regardless of whether the product has substantial //commercial, industrial or non-consumer uses, unless such uses represent //the only significant mode of use of the product. // // "Installation Information" for a User Product means any methods, //procedures, authorization keys, or other information required to install //and execute modified versions of a covered work in that User Product from //a modified version of its Corresponding Source. The information must //suffice to ensure that the continued functioning of the modified object //code is in no case prevented or interfered with solely because //modification has been made. // // If you convey an object code work under this section in, or with, or //specifically for use in, a User Product, and the conveying occurs as //part of a transaction in which the right of possession and use of the //User Product is transferred to the recipient in perpetuity or for a //fixed term (regardless of how the transaction is characterized), the //Corresponding Source conveyed under this section must be accompanied //by the Installation Information. But this requirement does not apply //if neither you nor any third party retains the ability to install //modified object code on the User Product (for example, the work has //been installed in ROM). // // The requirement to provide Installation Information does not include a //requirement to continue to provide support service, warranty, or updates //for a work that has been modified or installed by the recipient, or for //the User Product in which it has been modified or installed. Access to a //network may be denied when the modification itself materially and //adversely affects the operation of the network or violates the rules and //protocols for communication across the network. // // Corresponding Source conveyed, and Installation Information provided, //in accord with this section must be in a format that is publicly //documented (and with an implementation available to the public in //source code form), and must require no special password or key for //unpacking, reading or copying. // // 7. Additional Terms. // // "Additional permissions" are terms that supplement the terms of this //License by making exceptions from one or more of its conditions. //Additional permissions that are applicable to the entire Program shall //be treated as though they were included in this License, to the extent //that they are valid under applicable law. If additional permissions //apply only to part of the Program, that part may be used separately //under those permissions, but the entire Program remains governed by //this License without regard to the additional permissions. // // When you convey a copy of a covered work, you may at your option //remove any additional permissions from that copy, or from any part of //it. (Additional permissions may be written to require their own //removal in certain cases when you modify the work.) You may place //additional permissions on material, added by you to a covered work, //for which you have or can give appropriate copyright permission. // // Notwithstanding any other provision of this License, for material you //add to a covered work, you may (if authorized by the copyright holders of //that material) supplement the terms of this License with terms: // // a) Disclaiming warranty or limiting liability differently from the // terms of sections 15 and 16 of this License; or // // b) Requiring preservation of specified reasonable legal notices or // author attributions in that material or in the Appropriate Legal // Notices displayed by works containing it; or // // c) Prohibiting misrepresentation of the origin of that material, or // requiring that modified versions of such material be marked in // reasonable ways as different from the original version; or // // d) Limiting the use for publicity purposes of names of licensors or // authors of the material; or // // e) Declining to grant rights under trademark law for use of some // trade names, trademarks, or service marks; or // // f) Requiring indemnification of licensors and authors of that // material by anyone who conveys the material (or modified versions of // it) with contractual assumptions of liability to the recipient, for // any liability that these contractual assumptions directly impose on // those licensors and authors. // // All other non-permissive additional terms are considered "further //restrictions" within the meaning of section 10. If the Program as you //received it, or any part of it, contains a notice stating that it is //governed by this License along with a term that is a further //restriction, you may remove that term. If a license document contains //a further restriction but permits relicensing or conveying under this //License, you may add to a covered work material governed by the terms //of that license document, provided that the further restriction does //not survive such relicensing or conveying. // // If you add terms to a covered work in accord with this section, you //must place, in the relevant source files, a statement of the //additional terms that apply to those files, or a notice indicating //where to find the applicable terms. // // Additional terms, permissive or non-permissive, may be stated in the //form of a separately written license, or stated as exceptions; //the above requirements apply either way. // // 8. Termination. // // You may not propagate or modify a covered work except as expressly //provided under this License. Any attempt otherwise to propagate or //modify it is void, and will automatically terminate your rights under //this License (including any patent licenses granted under the third //paragraph of section 11). // // However, if you cease all violation of this License, then your //license from a particular copyright holder is reinstated (a) //provisionally, unless and until the copyright holder explicitly and //finally terminates your license, and (b) permanently, if the copyright //holder fails to notify you of the violation by some reasonable means //prior to 60 days after the cessation. // // Moreover, your license from a particular copyright holder is //reinstated permanently if the copyright holder notifies you of the //violation by some reasonable means, this is the first time you have //received notice of violation of this License (for any work) from that //copyright holder, and you cure the violation prior to 30 days after //your receipt of the notice. // // Termination of your rights under this section does not terminate the //licenses of parties who have received copies or rights from you under //this License. If your rights have been terminated and not permanently //reinstated, you do not qualify to receive new licenses for the same //material under section 10. // // 9. Acceptance Not Required for Having Copies. // // You are not required to accept this License in order to receive or //run a copy of the Program. Ancillary propagation of a covered work //occurring solely as a consequence of using peer-to-peer transmission //to receive a copy likewise does not require acceptance. However, //nothing other than this License grants you permission to propagate or //modify any covered work. These actions infringe copyright if you do //not accept this License. Therefore, by modifying or propagating a //covered work, you indicate your acceptance of this License to do so. // // 10. Automatic Licensing of Downstream Recipients. // // Each time you convey a covered work, the recipient automatically //receives a license from the original licensors, to run, modify and //propagate that work, subject to this License. You are not responsible //for enforcing compliance by third parties with this License. // // An "entity transaction" is a transaction transferring control of an //organization, or substantially all assets of one, or subdividing an //organization, or merging organizations. If propagation of a covered //work results from an entity transaction, each party to that //transaction who receives a copy of the work also receives whatever //licenses to the work the party's predecessor in interest had or could //give under the previous paragraph, plus a right to possession of the //Corresponding Source of the work from the predecessor in interest, if //the predecessor has it or can get it with reasonable efforts. // // You may not impose any further restrictions on the exercise of the //rights granted or affirmed under this License. For example, you may //not impose a license fee, royalty, or other charge for exercise of //rights granted under this License, and you may not initiate litigation //(including a cross-claim or counterclaim in a lawsuit) alleging that //any patent claim is infringed by making, using, selling, offering for //sale, or importing the Program or any portion of it. // // 11. Patents. // // A "contributor" is a copyright holder who authorizes use under this //License of the Program or a work on which the Program is based. The //work thus licensed is called the contributor's "contributor version". // // A contributor's "essential patent claims" are all patent claims //owned or controlled by the contributor, whether already acquired or //hereafter acquired, that would be infringed by some manner, permitted //by this License, of making, using, or selling its contributor version, //but do not include claims that would be infringed only as a //consequence of further modification of the contributor version. For //purposes of this definition, "control" includes the right to grant //patent sublicenses in a manner consistent with the requirements of //this License. // // Each contributor grants you a non-exclusive, worldwide, royalty-free //patent license under the contributor's essential patent claims, to //make, use, sell, offer for sale, import and otherwise run, modify and //propagate the contents of its contributor version. // // In the following three paragraphs, a "patent license" is any express //agreement or commitment, however denominated, not to enforce a patent //(such as an express permission to practice a patent or covenant not to //sue for patent infringement). To "grant" such a patent license to a //party means to make such an agreement or commitment not to enforce a //patent against the party. // // If you convey a covered work, knowingly relying on a patent license, //and the Corresponding Source of the work is not available for anyone //to copy, free of charge and under the terms of this License, through a //publicly available network server or other readily accessible means, //then you must either (1) cause the Corresponding Source to be so //available, or (2) arrange to deprive yourself of the benefit of the //patent license for this particular work, or (3) arrange, in a manner //consistent with the requirements of this License, to extend the patent //license to downstream recipients. "Knowingly relying" means you have //actual knowledge that, but for the patent license, your conveying the //covered work in a country, or your recipient's use of the covered work //in a country, would infringe one or more identifiable patents in that //country that you have reason to believe are valid. // // If, pursuant to or in connection with a single transaction or //arrangement, you convey, or propagate by procuring conveyance of, a //covered work, and grant a patent license to some of the parties //receiving the covered work authorizing them to use, propagate, modify //or convey a specific copy of the covered work, then the patent license //you grant is automatically extended to all recipients of the covered //work and works based on it. // // A patent license is "discriminatory" if it does not include within //the scope of its coverage, prohibits the exercise of, or is //conditioned on the non-exercise of one or more of the rights that are //specifically granted under this License. You may not convey a covered //work if you are a party to an arrangement with a third party that is //in the business of distributing software, under which you make payment //to the third party based on the extent of your activity of conveying //the work, and under which the third party grants, to any of the //parties who would receive the covered work from you, a discriminatory //patent license (a) in connection with copies of the covered work //conveyed by you (or copies made from those copies), or (b) primarily //for and in connection with specific products or compilations that //contain the covered work, unless you entered into that arrangement, //or that patent license was granted, prior to 28 March 2007. // // Nothing in this License shall be construed as excluding or limiting //any implied license or other defenses to infringement that may //otherwise be available to you under applicable patent law. // // 12. No Surrender of Others' Freedom. // // If conditions are imposed on you (whether by court order, agreement or //otherwise) that contradict the conditions of this License, they do not //excuse you from the conditions of this License. If you cannot convey a //covered work so as to satisfy simultaneously your obligations under this //License and any other pertinent obligations, then as a consequence you may //not convey it at all. For example, if you agree to terms that obligate you //to collect a royalty for further conveying from those to whom you convey //the Program, the only way you could satisfy both those terms and this //License would be to refrain entirely from conveying the Program. // // 13. Use with the GNU Affero General Public License. // // Notwithstanding any other provision of this License, you have //permission to link or combine any covered work with a work licensed //under version 3 of the GNU Affero General Public License into a single //combined work, and to convey the resulting work. The terms of this //License will continue to apply to the part which is the covered work, //but the special requirements of the GNU Affero General Public License, //section 13, concerning interaction through a network will apply to the //combination as such. // // 14. Revised Versions of this License. // // The Free Software Foundation may publish revised and/or new versions of //the GNU General Public License from time to time. Such new versions will //be similar in spirit to the present version, but may differ in detail to //address new problems or concerns. // // Each version is given a distinguishing version number. If the //Program specifies that a certain numbered version of the GNU General //Public License "or any later version" applies to it, you have the //option of following the terms and conditions either of that numbered //version or of any later version published by the Free Software //Foundation. If the Program does not specify a version number of the //GNU General Public License, you may choose any version ever published //by the Free Software Foundation. // // If the Program specifies that a proxy can decide which future //versions of the GNU General Public License can be used, that proxy's //public statement of acceptance of a version permanently authorizes you //to choose that version for the Program. // // Later license versions may give you additional or different //permissions. However, no additional obligations are imposed on any //author or copyright holder as a result of your choosing to follow a //later version. // // 15. Disclaimer of Warranty. // // THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY //APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT //HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY //OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, //THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR //PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM //IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF //ALL NECESSARY SERVICING, REPAIR OR CORRECTION. // // 16. Limitation of Liability. // // IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING //WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS //THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY //GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE //USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF //DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD //PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), //EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF //SUCH DAMAGES. // // 17. Interpretation of Sections 15 and 16. // // If the disclaimer of warranty and limitation of liability provided //above cannot be given local legal effect according to their terms, //reviewing courts shall apply local law that most closely approximates //an absolute waiver of all civil liability in connection with the //Program, unless a warranty or assumption of liability accompanies a //copy of the Program in return for a fee. // // END OF TERMS AND CONDITIONS // // How to Apply These Terms to Your New Programs // // If you develop a new program, and you want it to be of the greatest //possible use to the public, the best way to achieve this is to make it //free software which everyone can redistribute and change under these terms. // // To do so, attach the following notices to the program. It is safest //to attach them to the start of each source file to most effectively //state the exclusion of warranty; and each file should have at least //the "copyright" line and a pointer to where the full notice is found. // // // Copyright (C) // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //Also add information on how to contact you by electronic and paper mail. // // If the program does terminal interaction, make it output a short //notice like this when it starts in an interactive mode: // // Copyright (C) // This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. // This is free software, and you are welcome to redistribute it // under certain conditions; type `show c' for details. // //The hypothetical commands `show w' and `show c' should show the appropriate //parts of the General Public License. Of course, your program's commands //might be different; for a GUI interface, you would use an "about box". // // You should also get your employer (if you work as a programmer) or school, //if any, to sign a "copyright disclaimer" for the program, if necessary. //For more information on this, and how to apply and follow the GNU GPL, see //. // // The GNU General Public License does not permit incorporating your program //into proprietary programs. If your program is a subroutine library, you //may consider it more useful to permit linking proprietary applications with //the library. If this is what you want to do, use the GNU Lesser General //Public License instead of this License. But first, please read //. //------------------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------- #define MODULE_GMP_RALG #include #include #include #include #include "fcmiof.h" #include "gmp_ints.h" #include "gmp_rats.h" #include "gmp_ralg.h" #include "intfunc.h" #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) #include "ccmalloc.h" #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) #include "tclalloc.h" #else /* Do nothing. */ #endif /******************************************************************/ /*** INITIALIZATION AND DESTRUCTION FUNCTIONS *******************/ /******************************************************************/ //08/16/01: Visual inspection OK. void GMP_RALG_cfdecomp_init( GMP_RALG_cf_app_struct *decomp, int *failure, GMP_INTS_mpz_struct *num, GMP_INTS_mpz_struct *den) { int loop_counter, i; GMP_INTS_mpz_struct arb_temp1, arb_temp2; //Eyeball the input parameters. The rest of the eyeballing //will occur as functions are called to manipulate the //numerator and denominator passed in. assert(decomp != NULL); assert(failure != NULL); assert(num != NULL); assert(den != NULL); //Allocate space for temporary integers. GMP_INTS_mpz_init(&arb_temp1); GMP_INTS_mpz_init(&arb_temp2); //Begin believing no failure. *failure = 0; //Initialize the copy of the numerator and denominator and //copy these into the structure. GMP_INTS_mpz_init(&(decomp->num)); GMP_INTS_mpz_copy(&(decomp->num), num); GMP_INTS_mpz_init(&(decomp->den)); GMP_INTS_mpz_copy(&(decomp->den), den); //Allocate the space for the first increment of the //growable areas. We need to use different memory //allocation functions depending on whether we're //in a Tcl build or a DOS command-line utility //build. //Space for partial quotients. decomp->a = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #else malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #endif //Dividends. decomp->dividend = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #else malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #endif //Divisors. decomp->divisor = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #else malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #endif //Remainders. decomp->remainder = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #else malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #endif //Convergent numerators. decomp->p = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #else malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #endif //Convergent denominators. decomp->q = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #else malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); #endif //Now the number of allocated slots is what we just allocated. decomp->nallocd = GMP_RALG_CF_ALLOC_INCREMENT; //The number of slots actually used is zero, to start with. decomp->n = 0; //There are a number of conditions that will lead to an error //where we can't successfully form the continued fraction //decomposition. These errors are: // a)Either component is NAN. // b)Zero denominator. // c)Either component negative. //In these cases, we'll pretend we got 0/1 for the number //and set things accordingly, and we'll set the failure //flag for the caller. // if (GMP_INTS_mpz_get_flags(num) || GMP_INTS_mpz_get_flags(den) || GMP_INTS_mpz_is_zero(den) || GMP_INTS_mpz_is_neg(num) || GMP_INTS_mpz_is_neg(den)) { *failure = 1; decomp->n = 1; GMP_INTS_mpz_set_ui(&(decomp->num), 0); GMP_INTS_mpz_set_ui(&(decomp->den), 1); GMP_INTS_mpz_init(decomp->dividend); GMP_INTS_mpz_set_ui(decomp->dividend, 0); GMP_INTS_mpz_init(decomp->divisor); GMP_INTS_mpz_set_ui(decomp->divisor, 1); GMP_INTS_mpz_init(decomp->a); GMP_INTS_mpz_set_ui(decomp->a, 0); GMP_INTS_mpz_init(decomp->remainder); GMP_INTS_mpz_set_ui(decomp->remainder, 0); GMP_INTS_mpz_init(decomp->p); GMP_INTS_mpz_set_ui(decomp->p, 0); GMP_INTS_mpz_init(decomp->q); GMP_INTS_mpz_set_ui(decomp->q, 1); goto return_point; } //If we're here there are not any errors that we //are willing to detect. We should be clear //for a continued fraction decomposition. loop_counter = 0; do { //Increment the count of "rows", because we're //about to add one. decomp->n++; //If we have used up all the space available //for integers, we have to allocate more. if (decomp->n > decomp->nallocd) { //We now have more allocated space. decomp->nallocd += GMP_RALG_CF_ALLOC_INCREMENT; //Be absolutely sure we have not made a greivous //error. assert(decomp->n <= decomp->nallocd); //Space for dividends. decomp->dividend = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_realloc( decomp->dividend, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpRealloc((char *)decomp->dividend, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #else realloc(decomp->dividend, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #endif //Space for divisors. decomp->divisor = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_realloc( decomp->divisor, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpRealloc((char *)decomp->divisor, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #else realloc(decomp->divisor, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #endif //Space for partial quotients. decomp->a = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_realloc( decomp->a, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpRealloc((char *)decomp->a, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #else realloc(decomp->a, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #endif //Space for remainders. decomp->remainder = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_realloc( decomp->remainder, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpRealloc((char *)decomp->remainder, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #else realloc(decomp->remainder, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #endif //Space for partial quotient numerators. decomp->p = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_realloc( decomp->p, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpRealloc((char *)decomp->p, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #else realloc(decomp->p, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #endif //Space for partial quotient denominators. decomp->q = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_realloc( decomp->q, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_INTS_mpz_struct *) TclpRealloc((char *)decomp->q, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #else realloc(decomp->q, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); #endif } //At this point, we have enough space to do the next round of operations. //Set up an index variable. i = decomp->n - 1; //Initialize all of the integers at this round. GMP_INTS_mpz_init(decomp->dividend + i); GMP_INTS_mpz_init(decomp->divisor + i); GMP_INTS_mpz_init(decomp->a + i); GMP_INTS_mpz_init(decomp->remainder + i); GMP_INTS_mpz_init(decomp->p + i); GMP_INTS_mpz_init(decomp->q + i); //Perform the next round of continued fraction decomposition. This //is standard stuff. if (i==0) { //In the 0th round, we essentially perform initial assignments. GMP_INTS_mpz_copy(decomp->dividend, &(decomp->num)); GMP_INTS_mpz_copy(decomp->divisor, &(decomp->den)); //Make the division to get quotient and remainder. GMP_INTS_mpz_tdiv_qr(decomp->a, decomp->remainder, decomp->dividend, decomp->divisor); //The convergents in the first round are always the quotient over 1. GMP_INTS_mpz_copy(decomp->p, decomp->a); GMP_INTS_mpz_set_ui(decomp->q, 1); } else if (i==1) { //In the 1st round, the only point of caution is that we have to //consider p(k-2)/q(k-2) carefully. GMP_INTS_mpz_copy(decomp->dividend + 1, decomp->divisor + 0); GMP_INTS_mpz_copy(decomp->divisor + 1, decomp->remainder + 0); //Make the division to get quotient and remainder. GMP_INTS_mpz_tdiv_qr(decomp->a + 1, decomp->remainder + 1, decomp->dividend + 1, decomp->divisor + 1); //Need to compute the numerator of the convergent. This will be: // a(1) p(0) + p(-1) = a(1)p(0) + 1. GMP_INTS_mpz_mul(decomp->p + 1, decomp->a + 1, decomp->p + 0); GMP_INTS_mpz_set_ui(&arb_temp1, 1); GMP_INTS_mpz_add(decomp->p + 1, decomp->p + 1, &arb_temp1); //Need to compute the denominator of the convergent. This will //be a(1)q(0) + q(-1) = a(1) q(0) = a(1). GMP_INTS_mpz_copy(decomp->q + 1, decomp->a + 1); } else { //In the general case, it is a simple formula. //Rotate in the dividend and divisor from the previous round. GMP_INTS_mpz_copy(decomp->dividend + i, decomp->divisor + i - 1); GMP_INTS_mpz_copy(decomp->divisor + i, decomp->remainder + i - 1); //Make the division to get quotient and remainder. GMP_INTS_mpz_tdiv_qr(decomp->a + i, decomp->remainder + i, decomp->dividend + i, decomp->divisor + i); //Need to compute the numerator of the convergent. This will be: // p(i) = a(i)p(i-1) + p(i-2) GMP_INTS_mpz_mul(decomp->p + i, decomp->a + i, decomp->p + i - 1); GMP_INTS_mpz_add(decomp->p + i, decomp->p + i, decomp->p + i - 2); //Need to compute the numerator of the convergent. This will be: // q(i) = q(i)q(i-1) + q(i-2) GMP_INTS_mpz_mul(decomp->q + i, decomp->a + i, decomp->q + i - 1); GMP_INTS_mpz_add(decomp->q + i, decomp->q + i, decomp->q + i - 2); } loop_counter++; } while(!GMP_INTS_mpz_is_zero(decomp->remainder + decomp->n - 1) && loop_counter < 100000); //In debug builds, be sure we did not terminate based on the loop counter. assert(loop_counter != 100000); return_point: //Deallocate space for temporary integers. GMP_INTS_mpz_clear(&arb_temp1); GMP_INTS_mpz_clear(&arb_temp2); } //08/16/01: Visual inspection OK. void GMP_RALG_cfdecomp_destroy( GMP_RALG_cf_app_struct *decomp ) { int i; //Eyeball the input parameters. Other eyeballing //will be done as integers are destroyed. assert(decomp != NULL); //First, destroy the things that are bound directly //to the record. GMP_INTS_mpz_clear(&(decomp->num)); GMP_INTS_mpz_clear(&(decomp->den)); //Now, destroy every integer which is allocated. for (i=0; i < decomp->n; i++) { GMP_INTS_mpz_clear(decomp->dividend + i); GMP_INTS_mpz_clear(decomp->divisor + i); GMP_INTS_mpz_clear(decomp->a + i); GMP_INTS_mpz_clear(decomp->remainder + i); GMP_INTS_mpz_clear(decomp->p + i); GMP_INTS_mpz_clear(decomp->q + i); } //Now, destroy the arrays of integers. #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(decomp->dividend); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)decomp->dividend); #else free(decomp->dividend); #endif #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(decomp->divisor); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)decomp->divisor); #else free(decomp->divisor); #endif #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(decomp->a); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)decomp->a); #else free(decomp->a); #endif #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(decomp->remainder); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)decomp->remainder); #else free(decomp->remainder); #endif #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(decomp->p); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)decomp->p); #else free(decomp->p); #endif #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(decomp->q); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)decomp->q); #else free(decomp->q); #endif } /******************************************************************/ /*** FORMATTED OUTPUT FUNCTIONS *********************************/ /******************************************************************/ //08/16/01: Visual inspection OK. void GMP_RALG_cfdecomp_emit( FILE *s, char *banner, GMP_RALG_cf_app_struct *decomp, int nf, int dap, const GMP_INTS_mpz_struct *dap_denominator) { int i; GMP_INTS_mpz_struct arb_temp, arb_quotient, arb_remainder; //Eyeball the input parameters. The banner is allowed to //be null, so can't check that. assert(s != NULL); assert(decomp != NULL); //Allocate our temporary integers. GMP_INTS_mpz_init(&arb_temp); GMP_INTS_mpz_init(&arb_quotient); GMP_INTS_mpz_init(&arb_remainder); //If banner requested and noformat option not used. if (banner && !nf) { FCMIOF_stream_bannerheading(s, banner, 1); } //Dump the input numerator. if (!nf) { GMP_INTS_mpz_long_int_format_to_stream(s, &(decomp->num), "Input Numerator"); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->num)); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); //Dump the input denominator. if (!nf) { GMP_INTS_mpz_long_int_format_to_stream(s, &(decomp->den), "Input Denominator"); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->den)); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); for (i=0; in; i++) { char strbuf[100]; //Buffer to prepare description. //Print out the dividend at each round. if (!nf) { sprintf(strbuf, "dividend(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, decomp->dividend + i, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->dividend+i); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); //Print out the divisor at each round. if (!nf) { sprintf(strbuf, "divisor(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, decomp->divisor + i, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->divisor+i); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); //Print out partial quotient at each round. if (!nf) { sprintf(strbuf, "a(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, decomp->a + i, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->a+i); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); //It doesn't make any sense to print out the //remainder, because this becomes the divisor //for the next round. It is just wasted output //lines. //Print out the convergent numerator at //each round. if (!nf) { sprintf(strbuf, "p(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, decomp->p + i, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->p+i); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); //Print out the convergent denominator at //each round. if (!nf) { sprintf(strbuf, "q(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, decomp->q + i, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->q+i); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); if (dap) { //Calculate the DAP numerator GMP_INTS_mpz_mul(&arb_temp, dap_denominator, decomp->p + i); GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder, &arb_temp, decomp->q + i); //Print DAP numerator. if (!nf) { sprintf(strbuf, "dap_h(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, &arb_quotient, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, &arb_quotient); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); //Print DAP denominator. if (!nf) { sprintf(strbuf, "dap_k(%d)", i); GMP_INTS_mpz_long_int_format_to_stream(s, dap_denominator, strbuf); } else { GMP_INTS_mpz_arb_int_raw_to_stream(s, dap_denominator); fprintf(s, "\n"); } //Separator if not in unformatted mode. if (!nf) FCMIOF_stream_hline(s); } } //Deallocate our temporary integers. GMP_INTS_mpz_clear(&arb_temp); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); } /******************************************************************/ /*** FAREY SERIES PREDECESSOR AND SUCCESSOR FUNCTIONS ***********/ /******************************************************************/ //08/16/01: Visual inspection OK. void GMP_RALG_farey_predecessor( GMP_RATS_mpq_struct *result, const GMP_RATS_mpq_struct *plus_two, const GMP_RATS_mpq_struct *plus_one, const GMP_INTS_mpz_struct *N) { GMP_RATS_mpq_struct result_copy; //Used to hold return value in case the result //is the same as either of the input arguments. GMP_INTS_mpz_struct temp1, temp2, floor_func; //Temporary integers. assert(result != NULL); assert(plus_two != NULL); assert(plus_one != NULL); assert(N != NULL); //Initialize the variables used. GMP_RATS_mpq_init(&result_copy); GMP_INTS_mpz_init(&temp1); GMP_INTS_mpz_init(&temp2); GMP_INTS_mpz_init(&floor_func); //Numerator of the term in the floor function. GMP_INTS_mpz_add(&temp1, &(plus_two->den), N); //Term in the floor function. This is used to //calculate both numerator and denominator, so we save it. GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(plus_one->den)); //Product of result of floor function and numerator--now //forming the numerator of the output. GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->num)); //Final result assigned to numerator. GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(plus_two->num)); //Product of result of floor function and denominator--now //forming the denominator of the output. GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->den)); //Final result assigned to denominator. GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(plus_two->den)); //Copy the result to the object owned by the caller. GMP_RATS_mpq_copy(result, &result_copy); //Deallocate dynamic memory. GMP_RATS_mpq_clear(&result_copy); GMP_INTS_mpz_clear(&temp1); GMP_INTS_mpz_clear(&temp2); GMP_INTS_mpz_clear(&floor_func); } //08/16/01: Visual inspection OK. void GMP_RALG_farey_successor( GMP_RATS_mpq_struct *result, const GMP_RATS_mpq_struct *minus_two, const GMP_RATS_mpq_struct *minus_one, const GMP_INTS_mpz_struct *N) { GMP_RATS_mpq_struct result_copy; //Used to hold return value in case the result //is the same as either of the input arguments. GMP_INTS_mpz_struct temp1, temp2, floor_func; //Temporary integers. assert(result != NULL); assert(minus_two != NULL); assert(minus_one != NULL); assert(N != NULL); //Initialize the variables used. GMP_RATS_mpq_init(&result_copy); GMP_INTS_mpz_init(&temp1); GMP_INTS_mpz_init(&temp2); GMP_INTS_mpz_init(&floor_func); //Numerator of the term in the floor function. GMP_INTS_mpz_add(&temp1, &(minus_two->den), N); //Term in the floor function. This is used to //calculate both numerator and denominator, so we save it. GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(minus_one->den)); //Product of result of floor function and numerator--now //forming the numerator of the output. GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->num)); //Final result assigned to numerator. GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(minus_two->num)); //Product of result of floor function and denominator--now //forming the denominator of the output. GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->den)); //Final result assigned to denominator. GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(minus_two->den)); //Copy the result to the object owned by the caller. GMP_RATS_mpq_copy(result, &result_copy); //Deallocate dynamic memory. GMP_RATS_mpq_clear(&result_copy); GMP_INTS_mpz_clear(&temp1); GMP_INTS_mpz_clear(&temp2); GMP_INTS_mpz_clear(&floor_func); } //08/16/01: Visual inspection OK. void GMP_RALG_enclosing_farey_neighbors( const GMP_RATS_mpq_struct *rn_in, const GMP_INTS_mpz_struct *N, const GMP_RALG_cf_app_struct *cf_rep, int *equality, GMP_RATS_mpq_struct *left, GMP_RATS_mpq_struct *right) { GMP_RATS_mpq_struct rn_abs; //Absolute value of rational number supplied. GMP_RATS_mpq_struct previous_convergent; //Convergent before the one that has the denominator //not exceeding the order of the series. Need to fudge //a little bit because don't have -1-th order convergents //tabulated. GMP_RATS_mpq_struct other_neighbor; //The other neighbor besides the highest-order convergent //without denominator too large. GMP_INTS_mpz_struct temp1, temp2, temp3, temp4; //Temporary integers. int ho_conv; //Index of highest-ordered convergent that does not have //denominator too large. //Eyeball the parameters. assert(rn_in != NULL); assert(N != NULL); assert(cf_rep != NULL); assert(equality != NULL); assert(left != NULL); assert(right != NULL); //Allocate dynamic variables. GMP_RATS_mpq_init(&rn_abs); GMP_RATS_mpq_init(&previous_convergent); GMP_RATS_mpq_init(&other_neighbor); GMP_INTS_mpz_init(&temp1); GMP_INTS_mpz_init(&temp2); GMP_INTS_mpz_init(&temp3); GMP_INTS_mpz_init(&temp4); //Zero is a troublesome case, because it requires us to //cross signs. Split this case out explicitly. if (GMP_INTS_mpz_is_zero(&(rn_in->num))) { *equality = 1; //0/1 a member of Farey series of any order. GMP_INTS_mpz_set_si(&(left->num), -1); GMP_INTS_mpz_copy(&(left->den), N); GMP_INTS_mpz_set_si(&(right->num), 1); GMP_INTS_mpz_copy(&(right->den), N); } else { //Make a copy of the rational number in. As a condition of //using this function, it must be normalized, but it still //may be negative. Our strategy is to treat the number as //positive, find the neighbors, then if it was negative //complement and re-order the neighbors. In other words, //find neighbors to a negative number by symmetry, not //by forming the CF representation of a negative number. //Also, we can't touch the input parameter. GMP_RATS_mpq_copy(&rn_abs, rn_in); GMP_INTS_mpz_abs(&(rn_abs.num)); //Find the index of the highest-ordered convergent //with a denominator not exceeding the denominator of //the rational number supplied. The zero'th order //convergent has a denominator of 1, so that one //at least is safe. //Assign either the "left" or right //neighbor to be the highest-ordered //convergent with a denominator not exceeding the //denominator of the rational number input. I say //"either" because the properties of convergents let //us know based on the oddness or evenness of the order //which side it is on. ho_conv = 0; while (((ho_conv + 1) < cf_rep->n) && (GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, N) <= 0)) { #if 0 //Some questions about this loop--debugging output. printf("ho_conv : %d\n", ho_conv); GMP_INTS_mpz_long_int_format_to_stream(stdout, cf_rep->q + ho_conv + 1, "decomp_den"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(rn_abs.den), "rn_in_den"); printf("Compare result: %d\n\n", GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, &(rn_abs.den))); #endif ho_conv++; } if (INTFUNC_is_even(ho_conv)) { GMP_INTS_mpz_copy(&(left->num), cf_rep->p + ho_conv); GMP_INTS_mpz_copy(&(left->den), cf_rep->q + ho_conv); } else { GMP_INTS_mpz_copy(&(right->num), cf_rep->p + ho_conv); GMP_INTS_mpz_copy(&(right->den), cf_rep->q + ho_conv); } //Now, we need to calculate the other neighbor based //on the standard formula. This is a little tricky //because we don't have the -1-th order convergents //tabulated so we have to fudge a little bit. if (ho_conv == 0) { GMP_RATS_mpq_set_si(&previous_convergent, 1, 0); } else { GMP_INTS_mpz_copy(&(previous_convergent.num), cf_rep->p + ho_conv - 1); GMP_INTS_mpz_copy(&(previous_convergent.den), cf_rep->q + ho_conv - 1); } //Calculate the other neighbor according to the standard //formula. GMP_INTS_mpz_sub(&temp1, N, &(previous_convergent.den)); GMP_INTS_mpz_tdiv_qr(&temp2, &temp3, &temp1, cf_rep->q + ho_conv); //temp2 now contains term from floor() function in formula. GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->p + ho_conv); GMP_INTS_mpz_add(&(other_neighbor.num), &temp1, &(previous_convergent.num)); GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->q + ho_conv); GMP_INTS_mpz_add(&(other_neighbor.den), &temp1, &(previous_convergent.den)); //Copy the other neighbor into the right slot. if (INTFUNC_is_even(ho_conv)) { GMP_RATS_mpq_copy(right, &other_neighbor); } else { GMP_RATS_mpq_copy(left, &other_neighbor); } //Set the equality flag. We have equality if and only //if the denominator of the rational number is less than //or equal to N. if (GMP_INTS_mpz_cmp(&(rn_abs.den), N) <= 0) { *equality = 1; } else { *equality = 0; } //In the event of equality, we don't really have the true //neighbors. If the final convergent is even-ordered, //the left needs to be replaced. If the final convergent //is odd-ordered, the right needs to be replaced. if (*equality) { if (INTFUNC_is_even(ho_conv)) { //Left needs to be replaced. GMP_RALG_farey_predecessor( left, right, &rn_abs, N); } else { //Right needs to be replaced. GMP_RALG_farey_successor( right, left, &rn_abs, N); } } //OK, we should be all done. The final catch is that if //the number supplied was negative, we need to invert //and re-order the neighbors. if (GMP_INTS_mpz_is_neg(&(rn_in->num))) { GMP_RATS_mpq_swap(left, right); GMP_INTS_mpz_negate(&(left->num)); GMP_INTS_mpz_negate(&(right->num)); } } //End if (rn==0) else clause //Deallocate dynamic variables. GMP_RATS_mpq_clear(&rn_abs); GMP_RATS_mpq_clear(&previous_convergent); GMP_RATS_mpq_clear(&other_neighbor); GMP_INTS_mpz_clear(&temp1); GMP_INTS_mpz_clear(&temp2); GMP_INTS_mpz_clear(&temp3); GMP_INTS_mpz_clear(&temp4); } //08/16/01: Visual inspection OK. Did not fully inspect the //iterative part of this function. Unit testing will be //careful, expect that to catch any anomalies. void GMP_RALG_consecutive_fab_terms( const GMP_RATS_mpq_struct *rn_in, const GMP_INTS_mpz_struct *kmax, const GMP_INTS_mpz_struct *hmax, int n_left_in, int n_right_in, GMP_RALG_fab_neighbor_collection_struct *result ) { int error_flag, equality_flag; char *estring_kmax_neg = "KMAX is zero, negative, or NAN."; char *estring_hmax_neg = "HMAX is negative or NAN."; char *estring_general = "Unspecified general error in GMP_RALG_consecutive_fab_terms()."; GMP_RATS_mpq_struct q_temp1, q_temp2, q_temp3, q_temp4, left_neighbor, right_neighbor, left_neighbor_abs, right_neighbor_abs, hmax_over_one_neg, corner_point_neg, abs_norm_recip_rn; //Eyeball input parameters. assert(rn_in != NULL); assert(kmax != NULL); assert(n_left_in >= 0); assert(n_left_in <= 0x00FFFFFF); assert(n_right_in >= 0); assert(n_right_in <= 0x00FFFFFF); assert(result != NULL); //Allocate all of the dynamic memory we'll need for this function. It will be //released at the end. GMP_RATS_mpq_init(&q_temp1); GMP_RATS_mpq_init(&q_temp2); GMP_RATS_mpq_init(&q_temp3); GMP_RATS_mpq_init(&q_temp4); GMP_RATS_mpq_init(&left_neighbor); GMP_RATS_mpq_init(&right_neighbor); GMP_RATS_mpq_init(&left_neighbor_abs); GMP_RATS_mpq_init(&right_neighbor_abs); GMP_RATS_mpq_init(&hmax_over_one_neg); GMP_RATS_mpq_init(&corner_point_neg); GMP_RATS_mpq_init(&abs_norm_recip_rn); //Zero out the result block. This is the easiest way to give many variables //default values of 0, FALSE, and NULL. memset(result, 0, sizeof(GMP_RALG_fab_neighbor_collection_struct)); //Allocate all integer and rational number structures in the result block. GMP_RATS_mpq_init(&(result->rn_in)); GMP_INTS_mpz_init(&(result->kmax_in)); GMP_INTS_mpz_init(&(result->hmax_in)); GMP_RATS_mpq_init(&(result->hmax_over_one)); GMP_RATS_mpq_init(&(result->corner_point)); GMP_RATS_mpq_init(&(result->corner_point_minus_one)); GMP_RATS_mpq_init(&(result->corner_point_plus_one)); GMP_RATS_mpq_init(&(result->norm_rn)); GMP_RATS_mpq_init(&(result->abs_norm_rn)); //Fill in the rational number, exactly as passed. GMP_RATS_mpq_copy(&(result->rn_in), rn_in); //Fill in the number of left and right neighbors that the caller wants. //However, let's of course say nothing less than zero and nothing more //than 10000 neighbors on either side. result->n_left_in = INTFUNC_min(INTFUNC_max(0, n_left_in), 10000); result->n_right_in = INTFUNC_min(INTFUNC_max(0, n_right_in), 10000); //Fill in the value of KMAX, exactly as passed. If it is not at least //the value of 1 or if error flags, croak. GMP_INTS_mpz_copy(&(result->kmax_in), kmax); if (GMP_INTS_mpz_get_flags(kmax) || GMP_INTS_mpz_is_zero(kmax) || GMP_INTS_mpz_is_neg(kmax)) { result->error = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1)); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpAlloc(sizeof(char) * (strlen(estring_kmax_neg) + 1)); #else malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1)); #endif strcpy(result->error, estring_kmax_neg); goto return_point; } //Decide whether the caller intends to use HMAX. Neg is error, but zero //is a signal that don't intend to use. if (hmax) { GMP_INTS_mpz_copy(&(result->hmax_in), hmax); if (GMP_INTS_mpz_get_flags(hmax) || GMP_INTS_mpz_is_neg(hmax)) { result->error = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1)); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpAlloc(sizeof(char) * (strlen(estring_hmax_neg) + 1)); #else malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1)); #endif strcpy(result->error, estring_hmax_neg); goto return_point; } else if (GMP_INTS_mpz_is_pos(hmax)) { result->hmax_supplied = 1; } } //If HMAX has been supplied, assign and normalize the //corner point. if (result->hmax_supplied) { GMP_INTS_mpz_copy(&(result->corner_point.num), &(result->hmax_in)); GMP_INTS_mpz_copy(&(result->corner_point.den), &(result->kmax_in)); GMP_RATS_mpq_normalize(&(result->corner_point)); } //If HMAX has been supplied, we want to get the continued //fraction representation of both the corner point and its //reciprocal. This is because we're going to need to //find its adjacent points so we can easily crawl //around a rectangular region of the integer lattice. if (result->hmax_supplied) { //CF representation of corner point. GMP_RALG_cfdecomp_init(&(result->corner_point_cf_rep), &error_flag, &(result->corner_point.num), &(result->corner_point.den)); result->corner_point_cf_rep_formed = 1; //If there was an error forming the CF representation //of the corner point, bail out. if (error_flag) { result->error = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); #else malloc(sizeof(char) * (strlen(estring_general) + 1)); #endif strcpy(result->error, estring_general); goto return_point; } //CF representation of reciprocal of corner point. GMP_RALG_cfdecomp_init(&(result->corner_point_recip_cf_rep), &error_flag, &(result->corner_point.den), &(result->corner_point.num)); result->corner_point_recip_cf_rep_formed = 1; //If there was an error forming the CF representation //of the reciprocal of the corner point, bail out. if (error_flag) { result->error = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); #else malloc(sizeof(char) * (strlen(estring_general) + 1)); #endif strcpy(result->error, estring_general); goto return_point; } } //Normalize the rational number supplied. GMP_RATS_mpq_copy(&(result->norm_rn), rn_in); GMP_RATS_mpq_normalize(&(result->norm_rn)); //Form the absolute value of the normalized //version, and set the neg flag. GMP_RATS_mpq_copy(&(result->abs_norm_rn),&(result->norm_rn)); if (GMP_INTS_mpz_is_neg(&(result->abs_norm_rn.num))) { GMP_INTS_mpz_negate(&(result->abs_norm_rn.num)); result->rn_is_neg = 1; } //Form the continued fraction representation of the //absolute value of the rational number supplied. //This is always required, because we cannot get any //neighbors without it. GMP_RALG_cfdecomp_init(&(result->rn_abs_cf_rep), &error_flag, &(result->abs_norm_rn.num), &(result->abs_norm_rn.den)); result->rn_abs_cf_rep_formed = 1; //If there was an error forming the CF representation //of the absolute value of rational number supplied, bail out. if (error_flag) { result->error = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); #else malloc(sizeof(char) * (strlen(estring_general) + 1)); #endif strcpy(result->error, estring_general); goto return_point; } //Set the equality flag. The rational number supplied is //in the series of interest if and only if, in its normalized //form, K <= KMAX, and if HMAX was supplied, H <= HMAX. if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.den), kmax) <= 0) { if (result->hmax_supplied) { if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.num), hmax) <= 0) { result->equality = 1; } else { result->equality = 0; } } else { result->equality = 1; } } else { result->equality = 0; } //The final cause of error is if the rational number //supplied is outside the interval [-HMAX/1, HMAX/1]. //In such cases, simply refuse to calculate //any approximations. This error can only occur //if HMAX is specified. If only KMAX is specified, //this error cannot occur. if (result->hmax_supplied) { //Form the rational number HMAX/1. We will use it for //a comparison. GMP_INTS_mpz_copy(&(result->hmax_over_one.num), hmax); GMP_INTS_mpz_set_ui(&(result->hmax_over_one.den), 1); //If the comparison shows that the absolute value of //the rational number in is larger than HMAX over 1, //then declare an error. if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->hmax_over_one),NULL) > 0) { result->error = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); #else malloc(sizeof(char) * (strlen(estring_general) + 1)); #endif strcpy(result->error, estring_general); goto return_point; } } //If we're here, we're very much clean. The only thing //that could go wrong is an overflow. //Allocate space for the left and right arrays of //neighbors. if (result->n_left_in) { result->lefts = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_RALG_fab_neighbor_struct *) TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in); #else malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in); #endif } if (result->n_right_in) { result->rights = #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) (GMP_RALG_fab_neighbor_struct *) TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in); #else malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in); #endif } //If the rational number supplied is above the corner //point, we want to form the continued fraction representation //of its reciprocal. if (result->hmax_supplied) { if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->corner_point),NULL) > 0) { GMP_RALG_cfdecomp_init(&(result->rn_abs_recip_cf_rep), &error_flag, &(result->abs_norm_rn.den), &(result->abs_norm_rn.num)); result->rn_abs_recip_cf_rep_formed = 1; } } //If HMAX has been supplied, we want to calculate the points just below and above //the corner point. The reason we want to do this is because we need to gracefully //"round the corner" in either direction. // //Calculate the point just to the left of the corner point. if (result->hmax_supplied) { GMP_RALG_enclosing_farey_neighbors( &(result->corner_point), &(result->kmax_in), &(result->corner_point_cf_rep), &equality_flag, &(result->corner_point_minus_one), &(q_temp1) ); } //Calculate the point just to the right of the corner point. This is //where HMAX is the dominant constraint. We need to find the left //Farey neighbor to the reciprocal of the corner point in the Farey //series of order HMAX, then take its reciprocal. There is the possibility //if KMAX=1 that this point will have a denominator of zero, but we //will accept that as a number here, since we should never hit it, //as it will be beyond HMAX/1. if (result->hmax_supplied) { GMP_RATS_mpq_copy(&q_temp1, &(result->corner_point)); GMP_INTS_mpz_swap(&(q_temp1.num), &(q_temp1.den)); GMP_RALG_enclosing_farey_neighbors( &q_temp1, &(result->hmax_in), &(result->corner_point_recip_cf_rep), &equality_flag, &(result->corner_point_plus_one), &(q_temp2) ); GMP_INTS_mpz_swap(&(result->corner_point_plus_one.num), &(result->corner_point_plus_one.den)); } //Calculate the complement of HMAX/1. Nothing that we generate can go beyond //this to the south. if (result->hmax_supplied) { GMP_RATS_mpq_copy(&(hmax_over_one_neg), &(result->hmax_over_one)); GMP_INTS_mpz_negate(&(hmax_over_one_neg.num)); } //Also calculate the complement of HMAX/KMAX. if (result->hmax_supplied) { GMP_RATS_mpq_copy(&(corner_point_neg), &(result->corner_point)); GMP_INTS_mpz_negate(&(corner_point_neg.num)); } //Form the reciprocal of the absolute value of the normalized value of //the rational number in. GMP_RATS_mpq_copy(&abs_norm_recip_rn, &(result->abs_norm_rn)); GMP_RATS_mpq_swap_components(&abs_norm_recip_rn); //OK, now we get down to brass tacks. Iterate first to get the //left neighbors. The ordinary complexity of this is also compounded //by the fact that we must handle negative numbers as well--everything //from -HMAX/1 to HMAX/1. // //PSEUDO-CODE: // a)If the rational number to approximate is <= -HMAX/1 or there are no // left neighbors requested, terminate with no neighbors on the left. // // b)Find the right neighbor of the rational number supplied. // // c)Find the left neighbor of the rational number supplied. // // d)While (queued_count < count) // // e)Queue the left neighbor, queued_count++ // // f)If (queued_count >= count), break. // // g)If (left_neighbor <= -HMAX/1), break // // h)Advance the frame one to the left. // //************************************************************************** // a)If the rational number to approximate is <= -HMAX/1 or there are no // left neighbors requested, terminate with no neighbors on the left. //************************************************************************** if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &hmax_over_one_neg, NULL) <= 0) || (n_left_in <= 0)) goto done_with_left_neighbors; //************************************************************************** // b)Find the right neighbor of the rational number supplied. //************************************************************************** // c)Find the left neighbor of the rational number supplied. //************************************************************************** if (!result->hmax_supplied) { //In this case, the notion of corner point is meaningless, because //there is no constraint on H. We can just go on our merry way. Get //the two neighbors. GMP_RALG_enclosing_farey_neighbors( &(result->norm_rn), &(result->kmax_in), &(result->rn_abs_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //The enclosing Farey neighbor function is prohibited from identifying the //rational number itself as a Farey term. If the number is in the Farey //series, we must replace the right neighbor, otherwise we cannot apply //the standard recursive formulas. if (equality_flag) { GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn)); } } else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0) { //The rational number specified is negative and below the negative corner point. //This means that HMAX is the dominant constraint. We need to find the //neighbors in the Farey series of order HMAX, then reorder and invert, etc. GMP_RALG_enclosing_farey_neighbors( &abs_norm_recip_rn, &(result->hmax_in), &(result->rn_abs_recip_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //Again, if the number specified was already in the series of interest, //we need to swap in the right neighbor. if (equality_flag) { GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn); } //Take the reciprocal of both neighbors, which will put them out of order, //then negate them, which will put them back in order. GMP_RATS_mpq_swap_components(&left_neighbor); GMP_INTS_mpz_negate(&(left_neighbor.num)); GMP_RATS_mpq_swap_components(&right_neighbor); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0) { //The rational number specified is the negative corner point. In this case //Because we can never return the corner point itself as a left neighbor, //we need to set the left value to be the negative of one past, and the right //to be the negative of the corner point. GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one)); GMP_INTS_mpz_negate(&(left_neighbor.num)); GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point)); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0) && (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0)) { //The rational number specified is in the area dominated by the KMAX constraint //between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will //handle this correctly. Again, we need to adjust the output if the number //is already formable, because the Farey neighbor function is prohibited from //returning the number itself as a neighbor. GMP_RALG_enclosing_farey_neighbors( &(result->norm_rn), &(result->kmax_in), &(result->rn_abs_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //The enclosing Farey neighbor function is prohibited from identifying the //rational number itself as a Farey term. If the number is in the Farey //series, we must replace the right neighbor, otherwise we cannot apply //the standard recursive formulas. if (equality_flag) { GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn)); } } else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0) { //The rational number specified is the corner point. In this case //because we can never return the corner point itself as a left neighbor, //we need to set the left value to be one before, and the right //to be the corner point. GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one)); GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point)); } else { //The only possibility left is that the number is positive and above the //corner point where HMAX is the dominant constraint. GMP_RALG_enclosing_farey_neighbors( &abs_norm_recip_rn, &(result->hmax_in), &(result->rn_abs_recip_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //Again, if the number specified was already in the series of interest, //we need to swap in the neighbor. This time, however, it must be the //left neighbor because taking the reciprocals will reverse the order. if (equality_flag) { GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn); } //Take the reciprocal of both neighbors, which will put them out of order, //then swap them, which will put them back in order. GMP_RATS_mpq_swap_components(&left_neighbor); GMP_RATS_mpq_swap_components(&right_neighbor); GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor); } #if 0 //Print out the left neighbor and right neighbor determined, for debugging. GMP_INTS_mpz_long_int_format_to_stream(stdout, &(left_neighbor.num), "left_neigh_num"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(left_neighbor.den), "left_neigh_den"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(right_neighbor.num), "right_neigh_num"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(right_neighbor.den), "right_neigh_den"); #endif //************************************************************************** // d)While (queued_count < count) //************************************************************************** while (result->n_left_out < result->n_left_in) { //************************************************************************** // e)Queue the left neighbor, queued_count++ //************************************************************************** (result->lefts + result->n_left_out)->index = -(result->n_left_out + 1); GMP_RATS_mpq_init(&((result->lefts + result->n_left_out)->neighbor)); GMP_RATS_mpq_copy(&((result->lefts + result->n_left_out)->neighbor), &left_neighbor); (result->n_left_out)++; //************************************************************************** // f)If (queued_count >= count), break. //************************************************************************** //By the way, this step is to save unnecessary contortions once we've met //the quota. if (result->n_left_out >= result->n_left_in) break; //************************************************************************** // g)If (left_neighbor <= -HMAX/1), break //************************************************************************** //This breaks us when we've queued the most negative number we can--can't go //further. This only applies for cases where KMAX is also specified. if (result->hmax_supplied && GMP_RATS_mpq_cmp(&left_neighbor, &hmax_over_one_neg, NULL) <= 0) break; //************************************************************************** // h)Advance the frame one to the left. //************************************************************************** //Advancing one frame to the left is a complicated affair, requiring several //subcases. We break it up into regions which are best visualized using //a graph of the integer lattice with dots for each rational number. if (!(result->hmax_supplied)) { //This is the case where we're are looking only in the //Farey series. if (GMP_INTS_mpz_is_pos(&left_neighbor.num)) { //In this case, the left neighbor and right neighbor //are both positive, and we can apply the standard //formulas. GMP_RALG_farey_predecessor(&q_temp1, &right_neighbor, &left_neighbor, &(result->kmax_in)); GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &q_temp1); } else if (GMP_INTS_mpz_is_zero(&left_neighbor.num)) { //In this case, we are making the transition from positive //to negative. GMP_INTS_mpz_set_si(&(left_neighbor.num), -1); GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in)); GMP_RATS_mpq_set_si(&right_neighbor, 0, 1); } else { //Here, we are purely negative and decreasing. Need to negate //the numbers, find successor, then negate. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_INTS_mpz_abs(&(q_temp1.num)); GMP_INTS_mpz_abs(&(q_temp2.num)); GMP_RALG_farey_successor(&q_temp3, &q_temp2, &q_temp1, &(result->kmax_in)); GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); GMP_INTS_mpz_negate(&(left_neighbor.num)); } } else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) > 0) { //We are above the top corner point. In this case HMAX is the dominant //constraint, and we find our food by taking reciprocals and applying //the standard relationships in the Farey series of order HMAX. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_RATS_mpq_swap_components(&q_temp1); GMP_RATS_mpq_swap_components(&q_temp2); GMP_RALG_farey_successor(&q_temp3, &q_temp2, &q_temp1, &(result->hmax_in)); GMP_RATS_mpq_swap_components(&q_temp3); GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); } else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) == 0) { //We are precisely at the corner point. This is where we round the corner. GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one)); } else if (GMP_INTS_mpz_is_pos(&left_neighbor.num)) { //In this region we are going straight down the Farey series. GMP_RALG_farey_predecessor(&q_temp1, &right_neighbor, &left_neighbor, &(result->kmax_in)); GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &q_temp1); } else if (GMP_INTS_mpz_is_zero(&left_neighbor.num)) { //In this case, we are making the transition from positive //to negative. GMP_INTS_mpz_set_si(&(left_neighbor.num), -1); GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in)); GMP_RATS_mpq_set_si(&right_neighbor, 0, 1); } else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) > 0) { //Here, we are purely negative and decreasing. Need to negate //the numbers, find successor, then negate. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_INTS_mpz_abs(&(q_temp1.num)); GMP_INTS_mpz_abs(&(q_temp2.num)); GMP_RALG_farey_successor(&q_temp3, &q_temp2, &q_temp1, &(result->kmax_in)); GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); GMP_INTS_mpz_negate(&(left_neighbor.num)); } else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) == 0) { //This is where we are rounding the negative corner. GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one)); GMP_INTS_mpz_negate(&(left_neighbor.num)); } else { //Here we're going in the negative direction along the "bottom" of the //rectangle. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_INTS_mpz_abs(&(q_temp1.num)); GMP_INTS_mpz_abs(&(q_temp2.num)); GMP_RATS_mpq_swap_components(&q_temp1); GMP_RATS_mpq_swap_components(&q_temp2); GMP_RALG_farey_predecessor(&q_temp3, &q_temp2, &q_temp1, &(result->hmax_in)); GMP_RATS_mpq_swap_components(&q_temp3); GMP_INTS_mpz_negate(&(q_temp3.num)); GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); } } done_with_left_neighbors: ; //************************************************************************** // a)If the rational number to approximate is >= HMAX/1 or there are no // right neighbors requested, terminate with no neighbors on the right. //************************************************************************** if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->hmax_over_one), NULL) >= 0) || (n_right_in <= 0)) goto done_with_right_neighbors; //************************************************************************** // b)Find the right neighbor of the rational number supplied. //************************************************************************** // c)Find the left neighbor of the rational number supplied. //************************************************************************** if (!result->hmax_supplied) { //In this case, the notion of corner point is meaningless, because //there is no constraint on H. We can just go on our merry way. Get //the two neighbors. GMP_RALG_enclosing_farey_neighbors( &(result->norm_rn), &(result->kmax_in), &(result->rn_abs_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //The enclosing Farey neighbor function is prohibited from identifying the //rational number itself as a Farey term. If the number is in the Farey //series, we must replace the left neighbor, otherwise we cannot apply //the standard recursive formulas. if (equality_flag) { GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn)); } } else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0) { //The rational number specified is negative and below the negative corner point. //This means that HMAX is the dominant constraint. We need to find the //neighbors in the Farey series of order HMAX, then reorder and invert, etc. GMP_RALG_enclosing_farey_neighbors( &abs_norm_recip_rn, &(result->hmax_in), &(result->rn_abs_recip_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //Again, if the number specified was already in the series of interest, //we need to swap in the left neighbor. if (equality_flag) { GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn); } //Take the reciprocal of both neighbors, which will put them out of order, //then negate them, which will put them back in order. GMP_RATS_mpq_swap_components(&left_neighbor); GMP_INTS_mpz_negate(&(left_neighbor.num)); GMP_RATS_mpq_swap_components(&right_neighbor); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0) { //The rational number specified is the negative corner point. In this case //Because we can never return the corner point itself as a left neighbor, //we need to set the right value to be the negative of one before, and the left //to be the negative of the corner point. GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point)); GMP_INTS_mpz_negate(&(left_neighbor.num)); GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one)); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0) && (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0)) { //The rational number specified is in the area dominated by the KMAX constraint //between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will //handle this correctly. Again, we need to adjust the output if the number //is already formable, because the Farey neighbor function is prohibited from //returning the number itself as a neighbor. GMP_RALG_enclosing_farey_neighbors( &(result->norm_rn), &(result->kmax_in), &(result->rn_abs_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //The enclosing Farey neighbor function is prohibited from identifying the //rational number itself as a Farey term. If the number is in the Farey //series, we must replace the left neighbor, otherwise we cannot apply //the standard recursive formulas. if (equality_flag) { GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn)); } } else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0) { //The rational number specified is the positive corner point. In this case. //because we can never return the corner point itself as a right neighbor, //we need to set the right value to be one after, and the left //to be the corner point. GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point)); GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one)); } else { //The only possibility left is that the number is positive and at or above the //corner point where HMAX is the dominant constraint. GMP_RALG_enclosing_farey_neighbors( &abs_norm_recip_rn, &(result->hmax_in), &(result->rn_abs_recip_cf_rep), &equality_flag, &left_neighbor, &right_neighbor ); //Again, if the number specified was already in the series of interest, //we need to swap in the neighbor. This time, however, it must be the //right neighbor because taking the reciprocals will reverse the order. if (equality_flag) { GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn); } //Take the reciprocal of both neighbors, which will put them out of order, //then swap them, which will put them back in order. GMP_RATS_mpq_swap_components(&left_neighbor); GMP_RATS_mpq_swap_components(&right_neighbor); GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor); } #if 0 //Print out the left neighbor and right neighbor determined, for debugging. GMP_INTS_mpz_long_int_format_to_stream(stdout, &(left_neighbor.num), "left_neigh_num"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(left_neighbor.den), "left_neigh_den"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(right_neighbor.num), "right_neigh_num"); GMP_INTS_mpz_long_int_format_to_stream(stdout, &(right_neighbor.den), "right_neigh_den"); #endif //************************************************************************** // d)While (queued_count < count) //************************************************************************** while (result->n_right_out < result->n_right_in) { //************************************************************************** // e)Queue the right neighbor, queued_count++ //************************************************************************** (result->rights + result->n_right_out)->index = (result->n_right_out + 1); GMP_RATS_mpq_init(&((result->rights + result->n_right_out)->neighbor)); GMP_RATS_mpq_copy(&((result->rights + result->n_right_out)->neighbor), &right_neighbor); (result->n_right_out)++; //************************************************************************** // f)If (queued_count >= count), break. //************************************************************************** //By the way, this step is to save unnecessary contortions once we've met //the quota. if (result->n_right_out >= result->n_right_in) break; //************************************************************************** // g)If (right_neighbor >= HMAX/1), break //************************************************************************** //This breaks us when we've queued the most positive number we can--can't go //further. This only applies for cases where KMAX is also specified. if (result->hmax_supplied && GMP_RATS_mpq_cmp(&right_neighbor, &(result->hmax_over_one), NULL) >= 0) break; //************************************************************************** // h)Advance the frame one to the right. //************************************************************************** //Advancing one frame to the right is a complicated affair, requiring several //subcases. We break it up into regions which are best visualized using //a graph of the integer lattice with dots for each rational number. if (!(result->hmax_supplied)) { //This is the case where we're are looking only in the //Farey series. if (GMP_INTS_mpz_is_neg(&right_neighbor.num)) { //Neg and increasing towards zero. Can handle by symmetry. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_INTS_mpz_abs(&(q_temp1.num)); GMP_INTS_mpz_abs(&(q_temp2.num)); GMP_RALG_farey_predecessor(&q_temp3, &q_temp1, &q_temp2, &(result->kmax_in)); GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if (GMP_INTS_mpz_is_zero(&right_neighbor.num)) { //Right term just hit zero and are increasing. //Left will become 0/1, right becomes 1/KMAX. GMP_RATS_mpq_set_si(&left_neighbor, 0, 1); GMP_INTS_mpz_set_si(&(right_neighbor.num), 1); GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in)); } else { //Are above zero and increasing. Can use standard Farey //successor formula. GMP_RALG_farey_successor(&q_temp1, &left_neighbor, &right_neighbor, &(result->kmax_in)); GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &q_temp1); } } else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) < 0) { //We are below the negative corner point and moving towards //zero, with HMAX the dominant constraint. We can proceed by //symmetry, producing a Farey successor and negating and inverting. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_INTS_mpz_abs(&(q_temp1.num)); GMP_INTS_mpz_abs(&(q_temp2.num)); GMP_RATS_mpq_swap_components(&q_temp1); GMP_RATS_mpq_swap_components(&q_temp2); GMP_RALG_farey_successor(&q_temp3, &q_temp1, &q_temp2, &(result->hmax_in)); GMP_RATS_mpq_swap_components(&q_temp3); GMP_INTS_mpz_negate(&(q_temp3.num)); GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); } else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) == 0) { //We are at the bottom negative corner point and need to "round the corner". GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one)); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if (GMP_INTS_mpz_is_neg(&right_neighbor.num)) { //In this region we are going straight up the Farey series approaching //zero. Need to negate to use standard relationships. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_INTS_mpz_abs(&(q_temp1.num)); GMP_INTS_mpz_abs(&(q_temp2.num)); GMP_RALG_farey_predecessor(&q_temp3, &q_temp1, &q_temp2, &(result->kmax_in)); GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); GMP_INTS_mpz_negate(&(right_neighbor.num)); } else if (GMP_INTS_mpz_is_zero(&right_neighbor.num)) { //Zero crossover. GMP_RATS_mpq_set_si(&left_neighbor, 0, 1); GMP_INTS_mpz_set_si(&(right_neighbor.num), 1); GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in)); } else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) < 0) { //Below corner point. Standard relationship applies. GMP_RALG_farey_successor(&q_temp1, &left_neighbor, &right_neighbor, &(result->kmax_in)); GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &q_temp1); } else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) == 0) { //At the positive corner point. GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one)); } else { //Above the positive corner point and heading for HMAX/1. GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); GMP_RATS_mpq_swap_components(&q_temp1); GMP_RATS_mpq_swap_components(&q_temp2); GMP_RALG_farey_predecessor(&q_temp3, &q_temp1, &q_temp2, &(result->hmax_in)); GMP_RATS_mpq_swap_components(&q_temp3); GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); } } done_with_right_neighbors: ; //This is a single return point so we catch all the dynamic memory //deallocation. return_point: GMP_RATS_mpq_clear(&q_temp1); GMP_RATS_mpq_clear(&q_temp2); GMP_RATS_mpq_clear(&q_temp3); GMP_RATS_mpq_clear(&q_temp4); GMP_RATS_mpq_clear(&left_neighbor); GMP_RATS_mpq_clear(&right_neighbor); GMP_RATS_mpq_clear(&left_neighbor_abs); GMP_RATS_mpq_clear(&right_neighbor_abs); GMP_RATS_mpq_clear(&hmax_over_one_neg); GMP_RATS_mpq_clear(&corner_point_neg); GMP_RATS_mpq_clear(&abs_norm_recip_rn); } //08/16/01: Visual inspection OK. void GMP_RALG_consecutive_fab_terms_result_free( GMP_RALG_fab_neighbor_collection_struct *arg ) { int i; //Eyeball the input. assert(arg != NULL); //Deallocate all rational numbers and integers that MUST be allocated, i.e. they are //never conditional. GMP_RATS_mpq_clear(&(arg->rn_in)); GMP_INTS_mpz_clear(&(arg->kmax_in)); GMP_INTS_mpz_clear(&(arg->hmax_in)); GMP_RATS_mpq_clear(&(arg->hmax_over_one)); GMP_RATS_mpq_clear(&(arg->corner_point)); GMP_RATS_mpq_clear(&(arg->corner_point_minus_one)); GMP_RATS_mpq_clear(&(arg->corner_point_plus_one)); GMP_RATS_mpq_clear(&(arg->norm_rn)); GMP_RATS_mpq_clear(&(arg->abs_norm_rn)); //Destroy any continued fraction representations that were //formed. if (arg->rn_abs_cf_rep_formed) { GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_cf_rep)); } if (arg->rn_abs_recip_cf_rep_formed) { GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_recip_cf_rep)); } if(arg->corner_point_cf_rep_formed) { GMP_RALG_cfdecomp_destroy(&(arg->corner_point_cf_rep)); } if(arg->corner_point_recip_cf_rep_formed) { GMP_RALG_cfdecomp_destroy(&(arg->corner_point_recip_cf_rep)); } //Walk through the lefts, freeing up any allocated rational numbers. for (i=0; i < arg->n_left_out; i++) { GMP_RATS_mpq_clear(&(arg->lefts[i].neighbor)); } //Walk through the rights, freeing up any allocated rational numbers. for (i=0; i < arg->n_right_out; i++) { GMP_RATS_mpq_clear(&(arg->rights[i].neighbor)); } //Deallocate any area assigned for lefts. if (arg->lefts) { #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(arg->lefts); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)arg->lefts); #else free(arg->lefts); #endif arg->lefts = NULL; } //Deallocate any area assigned for rights. if (arg->rights) { #if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) CCMALLOC_free(arg->rights); #elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) TclpFree((char *)arg->rights); #else free(arg->rights); #endif arg->rights = NULL; } } //08/16/01: Visual inspection OK. void GMP_RALG_consecutive_fab_terms_result_dump( FILE *s, GMP_RALG_fab_neighbor_collection_struct *arg ) { int i; char buf[250]; //Eyeball the input parameters. assert(s != NULL); assert(arg != NULL); //Announce intent. FCMIOF_stream_bannerheading(s, "Emitting Neighbor Decomp For Analysis", 1); //Dump the fields, in order. GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->rn_in.num), "rn_in_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->rn_in.den), "rn_in_den"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->kmax_in), "kmax_in"); fprintf(s, " hmax_supplied: %12d\n", arg->hmax_supplied); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->hmax_in), "hmax_in"); if (arg->error) { fprintf(s, " error: %s\n", arg->error); } else { fprintf(s, " error: NULL\n"); } GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->corner_point.num), "corner_point_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->corner_point.den), "corner_point_den"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->corner_point_minus_one.num), "cor_pt_minus_one_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->corner_point_minus_one.den), "cor_pt_minus_one_den"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->corner_point_plus_one.num), "cor_pt_plus_one_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->corner_point_plus_one.den), "cor_pt_plus_one_den"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->hmax_over_one.num), "hmax/1_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->hmax_over_one.den), "hmax/1_den"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->norm_rn.num), "norm_rn_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->norm_rn.den), "norm_rn_den"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->abs_norm_rn.num), "abs_norm_rn_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->abs_norm_rn.den), "abs_norm_rn_den"); fprintf(s, " rn_is_neg: %12d\n", arg->rn_is_neg); fprintf(s, " n_left_in: %12d\n", arg->n_left_in); fprintf(s, " n_right_in: %12d\n", arg->n_right_in); fprintf(s, "rn_abs_cf_rep_formed: %12d\n", arg->rn_abs_cf_rep_formed); if (arg->rn_abs_cf_rep_formed) { GMP_RALG_cfdecomp_emit(s, "Abs Of RN In CF Decomp", &(arg->rn_abs_cf_rep), 0, 0, NULL); } fprintf(s, "rn_abs_recip_cf_rep_formed: %12d\n", arg->rn_abs_recip_cf_rep_formed); if (arg->rn_abs_recip_cf_rep_formed) { GMP_RALG_cfdecomp_emit(s, "Abs Of Recip Of RN In CF Decomp", &(arg->rn_abs_recip_cf_rep), 0, 0, NULL); } fprintf(s, "corner_point_cf_rep_formed: %12d\n", arg->corner_point_cf_rep_formed); if (arg->corner_point_cf_rep_formed) { GMP_RALG_cfdecomp_emit(s, "Corner Point CF Decomp", &(arg->corner_point_cf_rep), 0, 0, NULL); } fprintf(s, "cor_pt_recip_cf_rep_formed: %12d\n", arg->corner_point_recip_cf_rep_formed); if (arg->corner_point_recip_cf_rep_formed) { GMP_RALG_cfdecomp_emit(s, "Corner Point Recip CF Decomp", &(arg->corner_point_recip_cf_rep), 0, 0, NULL); } fprintf(s, " equality: %12d\n", arg->equality); fprintf(s, " n_left_out: %12d\n", arg->n_left_out); fprintf(s, " n_right_out: %12d\n", arg->n_right_out); for (i=0; i < arg->n_left_out; i++) { sprintf(buf, "Contents Of Left Neighbor Array [%d]", i); FCMIOF_stream_bannerheading(s, buf, 0); fprintf(s, " index: %12d\n", arg->lefts[i].index); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->lefts[i].neighbor.num), "neighbor_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->lefts[i].neighbor.den), "neighbor_den"); } for (i=0; i < arg->n_right_out; i++) { sprintf(buf, "Contents Of Right Neighbor Array [%d]", i); FCMIOF_stream_bannerheading(s, buf, 0); fprintf(s, " index: %12d\n", arg->rights[i].index); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->rights[i].neighbor.num), "neighbor_num"); GMP_INTS_mpz_long_int_format_to_stream(s, &(arg->rights[i].neighbor.den), "neighbor_den"); } FCMIOF_stream_hline(s); } /******************************************************************/ /*** VERSION CONTROL REPORTING FUNCTIONS ************************/ /******************************************************************/ //08/16/01: Visual inspection OK. const char *GMP_RALG_cvcinfo(void) { return("$Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/c_datd/gmp_ralg.c,v 1.10 2002/01/27 17:58:15 dtashley Exp $"); } //08/16/01: Visual inspection OK. const char *GMP_RALG_hvcinfo(void) { return(GMP_RALG_H_VERSION); } //************************************************************************** // $Log: gmp_ralg.c,v $ // Revision 1.10 2002/01/27 17:58:15 dtashley // CRC32, other programs modified to work under new directory structure. // // Revision 1.9 2001/08/18 18:33:13 dtashley // Preparing for release of v1.05. // // Revision 1.8 2001/08/16 19:49:40 dtashley // Beginning to prepare for v1.05 release. // // Revision 1.7 2001/08/15 06:56:05 dtashley // Substantial progress. Safety check-in. // // Revision 1.6 2001/08/12 10:20:58 dtashley // Safety check-in. Substantial progress. // // Revision 1.5 2001/08/07 10:42:48 dtashley // Completion of CFRATNUM extensions and DOS command-line utility. // // Revision 1.4 2001/07/13 21:02:20 dtashley // Version control reporting changes. // // Revision 1.3 2001/07/13 20:44:42 dtashley // Changes, CVS keyword expansion test. // // Revision 1.2 2001/07/13 00:57:08 dtashley // Safety check-in. Substantial progress on port. // // Revision 1.1 2001/07/12 05:42:06 dtashley // Initial checkin. // //************************************************************************** // End of GMP_RALG.C.