1 |
// $Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/c_datd/gmp_ralg.c,v 1.10 2002/01/27 17:58:15 dtashley Exp $
|
2 |
|
3 |
//--------------------------------------------------------------------------------
|
4 |
//Copyright 2001 David T. Ashley
|
5 |
//-------------------------------------------------------------------------------------------------
|
6 |
//This source code and any program in which it is compiled/used is provided under the GNU GENERAL
|
7 |
//PUBLIC LICENSE, Version 3, full license text below.
|
8 |
//-------------------------------------------------------------------------------------------------
|
9 |
// GNU GENERAL PUBLIC LICENSE
|
10 |
// Version 3, 29 June 2007
|
11 |
//
|
12 |
// Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
13 |
// Everyone is permitted to copy and distribute verbatim copies
|
14 |
// of this license document, but changing it is not allowed.
|
15 |
//
|
16 |
// Preamble
|
17 |
//
|
18 |
// The GNU General Public License is a free, copyleft license for
|
19 |
//software and other kinds of works.
|
20 |
//
|
21 |
// The licenses for most software and other practical works are designed
|
22 |
//to take away your freedom to share and change the works. By contrast,
|
23 |
//the GNU General Public License is intended to guarantee your freedom to
|
24 |
//share and change all versions of a program--to make sure it remains free
|
25 |
//software for all its users. We, the Free Software Foundation, use the
|
26 |
//GNU General Public License for most of our software; it applies also to
|
27 |
//any other work released this way by its authors. You can apply it to
|
28 |
//your programs, too.
|
29 |
//
|
30 |
// When we speak of free software, we are referring to freedom, not
|
31 |
//price. Our General Public Licenses are designed to make sure that you
|
32 |
//have the freedom to distribute copies of free software (and charge for
|
33 |
//them if you wish), that you receive source code or can get it if you
|
34 |
//want it, that you can change the software or use pieces of it in new
|
35 |
//free programs, and that you know you can do these things.
|
36 |
//
|
37 |
// To protect your rights, we need to prevent others from denying you
|
38 |
//these rights or asking you to surrender the rights. Therefore, you have
|
39 |
//certain responsibilities if you distribute copies of the software, or if
|
40 |
//you modify it: responsibilities to respect the freedom of others.
|
41 |
//
|
42 |
// For example, if you distribute copies of such a program, whether
|
43 |
//gratis or for a fee, you must pass on to the recipients the same
|
44 |
//freedoms that you received. You must make sure that they, too, receive
|
45 |
//or can get the source code. And you must show them these terms so they
|
46 |
//know their rights.
|
47 |
//
|
48 |
// Developers that use the GNU GPL protect your rights with two steps:
|
49 |
//(1) assert copyright on the software, and (2) offer you this License
|
50 |
//giving you legal permission to copy, distribute and/or modify it.
|
51 |
//
|
52 |
// For the developers' and authors' protection, the GPL clearly explains
|
53 |
//that there is no warranty for this free software. For both users' and
|
54 |
//authors' sake, the GPL requires that modified versions be marked as
|
55 |
//changed, so that their problems will not be attributed erroneously to
|
56 |
//authors of previous versions.
|
57 |
//
|
58 |
// Some devices are designed to deny users access to install or run
|
59 |
//modified versions of the software inside them, although the manufacturer
|
60 |
//can do so. This is fundamentally incompatible with the aim of
|
61 |
//protecting users' freedom to change the software. The systematic
|
62 |
//pattern of such abuse occurs in the area of products for individuals to
|
63 |
//use, which is precisely where it is most unacceptable. Therefore, we
|
64 |
//have designed this version of the GPL to prohibit the practice for those
|
65 |
//products. If such problems arise substantially in other domains, we
|
66 |
//stand ready to extend this provision to those domains in future versions
|
67 |
//of the GPL, as needed to protect the freedom of users.
|
68 |
//
|
69 |
// Finally, every program is threatened constantly by software patents.
|
70 |
//States should not allow patents to restrict development and use of
|
71 |
//software on general-purpose computers, but in those that do, we wish to
|
72 |
//avoid the special danger that patents applied to a free program could
|
73 |
//make it effectively proprietary. To prevent this, the GPL assures that
|
74 |
//patents cannot be used to render the program non-free.
|
75 |
//
|
76 |
// The precise terms and conditions for copying, distribution and
|
77 |
//modification follow.
|
78 |
//
|
79 |
// TERMS AND CONDITIONS
|
80 |
//
|
81 |
// 0. Definitions.
|
82 |
//
|
83 |
// "This License" refers to version 3 of the GNU General Public License.
|
84 |
//
|
85 |
// "Copyright" also means copyright-like laws that apply to other kinds of
|
86 |
//works, such as semiconductor masks.
|
87 |
//
|
88 |
// "The Program" refers to any copyrightable work licensed under this
|
89 |
//License. Each licensee is addressed as "you". "Licensees" and
|
90 |
//"recipients" may be individuals or organizations.
|
91 |
//
|
92 |
// To "modify" a work means to copy from or adapt all or part of the work
|
93 |
//in a fashion requiring copyright permission, other than the making of an
|
94 |
//exact copy. The resulting work is called a "modified version" of the
|
95 |
//earlier work or a work "based on" the earlier work.
|
96 |
//
|
97 |
// A "covered work" means either the unmodified Program or a work based
|
98 |
//on the Program.
|
99 |
//
|
100 |
// To "propagate" a work means to do anything with it that, without
|
101 |
//permission, would make you directly or secondarily liable for
|
102 |
//infringement under applicable copyright law, except executing it on a
|
103 |
//computer or modifying a private copy. Propagation includes copying,
|
104 |
//distribution (with or without modification), making available to the
|
105 |
//public, and in some countries other activities as well.
|
106 |
//
|
107 |
// To "convey" a work means any kind of propagation that enables other
|
108 |
//parties to make or receive copies. Mere interaction with a user through
|
109 |
//a computer network, with no transfer of a copy, is not conveying.
|
110 |
//
|
111 |
// An interactive user interface displays "Appropriate Legal Notices"
|
112 |
//to the extent that it includes a convenient and prominently visible
|
113 |
//feature that (1) displays an appropriate copyright notice, and (2)
|
114 |
//tells the user that there is no warranty for the work (except to the
|
115 |
//extent that warranties are provided), that licensees may convey the
|
116 |
//work under this License, and how to view a copy of this License. If
|
117 |
//the interface presents a list of user commands or options, such as a
|
118 |
//menu, a prominent item in the list meets this criterion.
|
119 |
//
|
120 |
// 1. Source Code.
|
121 |
//
|
122 |
// The "source code" for a work means the preferred form of the work
|
123 |
//for making modifications to it. "Object code" means any non-source
|
124 |
//form of a work.
|
125 |
//
|
126 |
// A "Standard Interface" means an interface that either is an official
|
127 |
//standard defined by a recognized standards body, or, in the case of
|
128 |
//interfaces specified for a particular programming language, one that
|
129 |
//is widely used among developers working in that language.
|
130 |
//
|
131 |
// The "System Libraries" of an executable work include anything, other
|
132 |
//than the work as a whole, that (a) is included in the normal form of
|
133 |
//packaging a Major Component, but which is not part of that Major
|
134 |
//Component, and (b) serves only to enable use of the work with that
|
135 |
//Major Component, or to implement a Standard Interface for which an
|
136 |
//implementation is available to the public in source code form. A
|
137 |
//"Major Component", in this context, means a major essential component
|
138 |
//(kernel, window system, and so on) of the specific operating system
|
139 |
//(if any) on which the executable work runs, or a compiler used to
|
140 |
//produce the work, or an object code interpreter used to run it.
|
141 |
//
|
142 |
// The "Corresponding Source" for a work in object code form means all
|
143 |
//the source code needed to generate, install, and (for an executable
|
144 |
//work) run the object code and to modify the work, including scripts to
|
145 |
//control those activities. However, it does not include the work's
|
146 |
//System Libraries, or general-purpose tools or generally available free
|
147 |
//programs which are used unmodified in performing those activities but
|
148 |
//which are not part of the work. For example, Corresponding Source
|
149 |
//includes interface definition files associated with source files for
|
150 |
//the work, and the source code for shared libraries and dynamically
|
151 |
//linked subprograms that the work is specifically designed to require,
|
152 |
//such as by intimate data communication or control flow between those
|
153 |
//subprograms and other parts of the work.
|
154 |
//
|
155 |
// The Corresponding Source need not include anything that users
|
156 |
//can regenerate automatically from other parts of the Corresponding
|
157 |
//Source.
|
158 |
//
|
159 |
// The Corresponding Source for a work in source code form is that
|
160 |
//same work.
|
161 |
//
|
162 |
// 2. Basic Permissions.
|
163 |
//
|
164 |
// All rights granted under this License are granted for the term of
|
165 |
//copyright on the Program, and are irrevocable provided the stated
|
166 |
//conditions are met. This License explicitly affirms your unlimited
|
167 |
//permission to run the unmodified Program. The output from running a
|
168 |
//covered work is covered by this License only if the output, given its
|
169 |
//content, constitutes a covered work. This License acknowledges your
|
170 |
//rights of fair use or other equivalent, as provided by copyright law.
|
171 |
//
|
172 |
// You may make, run and propagate covered works that you do not
|
173 |
//convey, without conditions so long as your license otherwise remains
|
174 |
//in force. You may convey covered works to others for the sole purpose
|
175 |
//of having them make modifications exclusively for you, or provide you
|
176 |
//with facilities for running those works, provided that you comply with
|
177 |
//the terms of this License in conveying all material for which you do
|
178 |
//not control copyright. Those thus making or running the covered works
|
179 |
//for you must do so exclusively on your behalf, under your direction
|
180 |
//and control, on terms that prohibit them from making any copies of
|
181 |
//your copyrighted material outside their relationship with you.
|
182 |
//
|
183 |
// Conveying under any other circumstances is permitted solely under
|
184 |
//the conditions stated below. Sublicensing is not allowed; section 10
|
185 |
//makes it unnecessary.
|
186 |
//
|
187 |
// 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
188 |
//
|
189 |
// No covered work shall be deemed part of an effective technological
|
190 |
//measure under any applicable law fulfilling obligations under article
|
191 |
//11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
192 |
//similar laws prohibiting or restricting circumvention of such
|
193 |
//measures.
|
194 |
//
|
195 |
// When you convey a covered work, you waive any legal power to forbid
|
196 |
//circumvention of technological measures to the extent such circumvention
|
197 |
//is effected by exercising rights under this License with respect to
|
198 |
//the covered work, and you disclaim any intention to limit operation or
|
199 |
//modification of the work as a means of enforcing, against the work's
|
200 |
//users, your or third parties' legal rights to forbid circumvention of
|
201 |
//technological measures.
|
202 |
//
|
203 |
// 4. Conveying Verbatim Copies.
|
204 |
//
|
205 |
// You may convey verbatim copies of the Program's source code as you
|
206 |
//receive it, in any medium, provided that you conspicuously and
|
207 |
//appropriately publish on each copy an appropriate copyright notice;
|
208 |
//keep intact all notices stating that this License and any
|
209 |
//non-permissive terms added in accord with section 7 apply to the code;
|
210 |
//keep intact all notices of the absence of any warranty; and give all
|
211 |
//recipients a copy of this License along with the Program.
|
212 |
//
|
213 |
// You may charge any price or no price for each copy that you convey,
|
214 |
//and you may offer support or warranty protection for a fee.
|
215 |
//
|
216 |
// 5. Conveying Modified Source Versions.
|
217 |
//
|
218 |
// You may convey a work based on the Program, or the modifications to
|
219 |
//produce it from the Program, in the form of source code under the
|
220 |
//terms of section 4, provided that you also meet all of these conditions:
|
221 |
//
|
222 |
// a) The work must carry prominent notices stating that you modified
|
223 |
// it, and giving a relevant date.
|
224 |
//
|
225 |
// b) The work must carry prominent notices stating that it is
|
226 |
// released under this License and any conditions added under section
|
227 |
// 7. This requirement modifies the requirement in section 4 to
|
228 |
// "keep intact all notices".
|
229 |
//
|
230 |
// c) You must license the entire work, as a whole, under this
|
231 |
// License to anyone who comes into possession of a copy. This
|
232 |
// License will therefore apply, along with any applicable section 7
|
233 |
// additional terms, to the whole of the work, and all its parts,
|
234 |
// regardless of how they are packaged. This License gives no
|
235 |
// permission to license the work in any other way, but it does not
|
236 |
// invalidate such permission if you have separately received it.
|
237 |
//
|
238 |
// d) If the work has interactive user interfaces, each must display
|
239 |
// Appropriate Legal Notices; however, if the Program has interactive
|
240 |
// interfaces that do not display Appropriate Legal Notices, your
|
241 |
// work need not make them do so.
|
242 |
//
|
243 |
// A compilation of a covered work with other separate and independent
|
244 |
//works, which are not by their nature extensions of the covered work,
|
245 |
//and which are not combined with it such as to form a larger program,
|
246 |
//in or on a volume of a storage or distribution medium, is called an
|
247 |
//"aggregate" if the compilation and its resulting copyright are not
|
248 |
//used to limit the access or legal rights of the compilation's users
|
249 |
//beyond what the individual works permit. Inclusion of a covered work
|
250 |
//in an aggregate does not cause this License to apply to the other
|
251 |
//parts of the aggregate.
|
252 |
//
|
253 |
// 6. Conveying Non-Source Forms.
|
254 |
//
|
255 |
// You may convey a covered work in object code form under the terms
|
256 |
//of sections 4 and 5, provided that you also convey the
|
257 |
//machine-readable Corresponding Source under the terms of this License,
|
258 |
//in one of these ways:
|
259 |
//
|
260 |
// a) Convey the object code in, or embodied in, a physical product
|
261 |
// (including a physical distribution medium), accompanied by the
|
262 |
// Corresponding Source fixed on a durable physical medium
|
263 |
// customarily used for software interchange.
|
264 |
//
|
265 |
// b) Convey the object code in, or embodied in, a physical product
|
266 |
// (including a physical distribution medium), accompanied by a
|
267 |
// written offer, valid for at least three years and valid for as
|
268 |
// long as you offer spare parts or customer support for that product
|
269 |
// model, to give anyone who possesses the object code either (1) a
|
270 |
// copy of the Corresponding Source for all the software in the
|
271 |
// product that is covered by this License, on a durable physical
|
272 |
// medium customarily used for software interchange, for a price no
|
273 |
// more than your reasonable cost of physically performing this
|
274 |
// conveying of source, or (2) access to copy the
|
275 |
// Corresponding Source from a network server at no charge.
|
276 |
//
|
277 |
// c) Convey individual copies of the object code with a copy of the
|
278 |
// written offer to provide the Corresponding Source. This
|
279 |
// alternative is allowed only occasionally and noncommercially, and
|
280 |
// only if you received the object code with such an offer, in accord
|
281 |
// with subsection 6b.
|
282 |
//
|
283 |
// d) Convey the object code by offering access from a designated
|
284 |
// place (gratis or for a charge), and offer equivalent access to the
|
285 |
// Corresponding Source in the same way through the same place at no
|
286 |
// further charge. You need not require recipients to copy the
|
287 |
// Corresponding Source along with the object code. If the place to
|
288 |
// copy the object code is a network server, the Corresponding Source
|
289 |
// may be on a different server (operated by you or a third party)
|
290 |
// that supports equivalent copying facilities, provided you maintain
|
291 |
// clear directions next to the object code saying where to find the
|
292 |
// Corresponding Source. Regardless of what server hosts the
|
293 |
// Corresponding Source, you remain obligated to ensure that it is
|
294 |
// available for as long as needed to satisfy these requirements.
|
295 |
//
|
296 |
// e) Convey the object code using peer-to-peer transmission, provided
|
297 |
// you inform other peers where the object code and Corresponding
|
298 |
// Source of the work are being offered to the general public at no
|
299 |
// charge under subsection 6d.
|
300 |
//
|
301 |
// A separable portion of the object code, whose source code is excluded
|
302 |
//from the Corresponding Source as a System Library, need not be
|
303 |
//included in conveying the object code work.
|
304 |
//
|
305 |
// A "User Product" is either (1) a "consumer product", which means any
|
306 |
//tangible personal property which is normally used for personal, family,
|
307 |
//or household purposes, or (2) anything designed or sold for incorporation
|
308 |
//into a dwelling. In determining whether a product is a consumer product,
|
309 |
//doubtful cases shall be resolved in favor of coverage. For a particular
|
310 |
//product received by a particular user, "normally used" refers to a
|
311 |
//typical or common use of that class of product, regardless of the status
|
312 |
//of the particular user or of the way in which the particular user
|
313 |
//actually uses, or expects or is expected to use, the product. A product
|
314 |
//is a consumer product regardless of whether the product has substantial
|
315 |
//commercial, industrial or non-consumer uses, unless such uses represent
|
316 |
//the only significant mode of use of the product.
|
317 |
//
|
318 |
// "Installation Information" for a User Product means any methods,
|
319 |
//procedures, authorization keys, or other information required to install
|
320 |
//and execute modified versions of a covered work in that User Product from
|
321 |
//a modified version of its Corresponding Source. The information must
|
322 |
//suffice to ensure that the continued functioning of the modified object
|
323 |
//code is in no case prevented or interfered with solely because
|
324 |
//modification has been made.
|
325 |
//
|
326 |
// If you convey an object code work under this section in, or with, or
|
327 |
//specifically for use in, a User Product, and the conveying occurs as
|
328 |
//part of a transaction in which the right of possession and use of the
|
329 |
//User Product is transferred to the recipient in perpetuity or for a
|
330 |
//fixed term (regardless of how the transaction is characterized), the
|
331 |
//Corresponding Source conveyed under this section must be accompanied
|
332 |
//by the Installation Information. But this requirement does not apply
|
333 |
//if neither you nor any third party retains the ability to install
|
334 |
//modified object code on the User Product (for example, the work has
|
335 |
//been installed in ROM).
|
336 |
//
|
337 |
// The requirement to provide Installation Information does not include a
|
338 |
//requirement to continue to provide support service, warranty, or updates
|
339 |
//for a work that has been modified or installed by the recipient, or for
|
340 |
//the User Product in which it has been modified or installed. Access to a
|
341 |
//network may be denied when the modification itself materially and
|
342 |
//adversely affects the operation of the network or violates the rules and
|
343 |
//protocols for communication across the network.
|
344 |
//
|
345 |
// Corresponding Source conveyed, and Installation Information provided,
|
346 |
//in accord with this section must be in a format that is publicly
|
347 |
//documented (and with an implementation available to the public in
|
348 |
//source code form), and must require no special password or key for
|
349 |
//unpacking, reading or copying.
|
350 |
//
|
351 |
// 7. Additional Terms.
|
352 |
//
|
353 |
// "Additional permissions" are terms that supplement the terms of this
|
354 |
//License by making exceptions from one or more of its conditions.
|
355 |
//Additional permissions that are applicable to the entire Program shall
|
356 |
//be treated as though they were included in this License, to the extent
|
357 |
//that they are valid under applicable law. If additional permissions
|
358 |
//apply only to part of the Program, that part may be used separately
|
359 |
//under those permissions, but the entire Program remains governed by
|
360 |
//this License without regard to the additional permissions.
|
361 |
//
|
362 |
// When you convey a copy of a covered work, you may at your option
|
363 |
//remove any additional permissions from that copy, or from any part of
|
364 |
//it. (Additional permissions may be written to require their own
|
365 |
//removal in certain cases when you modify the work.) You may place
|
366 |
//additional permissions on material, added by you to a covered work,
|
367 |
//for which you have or can give appropriate copyright permission.
|
368 |
//
|
369 |
// Notwithstanding any other provision of this License, for material you
|
370 |
//add to a covered work, you may (if authorized by the copyright holders of
|
371 |
//that material) supplement the terms of this License with terms:
|
372 |
//
|
373 |
// a) Disclaiming warranty or limiting liability differently from the
|
374 |
// terms of sections 15 and 16 of this License; or
|
375 |
//
|
376 |
// b) Requiring preservation of specified reasonable legal notices or
|
377 |
// author attributions in that material or in the Appropriate Legal
|
378 |
// Notices displayed by works containing it; or
|
379 |
//
|
380 |
// c) Prohibiting misrepresentation of the origin of that material, or
|
381 |
// requiring that modified versions of such material be marked in
|
382 |
// reasonable ways as different from the original version; or
|
383 |
//
|
384 |
// d) Limiting the use for publicity purposes of names of licensors or
|
385 |
// authors of the material; or
|
386 |
//
|
387 |
// e) Declining to grant rights under trademark law for use of some
|
388 |
// trade names, trademarks, or service marks; or
|
389 |
//
|
390 |
// f) Requiring indemnification of licensors and authors of that
|
391 |
// material by anyone who conveys the material (or modified versions of
|
392 |
// it) with contractual assumptions of liability to the recipient, for
|
393 |
// any liability that these contractual assumptions directly impose on
|
394 |
// those licensors and authors.
|
395 |
//
|
396 |
// All other non-permissive additional terms are considered "further
|
397 |
//restrictions" within the meaning of section 10. If the Program as you
|
398 |
//received it, or any part of it, contains a notice stating that it is
|
399 |
//governed by this License along with a term that is a further
|
400 |
//restriction, you may remove that term. If a license document contains
|
401 |
//a further restriction but permits relicensing or conveying under this
|
402 |
//License, you may add to a covered work material governed by the terms
|
403 |
//of that license document, provided that the further restriction does
|
404 |
//not survive such relicensing or conveying.
|
405 |
//
|
406 |
// If you add terms to a covered work in accord with this section, you
|
407 |
//must place, in the relevant source files, a statement of the
|
408 |
//additional terms that apply to those files, or a notice indicating
|
409 |
//where to find the applicable terms.
|
410 |
//
|
411 |
// Additional terms, permissive or non-permissive, may be stated in the
|
412 |
//form of a separately written license, or stated as exceptions;
|
413 |
//the above requirements apply either way.
|
414 |
//
|
415 |
// 8. Termination.
|
416 |
//
|
417 |
// You may not propagate or modify a covered work except as expressly
|
418 |
//provided under this License. Any attempt otherwise to propagate or
|
419 |
//modify it is void, and will automatically terminate your rights under
|
420 |
//this License (including any patent licenses granted under the third
|
421 |
//paragraph of section 11).
|
422 |
//
|
423 |
// However, if you cease all violation of this License, then your
|
424 |
//license from a particular copyright holder is reinstated (a)
|
425 |
//provisionally, unless and until the copyright holder explicitly and
|
426 |
//finally terminates your license, and (b) permanently, if the copyright
|
427 |
//holder fails to notify you of the violation by some reasonable means
|
428 |
//prior to 60 days after the cessation.
|
429 |
//
|
430 |
// Moreover, your license from a particular copyright holder is
|
431 |
//reinstated permanently if the copyright holder notifies you of the
|
432 |
//violation by some reasonable means, this is the first time you have
|
433 |
//received notice of violation of this License (for any work) from that
|
434 |
//copyright holder, and you cure the violation prior to 30 days after
|
435 |
//your receipt of the notice.
|
436 |
//
|
437 |
// Termination of your rights under this section does not terminate the
|
438 |
//licenses of parties who have received copies or rights from you under
|
439 |
//this License. If your rights have been terminated and not permanently
|
440 |
//reinstated, you do not qualify to receive new licenses for the same
|
441 |
//material under section 10.
|
442 |
//
|
443 |
// 9. Acceptance Not Required for Having Copies.
|
444 |
//
|
445 |
// You are not required to accept this License in order to receive or
|
446 |
//run a copy of the Program. Ancillary propagation of a covered work
|
447 |
//occurring solely as a consequence of using peer-to-peer transmission
|
448 |
//to receive a copy likewise does not require acceptance. However,
|
449 |
//nothing other than this License grants you permission to propagate or
|
450 |
//modify any covered work. These actions infringe copyright if you do
|
451 |
//not accept this License. Therefore, by modifying or propagating a
|
452 |
//covered work, you indicate your acceptance of this License to do so.
|
453 |
//
|
454 |
// 10. Automatic Licensing of Downstream Recipients.
|
455 |
//
|
456 |
// Each time you convey a covered work, the recipient automatically
|
457 |
//receives a license from the original licensors, to run, modify and
|
458 |
//propagate that work, subject to this License. You are not responsible
|
459 |
//for enforcing compliance by third parties with this License.
|
460 |
//
|
461 |
// An "entity transaction" is a transaction transferring control of an
|
462 |
//organization, or substantially all assets of one, or subdividing an
|
463 |
//organization, or merging organizations. If propagation of a covered
|
464 |
//work results from an entity transaction, each party to that
|
465 |
//transaction who receives a copy of the work also receives whatever
|
466 |
//licenses to the work the party's predecessor in interest had or could
|
467 |
//give under the previous paragraph, plus a right to possession of the
|
468 |
//Corresponding Source of the work from the predecessor in interest, if
|
469 |
//the predecessor has it or can get it with reasonable efforts.
|
470 |
//
|
471 |
// You may not impose any further restrictions on the exercise of the
|
472 |
//rights granted or affirmed under this License. For example, you may
|
473 |
//not impose a license fee, royalty, or other charge for exercise of
|
474 |
//rights granted under this License, and you may not initiate litigation
|
475 |
//(including a cross-claim or counterclaim in a lawsuit) alleging that
|
476 |
//any patent claim is infringed by making, using, selling, offering for
|
477 |
//sale, or importing the Program or any portion of it.
|
478 |
//
|
479 |
// 11. Patents.
|
480 |
//
|
481 |
// A "contributor" is a copyright holder who authorizes use under this
|
482 |
//License of the Program or a work on which the Program is based. The
|
483 |
//work thus licensed is called the contributor's "contributor version".
|
484 |
//
|
485 |
// A contributor's "essential patent claims" are all patent claims
|
486 |
//owned or controlled by the contributor, whether already acquired or
|
487 |
//hereafter acquired, that would be infringed by some manner, permitted
|
488 |
//by this License, of making, using, or selling its contributor version,
|
489 |
//but do not include claims that would be infringed only as a
|
490 |
//consequence of further modification of the contributor version. For
|
491 |
//purposes of this definition, "control" includes the right to grant
|
492 |
//patent sublicenses in a manner consistent with the requirements of
|
493 |
//this License.
|
494 |
//
|
495 |
// Each contributor grants you a non-exclusive, worldwide, royalty-free
|
496 |
//patent license under the contributor's essential patent claims, to
|
497 |
//make, use, sell, offer for sale, import and otherwise run, modify and
|
498 |
//propagate the contents of its contributor version.
|
499 |
//
|
500 |
// In the following three paragraphs, a "patent license" is any express
|
501 |
//agreement or commitment, however denominated, not to enforce a patent
|
502 |
//(such as an express permission to practice a patent or covenant not to
|
503 |
//sue for patent infringement). To "grant" such a patent license to a
|
504 |
//party means to make such an agreement or commitment not to enforce a
|
505 |
//patent against the party.
|
506 |
//
|
507 |
// If you convey a covered work, knowingly relying on a patent license,
|
508 |
//and the Corresponding Source of the work is not available for anyone
|
509 |
//to copy, free of charge and under the terms of this License, through a
|
510 |
//publicly available network server or other readily accessible means,
|
511 |
//then you must either (1) cause the Corresponding Source to be so
|
512 |
//available, or (2) arrange to deprive yourself of the benefit of the
|
513 |
//patent license for this particular work, or (3) arrange, in a manner
|
514 |
//consistent with the requirements of this License, to extend the patent
|
515 |
//license to downstream recipients. "Knowingly relying" means you have
|
516 |
//actual knowledge that, but for the patent license, your conveying the
|
517 |
//covered work in a country, or your recipient's use of the covered work
|
518 |
//in a country, would infringe one or more identifiable patents in that
|
519 |
//country that you have reason to believe are valid.
|
520 |
//
|
521 |
// If, pursuant to or in connection with a single transaction or
|
522 |
//arrangement, you convey, or propagate by procuring conveyance of, a
|
523 |
//covered work, and grant a patent license to some of the parties
|
524 |
//receiving the covered work authorizing them to use, propagate, modify
|
525 |
//or convey a specific copy of the covered work, then the patent license
|
526 |
//you grant is automatically extended to all recipients of the covered
|
527 |
//work and works based on it.
|
528 |
//
|
529 |
// A patent license is "discriminatory" if it does not include within
|
530 |
//the scope of its coverage, prohibits the exercise of, or is
|
531 |
//conditioned on the non-exercise of one or more of the rights that are
|
532 |
//specifically granted under this License. You may not convey a covered
|
533 |
//work if you are a party to an arrangement with a third party that is
|
534 |
//in the business of distributing software, under which you make payment
|
535 |
//to the third party based on the extent of your activity of conveying
|
536 |
//the work, and under which the third party grants, to any of the
|
537 |
//parties who would receive the covered work from you, a discriminatory
|
538 |
//patent license (a) in connection with copies of the covered work
|
539 |
//conveyed by you (or copies made from those copies), or (b) primarily
|
540 |
//for and in connection with specific products or compilations that
|
541 |
//contain the covered work, unless you entered into that arrangement,
|
542 |
//or that patent license was granted, prior to 28 March 2007.
|
543 |
//
|
544 |
// Nothing in this License shall be construed as excluding or limiting
|
545 |
//any implied license or other defenses to infringement that may
|
546 |
//otherwise be available to you under applicable patent law.
|
547 |
//
|
548 |
// 12. No Surrender of Others' Freedom.
|
549 |
//
|
550 |
// If conditions are imposed on you (whether by court order, agreement or
|
551 |
//otherwise) that contradict the conditions of this License, they do not
|
552 |
//excuse you from the conditions of this License. If you cannot convey a
|
553 |
//covered work so as to satisfy simultaneously your obligations under this
|
554 |
//License and any other pertinent obligations, then as a consequence you may
|
555 |
//not convey it at all. For example, if you agree to terms that obligate you
|
556 |
//to collect a royalty for further conveying from those to whom you convey
|
557 |
//the Program, the only way you could satisfy both those terms and this
|
558 |
//License would be to refrain entirely from conveying the Program.
|
559 |
//
|
560 |
// 13. Use with the GNU Affero General Public License.
|
561 |
//
|
562 |
// Notwithstanding any other provision of this License, you have
|
563 |
//permission to link or combine any covered work with a work licensed
|
564 |
//under version 3 of the GNU Affero General Public License into a single
|
565 |
//combined work, and to convey the resulting work. The terms of this
|
566 |
//License will continue to apply to the part which is the covered work,
|
567 |
//but the special requirements of the GNU Affero General Public License,
|
568 |
//section 13, concerning interaction through a network will apply to the
|
569 |
//combination as such.
|
570 |
//
|
571 |
// 14. Revised Versions of this License.
|
572 |
//
|
573 |
// The Free Software Foundation may publish revised and/or new versions of
|
574 |
//the GNU General Public License from time to time. Such new versions will
|
575 |
//be similar in spirit to the present version, but may differ in detail to
|
576 |
//address new problems or concerns.
|
577 |
//
|
578 |
// Each version is given a distinguishing version number. If the
|
579 |
//Program specifies that a certain numbered version of the GNU General
|
580 |
//Public License "or any later version" applies to it, you have the
|
581 |
//option of following the terms and conditions either of that numbered
|
582 |
//version or of any later version published by the Free Software
|
583 |
//Foundation. If the Program does not specify a version number of the
|
584 |
//GNU General Public License, you may choose any version ever published
|
585 |
//by the Free Software Foundation.
|
586 |
//
|
587 |
// If the Program specifies that a proxy can decide which future
|
588 |
//versions of the GNU General Public License can be used, that proxy's
|
589 |
//public statement of acceptance of a version permanently authorizes you
|
590 |
//to choose that version for the Program.
|
591 |
//
|
592 |
// Later license versions may give you additional or different
|
593 |
//permissions. However, no additional obligations are imposed on any
|
594 |
//author or copyright holder as a result of your choosing to follow a
|
595 |
//later version.
|
596 |
//
|
597 |
// 15. Disclaimer of Warranty.
|
598 |
//
|
599 |
// THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
600 |
//APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
601 |
//HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
602 |
//OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
603 |
//THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
604 |
//PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
605 |
//IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
606 |
//ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
607 |
//
|
608 |
// 16. Limitation of Liability.
|
609 |
//
|
610 |
// IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
611 |
//WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
612 |
//THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
613 |
//GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
614 |
//USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
615 |
//DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
616 |
//PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
617 |
//EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
618 |
//SUCH DAMAGES.
|
619 |
//
|
620 |
// 17. Interpretation of Sections 15 and 16.
|
621 |
//
|
622 |
// If the disclaimer of warranty and limitation of liability provided
|
623 |
//above cannot be given local legal effect according to their terms,
|
624 |
//reviewing courts shall apply local law that most closely approximates
|
625 |
//an absolute waiver of all civil liability in connection with the
|
626 |
//Program, unless a warranty or assumption of liability accompanies a
|
627 |
//copy of the Program in return for a fee.
|
628 |
//
|
629 |
// END OF TERMS AND CONDITIONS
|
630 |
//
|
631 |
// How to Apply These Terms to Your New Programs
|
632 |
//
|
633 |
// If you develop a new program, and you want it to be of the greatest
|
634 |
//possible use to the public, the best way to achieve this is to make it
|
635 |
//free software which everyone can redistribute and change under these terms.
|
636 |
//
|
637 |
// To do so, attach the following notices to the program. It is safest
|
638 |
//to attach them to the start of each source file to most effectively
|
639 |
//state the exclusion of warranty; and each file should have at least
|
640 |
//the "copyright" line and a pointer to where the full notice is found.
|
641 |
//
|
642 |
// <one line to give the program's name and a brief idea of what it does.>
|
643 |
// Copyright (C) <year> <name of author>
|
644 |
//
|
645 |
// This program is free software: you can redistribute it and/or modify
|
646 |
// it under the terms of the GNU General Public License as published by
|
647 |
// the Free Software Foundation, either version 3 of the License, or
|
648 |
// (at your option) any later version.
|
649 |
//
|
650 |
// This program is distributed in the hope that it will be useful,
|
651 |
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
652 |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
653 |
// GNU General Public License for more details.
|
654 |
//
|
655 |
// You should have received a copy of the GNU General Public License
|
656 |
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
657 |
//
|
658 |
//Also add information on how to contact you by electronic and paper mail.
|
659 |
//
|
660 |
// If the program does terminal interaction, make it output a short
|
661 |
//notice like this when it starts in an interactive mode:
|
662 |
//
|
663 |
// <program> Copyright (C) <year> <name of author>
|
664 |
// This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
665 |
// This is free software, and you are welcome to redistribute it
|
666 |
// under certain conditions; type `show c' for details.
|
667 |
//
|
668 |
//The hypothetical commands `show w' and `show c' should show the appropriate
|
669 |
//parts of the General Public License. Of course, your program's commands
|
670 |
//might be different; for a GUI interface, you would use an "about box".
|
671 |
//
|
672 |
// You should also get your employer (if you work as a programmer) or school,
|
673 |
//if any, to sign a "copyright disclaimer" for the program, if necessary.
|
674 |
//For more information on this, and how to apply and follow the GNU GPL, see
|
675 |
//<http://www.gnu.org/licenses/>.
|
676 |
//
|
677 |
// The GNU General Public License does not permit incorporating your program
|
678 |
//into proprietary programs. If your program is a subroutine library, you
|
679 |
//may consider it more useful to permit linking proprietary applications with
|
680 |
//the library. If this is what you want to do, use the GNU Lesser General
|
681 |
//Public License instead of this License. But first, please read
|
682 |
//<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
683 |
//-------------------------------------------------------------------------------------------------
|
684 |
//--------------------------------------------------------------------------------
|
685 |
#define MODULE_GMP_RALG
|
686 |
|
687 |
#include <assert.h>
|
688 |
#include <stdio.h>
|
689 |
#include <string.h>
|
690 |
#include <time.h>
|
691 |
|
692 |
|
693 |
#include "fcmiof.h"
|
694 |
#include "gmp_ints.h"
|
695 |
#include "gmp_rats.h"
|
696 |
#include "gmp_ralg.h"
|
697 |
#include "intfunc.h"
|
698 |
|
699 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
700 |
#include "ccmalloc.h"
|
701 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
702 |
#include "tclalloc.h"
|
703 |
#else
|
704 |
/* Do nothing. */
|
705 |
#endif
|
706 |
|
707 |
|
708 |
/******************************************************************/
|
709 |
/*** INITIALIZATION AND DESTRUCTION FUNCTIONS *******************/
|
710 |
/******************************************************************/
|
711 |
//08/16/01: Visual inspection OK.
|
712 |
void GMP_RALG_cfdecomp_init(
|
713 |
GMP_RALG_cf_app_struct *decomp,
|
714 |
int *failure,
|
715 |
GMP_INTS_mpz_struct *num,
|
716 |
GMP_INTS_mpz_struct *den)
|
717 |
{
|
718 |
int loop_counter, i;
|
719 |
GMP_INTS_mpz_struct arb_temp1, arb_temp2;
|
720 |
|
721 |
//Eyeball the input parameters. The rest of the eyeballing
|
722 |
//will occur as functions are called to manipulate the
|
723 |
//numerator and denominator passed in.
|
724 |
assert(decomp != NULL);
|
725 |
assert(failure != NULL);
|
726 |
assert(num != NULL);
|
727 |
assert(den != NULL);
|
728 |
|
729 |
//Allocate space for temporary integers.
|
730 |
GMP_INTS_mpz_init(&arb_temp1);
|
731 |
GMP_INTS_mpz_init(&arb_temp2);
|
732 |
|
733 |
//Begin believing no failure.
|
734 |
*failure = 0;
|
735 |
|
736 |
//Initialize the copy of the numerator and denominator and
|
737 |
//copy these into the structure.
|
738 |
GMP_INTS_mpz_init(&(decomp->num));
|
739 |
GMP_INTS_mpz_copy(&(decomp->num), num);
|
740 |
GMP_INTS_mpz_init(&(decomp->den));
|
741 |
GMP_INTS_mpz_copy(&(decomp->den), den);
|
742 |
|
743 |
//Allocate the space for the first increment of the
|
744 |
//growable areas. We need to use different memory
|
745 |
//allocation functions depending on whether we're
|
746 |
//in a Tcl build or a DOS command-line utility
|
747 |
//build.
|
748 |
//Space for partial quotients.
|
749 |
decomp->a =
|
750 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
751 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
752 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
753 |
(GMP_INTS_mpz_struct *)
|
754 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
755 |
#else
|
756 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
757 |
#endif
|
758 |
|
759 |
//Dividends.
|
760 |
decomp->dividend =
|
761 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
762 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
763 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
764 |
(GMP_INTS_mpz_struct *)
|
765 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
766 |
#else
|
767 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
768 |
#endif
|
769 |
|
770 |
//Divisors.
|
771 |
decomp->divisor =
|
772 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
773 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
774 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
775 |
(GMP_INTS_mpz_struct *)
|
776 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
777 |
#else
|
778 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
779 |
#endif
|
780 |
|
781 |
//Remainders.
|
782 |
decomp->remainder =
|
783 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
784 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
785 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
786 |
(GMP_INTS_mpz_struct *)
|
787 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
788 |
#else
|
789 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
790 |
#endif
|
791 |
|
792 |
//Convergent numerators.
|
793 |
decomp->p =
|
794 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
795 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
796 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
797 |
(GMP_INTS_mpz_struct *)
|
798 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
799 |
#else
|
800 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
801 |
#endif
|
802 |
|
803 |
//Convergent denominators.
|
804 |
decomp->q =
|
805 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
806 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
807 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
808 |
(GMP_INTS_mpz_struct *)
|
809 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
810 |
#else
|
811 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
812 |
#endif
|
813 |
|
814 |
//Now the number of allocated slots is what we just allocated.
|
815 |
decomp->nallocd = GMP_RALG_CF_ALLOC_INCREMENT;
|
816 |
|
817 |
//The number of slots actually used is zero, to start with.
|
818 |
decomp->n = 0;
|
819 |
|
820 |
//There are a number of conditions that will lead to an error
|
821 |
//where we can't successfully form the continued fraction
|
822 |
//decomposition. These errors are:
|
823 |
// a)Either component is NAN.
|
824 |
// b)Zero denominator.
|
825 |
// c)Either component negative.
|
826 |
//In these cases, we'll pretend we got 0/1 for the number
|
827 |
//and set things accordingly, and we'll set the failure
|
828 |
//flag for the caller.
|
829 |
//
|
830 |
if (GMP_INTS_mpz_get_flags(num)
|
831 |
||
|
832 |
GMP_INTS_mpz_get_flags(den)
|
833 |
||
|
834 |
GMP_INTS_mpz_is_zero(den)
|
835 |
||
|
836 |
GMP_INTS_mpz_is_neg(num)
|
837 |
||
|
838 |
GMP_INTS_mpz_is_neg(den))
|
839 |
{
|
840 |
*failure = 1;
|
841 |
decomp->n = 1;
|
842 |
|
843 |
GMP_INTS_mpz_set_ui(&(decomp->num), 0);
|
844 |
GMP_INTS_mpz_set_ui(&(decomp->den), 1);
|
845 |
|
846 |
GMP_INTS_mpz_init(decomp->dividend);
|
847 |
GMP_INTS_mpz_set_ui(decomp->dividend, 0);
|
848 |
|
849 |
GMP_INTS_mpz_init(decomp->divisor);
|
850 |
GMP_INTS_mpz_set_ui(decomp->divisor, 1);
|
851 |
|
852 |
GMP_INTS_mpz_init(decomp->a);
|
853 |
GMP_INTS_mpz_set_ui(decomp->a, 0);
|
854 |
|
855 |
GMP_INTS_mpz_init(decomp->remainder);
|
856 |
GMP_INTS_mpz_set_ui(decomp->remainder, 0);
|
857 |
|
858 |
GMP_INTS_mpz_init(decomp->p);
|
859 |
GMP_INTS_mpz_set_ui(decomp->p, 0);
|
860 |
|
861 |
GMP_INTS_mpz_init(decomp->q);
|
862 |
GMP_INTS_mpz_set_ui(decomp->q, 1);
|
863 |
|
864 |
goto return_point;
|
865 |
}
|
866 |
|
867 |
//If we're here there are not any errors that we
|
868 |
//are willing to detect. We should be clear
|
869 |
//for a continued fraction decomposition.
|
870 |
loop_counter = 0;
|
871 |
do
|
872 |
{
|
873 |
//Increment the count of "rows", because we're
|
874 |
//about to add one.
|
875 |
decomp->n++;
|
876 |
|
877 |
//If we have used up all the space available
|
878 |
//for integers, we have to allocate more.
|
879 |
if (decomp->n > decomp->nallocd)
|
880 |
{
|
881 |
//We now have more allocated space.
|
882 |
decomp->nallocd += GMP_RALG_CF_ALLOC_INCREMENT;
|
883 |
|
884 |
//Be absolutely sure we have not made a greivous
|
885 |
//error.
|
886 |
assert(decomp->n <= decomp->nallocd);
|
887 |
|
888 |
//Space for dividends.
|
889 |
decomp->dividend =
|
890 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
891 |
CCMALLOC_realloc(
|
892 |
decomp->dividend,
|
893 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
894 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
895 |
(GMP_INTS_mpz_struct *)
|
896 |
TclpRealloc((char *)decomp->dividend,
|
897 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
898 |
#else
|
899 |
realloc(decomp->dividend, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
900 |
#endif
|
901 |
|
902 |
//Space for divisors.
|
903 |
decomp->divisor =
|
904 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
905 |
CCMALLOC_realloc(
|
906 |
decomp->divisor,
|
907 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
908 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
909 |
(GMP_INTS_mpz_struct *)
|
910 |
TclpRealloc((char *)decomp->divisor,
|
911 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
912 |
#else
|
913 |
realloc(decomp->divisor, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
914 |
#endif
|
915 |
|
916 |
//Space for partial quotients.
|
917 |
decomp->a =
|
918 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
919 |
CCMALLOC_realloc(
|
920 |
decomp->a,
|
921 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
922 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
923 |
(GMP_INTS_mpz_struct *)
|
924 |
TclpRealloc((char *)decomp->a,
|
925 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
926 |
#else
|
927 |
realloc(decomp->a, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
928 |
#endif
|
929 |
|
930 |
//Space for remainders.
|
931 |
decomp->remainder =
|
932 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
933 |
CCMALLOC_realloc(
|
934 |
decomp->remainder,
|
935 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
936 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
937 |
(GMP_INTS_mpz_struct *)
|
938 |
TclpRealloc((char *)decomp->remainder,
|
939 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
940 |
#else
|
941 |
realloc(decomp->remainder, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
942 |
#endif
|
943 |
|
944 |
//Space for partial quotient numerators.
|
945 |
decomp->p =
|
946 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
947 |
CCMALLOC_realloc(
|
948 |
decomp->p,
|
949 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
950 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
951 |
(GMP_INTS_mpz_struct *)
|
952 |
TclpRealloc((char *)decomp->p,
|
953 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
954 |
#else
|
955 |
realloc(decomp->p, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
956 |
#endif
|
957 |
|
958 |
//Space for partial quotient denominators.
|
959 |
decomp->q =
|
960 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
961 |
CCMALLOC_realloc(
|
962 |
decomp->q,
|
963 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
964 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
965 |
(GMP_INTS_mpz_struct *)
|
966 |
TclpRealloc((char *)decomp->q,
|
967 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
968 |
#else
|
969 |
realloc(decomp->q, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
970 |
#endif
|
971 |
}
|
972 |
|
973 |
//At this point, we have enough space to do the next round of operations.
|
974 |
//Set up an index variable.
|
975 |
i = decomp->n - 1;
|
976 |
|
977 |
//Initialize all of the integers at this round.
|
978 |
GMP_INTS_mpz_init(decomp->dividend + i);
|
979 |
GMP_INTS_mpz_init(decomp->divisor + i);
|
980 |
GMP_INTS_mpz_init(decomp->a + i);
|
981 |
GMP_INTS_mpz_init(decomp->remainder + i);
|
982 |
GMP_INTS_mpz_init(decomp->p + i);
|
983 |
GMP_INTS_mpz_init(decomp->q + i);
|
984 |
|
985 |
//Perform the next round of continued fraction decomposition. This
|
986 |
//is standard stuff.
|
987 |
if (i==0)
|
988 |
{
|
989 |
//In the 0th round, we essentially perform initial assignments.
|
990 |
GMP_INTS_mpz_copy(decomp->dividend, &(decomp->num));
|
991 |
GMP_INTS_mpz_copy(decomp->divisor, &(decomp->den));
|
992 |
|
993 |
//Make the division to get quotient and remainder.
|
994 |
GMP_INTS_mpz_tdiv_qr(decomp->a, decomp->remainder, decomp->dividend, decomp->divisor);
|
995 |
|
996 |
//The convergents in the first round are always the quotient over 1.
|
997 |
GMP_INTS_mpz_copy(decomp->p, decomp->a);
|
998 |
GMP_INTS_mpz_set_ui(decomp->q, 1);
|
999 |
}
|
1000 |
else if (i==1)
|
1001 |
{
|
1002 |
//In the 1st round, the only point of caution is that we have to
|
1003 |
//consider p(k-2)/q(k-2) carefully.
|
1004 |
GMP_INTS_mpz_copy(decomp->dividend + 1, decomp->divisor + 0);
|
1005 |
GMP_INTS_mpz_copy(decomp->divisor + 1, decomp->remainder + 0);
|
1006 |
|
1007 |
//Make the division to get quotient and remainder.
|
1008 |
GMP_INTS_mpz_tdiv_qr(decomp->a + 1,
|
1009 |
decomp->remainder + 1,
|
1010 |
decomp->dividend + 1,
|
1011 |
decomp->divisor + 1);
|
1012 |
|
1013 |
//Need to compute the numerator of the convergent. This will be:
|
1014 |
// a(1) p(0) + p(-1) = a(1)p(0) + 1.
|
1015 |
GMP_INTS_mpz_mul(decomp->p + 1, decomp->a + 1, decomp->p + 0);
|
1016 |
GMP_INTS_mpz_set_ui(&arb_temp1, 1);
|
1017 |
GMP_INTS_mpz_add(decomp->p + 1, decomp->p + 1, &arb_temp1);
|
1018 |
|
1019 |
//Need to compute the denominator of the convergent. This will
|
1020 |
//be a(1)q(0) + q(-1) = a(1) q(0) = a(1).
|
1021 |
GMP_INTS_mpz_copy(decomp->q + 1, decomp->a + 1);
|
1022 |
}
|
1023 |
else
|
1024 |
{
|
1025 |
//In the general case, it is a simple formula.
|
1026 |
//Rotate in the dividend and divisor from the previous round.
|
1027 |
GMP_INTS_mpz_copy(decomp->dividend + i, decomp->divisor + i - 1);
|
1028 |
GMP_INTS_mpz_copy(decomp->divisor + i, decomp->remainder + i - 1);
|
1029 |
|
1030 |
//Make the division to get quotient and remainder.
|
1031 |
GMP_INTS_mpz_tdiv_qr(decomp->a + i,
|
1032 |
decomp->remainder + i,
|
1033 |
decomp->dividend + i,
|
1034 |
decomp->divisor + i);
|
1035 |
|
1036 |
//Need to compute the numerator of the convergent. This will be:
|
1037 |
// p(i) = a(i)p(i-1) + p(i-2)
|
1038 |
GMP_INTS_mpz_mul(decomp->p + i, decomp->a + i, decomp->p + i - 1);
|
1039 |
GMP_INTS_mpz_add(decomp->p + i, decomp->p + i, decomp->p + i - 2);
|
1040 |
|
1041 |
//Need to compute the numerator of the convergent. This will be:
|
1042 |
// q(i) = q(i)q(i-1) + q(i-2)
|
1043 |
GMP_INTS_mpz_mul(decomp->q + i, decomp->a + i, decomp->q + i - 1);
|
1044 |
GMP_INTS_mpz_add(decomp->q + i, decomp->q + i, decomp->q + i - 2);
|
1045 |
}
|
1046 |
|
1047 |
loop_counter++;
|
1048 |
} while(!GMP_INTS_mpz_is_zero(decomp->remainder + decomp->n - 1) && loop_counter < 100000);
|
1049 |
|
1050 |
//In debug builds, be sure we did not terminate based on the loop counter.
|
1051 |
assert(loop_counter != 100000);
|
1052 |
|
1053 |
return_point:
|
1054 |
|
1055 |
//Deallocate space for temporary integers.
|
1056 |
GMP_INTS_mpz_clear(&arb_temp1);
|
1057 |
GMP_INTS_mpz_clear(&arb_temp2);
|
1058 |
}
|
1059 |
|
1060 |
|
1061 |
//08/16/01: Visual inspection OK.
|
1062 |
void GMP_RALG_cfdecomp_destroy(
|
1063 |
GMP_RALG_cf_app_struct *decomp
|
1064 |
)
|
1065 |
{
|
1066 |
int i;
|
1067 |
|
1068 |
//Eyeball the input parameters. Other eyeballing
|
1069 |
//will be done as integers are destroyed.
|
1070 |
assert(decomp != NULL);
|
1071 |
|
1072 |
//First, destroy the things that are bound directly
|
1073 |
//to the record.
|
1074 |
GMP_INTS_mpz_clear(&(decomp->num));
|
1075 |
GMP_INTS_mpz_clear(&(decomp->den));
|
1076 |
|
1077 |
//Now, destroy every integer which is allocated.
|
1078 |
for (i=0; i < decomp->n; i++)
|
1079 |
{
|
1080 |
GMP_INTS_mpz_clear(decomp->dividend + i);
|
1081 |
GMP_INTS_mpz_clear(decomp->divisor + i);
|
1082 |
GMP_INTS_mpz_clear(decomp->a + i);
|
1083 |
GMP_INTS_mpz_clear(decomp->remainder + i);
|
1084 |
GMP_INTS_mpz_clear(decomp->p + i);
|
1085 |
GMP_INTS_mpz_clear(decomp->q + i);
|
1086 |
}
|
1087 |
|
1088 |
//Now, destroy the arrays of integers.
|
1089 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1090 |
CCMALLOC_free(decomp->dividend);
|
1091 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1092 |
TclpFree((char *)decomp->dividend);
|
1093 |
#else
|
1094 |
free(decomp->dividend);
|
1095 |
#endif
|
1096 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1097 |
CCMALLOC_free(decomp->divisor);
|
1098 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1099 |
TclpFree((char *)decomp->divisor);
|
1100 |
#else
|
1101 |
free(decomp->divisor);
|
1102 |
#endif
|
1103 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1104 |
CCMALLOC_free(decomp->a);
|
1105 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1106 |
TclpFree((char *)decomp->a);
|
1107 |
#else
|
1108 |
free(decomp->a);
|
1109 |
#endif
|
1110 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1111 |
CCMALLOC_free(decomp->remainder);
|
1112 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1113 |
TclpFree((char *)decomp->remainder);
|
1114 |
#else
|
1115 |
free(decomp->remainder);
|
1116 |
#endif
|
1117 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1118 |
CCMALLOC_free(decomp->p);
|
1119 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1120 |
TclpFree((char *)decomp->p);
|
1121 |
#else
|
1122 |
free(decomp->p);
|
1123 |
#endif
|
1124 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1125 |
CCMALLOC_free(decomp->q);
|
1126 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1127 |
TclpFree((char *)decomp->q);
|
1128 |
#else
|
1129 |
free(decomp->q);
|
1130 |
#endif
|
1131 |
}
|
1132 |
|
1133 |
|
1134 |
/******************************************************************/
|
1135 |
/*** FORMATTED OUTPUT FUNCTIONS *********************************/
|
1136 |
/******************************************************************/
|
1137 |
//08/16/01: Visual inspection OK.
|
1138 |
void GMP_RALG_cfdecomp_emit(
|
1139 |
FILE *s,
|
1140 |
char *banner,
|
1141 |
GMP_RALG_cf_app_struct *decomp,
|
1142 |
int nf,
|
1143 |
int dap,
|
1144 |
const GMP_INTS_mpz_struct *dap_denominator)
|
1145 |
{
|
1146 |
int i;
|
1147 |
|
1148 |
GMP_INTS_mpz_struct arb_temp, arb_quotient, arb_remainder;
|
1149 |
|
1150 |
//Eyeball the input parameters. The banner is allowed to
|
1151 |
//be null, so can't check that.
|
1152 |
assert(s != NULL);
|
1153 |
assert(decomp != NULL);
|
1154 |
|
1155 |
//Allocate our temporary integers.
|
1156 |
GMP_INTS_mpz_init(&arb_temp);
|
1157 |
GMP_INTS_mpz_init(&arb_quotient);
|
1158 |
GMP_INTS_mpz_init(&arb_remainder);
|
1159 |
|
1160 |
//If banner requested and noformat option not used.
|
1161 |
if (banner && !nf)
|
1162 |
{
|
1163 |
FCMIOF_stream_bannerheading(s, banner, 1);
|
1164 |
}
|
1165 |
|
1166 |
//Dump the input numerator.
|
1167 |
if (!nf)
|
1168 |
{
|
1169 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1170 |
&(decomp->num),
|
1171 |
"Input Numerator");
|
1172 |
}
|
1173 |
else
|
1174 |
{
|
1175 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->num));
|
1176 |
fprintf(s, "\n");
|
1177 |
}
|
1178 |
|
1179 |
//Separator if not in unformatted mode.
|
1180 |
if (!nf)
|
1181 |
FCMIOF_stream_hline(s);
|
1182 |
|
1183 |
//Dump the input denominator.
|
1184 |
if (!nf)
|
1185 |
{
|
1186 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1187 |
&(decomp->den),
|
1188 |
"Input Denominator");
|
1189 |
}
|
1190 |
else
|
1191 |
{
|
1192 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->den));
|
1193 |
fprintf(s, "\n");
|
1194 |
}
|
1195 |
|
1196 |
//Separator if not in unformatted mode.
|
1197 |
if (!nf)
|
1198 |
FCMIOF_stream_hline(s);
|
1199 |
|
1200 |
for (i=0; i<decomp->n; i++)
|
1201 |
{
|
1202 |
char strbuf[100];
|
1203 |
//Buffer to prepare description.
|
1204 |
|
1205 |
//Print out the dividend at each round.
|
1206 |
if (!nf)
|
1207 |
{
|
1208 |
sprintf(strbuf, "dividend(%d)", i);
|
1209 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1210 |
decomp->dividend + i,
|
1211 |
strbuf);
|
1212 |
}
|
1213 |
else
|
1214 |
{
|
1215 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->dividend+i);
|
1216 |
fprintf(s, "\n");
|
1217 |
}
|
1218 |
|
1219 |
//Separator if not in unformatted mode.
|
1220 |
if (!nf)
|
1221 |
FCMIOF_stream_hline(s);
|
1222 |
|
1223 |
//Print out the divisor at each round.
|
1224 |
if (!nf)
|
1225 |
{
|
1226 |
sprintf(strbuf, "divisor(%d)", i);
|
1227 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1228 |
decomp->divisor + i,
|
1229 |
strbuf);
|
1230 |
}
|
1231 |
else
|
1232 |
{
|
1233 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->divisor+i);
|
1234 |
fprintf(s, "\n");
|
1235 |
}
|
1236 |
|
1237 |
//Separator if not in unformatted mode.
|
1238 |
if (!nf)
|
1239 |
FCMIOF_stream_hline(s);
|
1240 |
|
1241 |
//Print out partial quotient at each round.
|
1242 |
if (!nf)
|
1243 |
{
|
1244 |
sprintf(strbuf, "a(%d)", i);
|
1245 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1246 |
decomp->a + i,
|
1247 |
strbuf);
|
1248 |
}
|
1249 |
else
|
1250 |
{
|
1251 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->a+i);
|
1252 |
fprintf(s, "\n");
|
1253 |
}
|
1254 |
|
1255 |
//Separator if not in unformatted mode.
|
1256 |
if (!nf)
|
1257 |
FCMIOF_stream_hline(s);
|
1258 |
|
1259 |
//It doesn't make any sense to print out the
|
1260 |
//remainder, because this becomes the divisor
|
1261 |
//for the next round. It is just wasted output
|
1262 |
//lines.
|
1263 |
|
1264 |
//Print out the convergent numerator at
|
1265 |
//each round.
|
1266 |
if (!nf)
|
1267 |
{
|
1268 |
sprintf(strbuf, "p(%d)", i);
|
1269 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1270 |
decomp->p + i,
|
1271 |
strbuf);
|
1272 |
}
|
1273 |
else
|
1274 |
{
|
1275 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->p+i);
|
1276 |
fprintf(s, "\n");
|
1277 |
}
|
1278 |
|
1279 |
//Separator if not in unformatted mode.
|
1280 |
if (!nf)
|
1281 |
FCMIOF_stream_hline(s);
|
1282 |
|
1283 |
//Print out the convergent denominator at
|
1284 |
//each round.
|
1285 |
if (!nf)
|
1286 |
{
|
1287 |
sprintf(strbuf, "q(%d)", i);
|
1288 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1289 |
decomp->q + i,
|
1290 |
strbuf);
|
1291 |
}
|
1292 |
else
|
1293 |
{
|
1294 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->q+i);
|
1295 |
fprintf(s, "\n");
|
1296 |
}
|
1297 |
|
1298 |
//Separator if not in unformatted mode.
|
1299 |
if (!nf)
|
1300 |
FCMIOF_stream_hline(s);
|
1301 |
|
1302 |
if (dap)
|
1303 |
{
|
1304 |
//Calculate the DAP numerator
|
1305 |
GMP_INTS_mpz_mul(&arb_temp, dap_denominator, decomp->p + i);
|
1306 |
GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder,
|
1307 |
&arb_temp, decomp->q + i);
|
1308 |
|
1309 |
//Print DAP numerator.
|
1310 |
if (!nf)
|
1311 |
{
|
1312 |
sprintf(strbuf, "dap_h(%d)", i);
|
1313 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1314 |
&arb_quotient,
|
1315 |
strbuf);
|
1316 |
}
|
1317 |
else
|
1318 |
{
|
1319 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &arb_quotient);
|
1320 |
fprintf(s, "\n");
|
1321 |
}
|
1322 |
|
1323 |
//Separator if not in unformatted mode.
|
1324 |
if (!nf)
|
1325 |
FCMIOF_stream_hline(s);
|
1326 |
|
1327 |
//Print DAP denominator.
|
1328 |
if (!nf)
|
1329 |
{
|
1330 |
sprintf(strbuf, "dap_k(%d)", i);
|
1331 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
1332 |
dap_denominator,
|
1333 |
strbuf);
|
1334 |
}
|
1335 |
else
|
1336 |
{
|
1337 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, dap_denominator);
|
1338 |
fprintf(s, "\n");
|
1339 |
}
|
1340 |
|
1341 |
//Separator if not in unformatted mode.
|
1342 |
if (!nf)
|
1343 |
FCMIOF_stream_hline(s);
|
1344 |
}
|
1345 |
}
|
1346 |
|
1347 |
//Deallocate our temporary integers.
|
1348 |
GMP_INTS_mpz_clear(&arb_temp);
|
1349 |
GMP_INTS_mpz_clear(&arb_quotient);
|
1350 |
GMP_INTS_mpz_clear(&arb_remainder);
|
1351 |
}
|
1352 |
|
1353 |
|
1354 |
/******************************************************************/
|
1355 |
/*** FAREY SERIES PREDECESSOR AND SUCCESSOR FUNCTIONS ***********/
|
1356 |
/******************************************************************/
|
1357 |
//08/16/01: Visual inspection OK.
|
1358 |
void GMP_RALG_farey_predecessor(
|
1359 |
GMP_RATS_mpq_struct *result,
|
1360 |
const GMP_RATS_mpq_struct *plus_two,
|
1361 |
const GMP_RATS_mpq_struct *plus_one,
|
1362 |
const GMP_INTS_mpz_struct *N)
|
1363 |
{
|
1364 |
GMP_RATS_mpq_struct result_copy;
|
1365 |
//Used to hold return value in case the result
|
1366 |
//is the same as either of the input arguments.
|
1367 |
GMP_INTS_mpz_struct temp1, temp2, floor_func;
|
1368 |
//Temporary integers.
|
1369 |
|
1370 |
assert(result != NULL);
|
1371 |
assert(plus_two != NULL);
|
1372 |
assert(plus_one != NULL);
|
1373 |
assert(N != NULL);
|
1374 |
|
1375 |
//Initialize the variables used.
|
1376 |
GMP_RATS_mpq_init(&result_copy);
|
1377 |
GMP_INTS_mpz_init(&temp1);
|
1378 |
GMP_INTS_mpz_init(&temp2);
|
1379 |
GMP_INTS_mpz_init(&floor_func);
|
1380 |
|
1381 |
//Numerator of the term in the floor function.
|
1382 |
GMP_INTS_mpz_add(&temp1, &(plus_two->den), N);
|
1383 |
|
1384 |
//Term in the floor function. This is used to
|
1385 |
//calculate both numerator and denominator, so we save it.
|
1386 |
GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(plus_one->den));
|
1387 |
|
1388 |
//Product of result of floor function and numerator--now
|
1389 |
//forming the numerator of the output.
|
1390 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->num));
|
1391 |
|
1392 |
//Final result assigned to numerator.
|
1393 |
GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(plus_two->num));
|
1394 |
|
1395 |
//Product of result of floor function and denominator--now
|
1396 |
//forming the denominator of the output.
|
1397 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->den));
|
1398 |
|
1399 |
//Final result assigned to denominator.
|
1400 |
GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(plus_two->den));
|
1401 |
|
1402 |
//Copy the result to the object owned by the caller.
|
1403 |
GMP_RATS_mpq_copy(result, &result_copy);
|
1404 |
|
1405 |
//Deallocate dynamic memory.
|
1406 |
GMP_RATS_mpq_clear(&result_copy);
|
1407 |
GMP_INTS_mpz_clear(&temp1);
|
1408 |
GMP_INTS_mpz_clear(&temp2);
|
1409 |
GMP_INTS_mpz_clear(&floor_func);
|
1410 |
}
|
1411 |
|
1412 |
|
1413 |
//08/16/01: Visual inspection OK.
|
1414 |
void GMP_RALG_farey_successor(
|
1415 |
GMP_RATS_mpq_struct *result,
|
1416 |
const GMP_RATS_mpq_struct *minus_two,
|
1417 |
const GMP_RATS_mpq_struct *minus_one,
|
1418 |
const GMP_INTS_mpz_struct *N)
|
1419 |
{
|
1420 |
GMP_RATS_mpq_struct result_copy;
|
1421 |
//Used to hold return value in case the result
|
1422 |
//is the same as either of the input arguments.
|
1423 |
GMP_INTS_mpz_struct temp1, temp2, floor_func;
|
1424 |
//Temporary integers.
|
1425 |
|
1426 |
assert(result != NULL);
|
1427 |
assert(minus_two != NULL);
|
1428 |
assert(minus_one != NULL);
|
1429 |
assert(N != NULL);
|
1430 |
|
1431 |
//Initialize the variables used.
|
1432 |
GMP_RATS_mpq_init(&result_copy);
|
1433 |
GMP_INTS_mpz_init(&temp1);
|
1434 |
GMP_INTS_mpz_init(&temp2);
|
1435 |
GMP_INTS_mpz_init(&floor_func);
|
1436 |
|
1437 |
//Numerator of the term in the floor function.
|
1438 |
GMP_INTS_mpz_add(&temp1, &(minus_two->den), N);
|
1439 |
|
1440 |
//Term in the floor function. This is used to
|
1441 |
//calculate both numerator and denominator, so we save it.
|
1442 |
GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(minus_one->den));
|
1443 |
|
1444 |
//Product of result of floor function and numerator--now
|
1445 |
//forming the numerator of the output.
|
1446 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->num));
|
1447 |
|
1448 |
//Final result assigned to numerator.
|
1449 |
GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(minus_two->num));
|
1450 |
|
1451 |
//Product of result of floor function and denominator--now
|
1452 |
//forming the denominator of the output.
|
1453 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->den));
|
1454 |
|
1455 |
//Final result assigned to denominator.
|
1456 |
GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(minus_two->den));
|
1457 |
|
1458 |
//Copy the result to the object owned by the caller.
|
1459 |
GMP_RATS_mpq_copy(result, &result_copy);
|
1460 |
|
1461 |
//Deallocate dynamic memory.
|
1462 |
GMP_RATS_mpq_clear(&result_copy);
|
1463 |
GMP_INTS_mpz_clear(&temp1);
|
1464 |
GMP_INTS_mpz_clear(&temp2);
|
1465 |
GMP_INTS_mpz_clear(&floor_func);
|
1466 |
}
|
1467 |
|
1468 |
|
1469 |
//08/16/01: Visual inspection OK.
|
1470 |
void GMP_RALG_enclosing_farey_neighbors(
|
1471 |
const GMP_RATS_mpq_struct *rn_in,
|
1472 |
const GMP_INTS_mpz_struct *N,
|
1473 |
const GMP_RALG_cf_app_struct *cf_rep,
|
1474 |
int *equality,
|
1475 |
GMP_RATS_mpq_struct *left,
|
1476 |
GMP_RATS_mpq_struct *right)
|
1477 |
{
|
1478 |
GMP_RATS_mpq_struct rn_abs;
|
1479 |
//Absolute value of rational number supplied.
|
1480 |
GMP_RATS_mpq_struct previous_convergent;
|
1481 |
//Convergent before the one that has the denominator
|
1482 |
//not exceeding the order of the series. Need to fudge
|
1483 |
//a little bit because don't have -1-th order convergents
|
1484 |
//tabulated.
|
1485 |
GMP_RATS_mpq_struct other_neighbor;
|
1486 |
//The other neighbor besides the highest-order convergent
|
1487 |
//without denominator too large.
|
1488 |
GMP_INTS_mpz_struct temp1, temp2, temp3, temp4;
|
1489 |
//Temporary integers.
|
1490 |
int ho_conv;
|
1491 |
//Index of highest-ordered convergent that does not have
|
1492 |
//denominator too large.
|
1493 |
|
1494 |
//Eyeball the parameters.
|
1495 |
assert(rn_in != NULL);
|
1496 |
assert(N != NULL);
|
1497 |
assert(cf_rep != NULL);
|
1498 |
assert(equality != NULL);
|
1499 |
assert(left != NULL);
|
1500 |
assert(right != NULL);
|
1501 |
|
1502 |
//Allocate dynamic variables.
|
1503 |
GMP_RATS_mpq_init(&rn_abs);
|
1504 |
GMP_RATS_mpq_init(&previous_convergent);
|
1505 |
GMP_RATS_mpq_init(&other_neighbor);
|
1506 |
GMP_INTS_mpz_init(&temp1);
|
1507 |
GMP_INTS_mpz_init(&temp2);
|
1508 |
GMP_INTS_mpz_init(&temp3);
|
1509 |
GMP_INTS_mpz_init(&temp4);
|
1510 |
|
1511 |
//Zero is a troublesome case, because it requires us to
|
1512 |
//cross signs. Split this case out explicitly.
|
1513 |
if (GMP_INTS_mpz_is_zero(&(rn_in->num)))
|
1514 |
{
|
1515 |
*equality = 1; //0/1 a member of Farey series of any order.
|
1516 |
GMP_INTS_mpz_set_si(&(left->num), -1);
|
1517 |
GMP_INTS_mpz_copy(&(left->den), N);
|
1518 |
GMP_INTS_mpz_set_si(&(right->num), 1);
|
1519 |
GMP_INTS_mpz_copy(&(right->den), N);
|
1520 |
}
|
1521 |
else
|
1522 |
{
|
1523 |
//Make a copy of the rational number in. As a condition of
|
1524 |
//using this function, it must be normalized, but it still
|
1525 |
//may be negative. Our strategy is to treat the number as
|
1526 |
//positive, find the neighbors, then if it was negative
|
1527 |
//complement and re-order the neighbors. In other words,
|
1528 |
//find neighbors to a negative number by symmetry, not
|
1529 |
//by forming the CF representation of a negative number.
|
1530 |
//Also, we can't touch the input parameter.
|
1531 |
GMP_RATS_mpq_copy(&rn_abs, rn_in);
|
1532 |
GMP_INTS_mpz_abs(&(rn_abs.num));
|
1533 |
|
1534 |
//Find the index of the highest-ordered convergent
|
1535 |
//with a denominator not exceeding the denominator of
|
1536 |
//the rational number supplied. The zero'th order
|
1537 |
//convergent has a denominator of 1, so that one
|
1538 |
//at least is safe.
|
1539 |
|
1540 |
//Assign either the "left" or right
|
1541 |
//neighbor to be the highest-ordered
|
1542 |
//convergent with a denominator not exceeding the
|
1543 |
//denominator of the rational number input. I say
|
1544 |
//"either" because the properties of convergents let
|
1545 |
//us know based on the oddness or evenness of the order
|
1546 |
//which side it is on.
|
1547 |
ho_conv = 0;
|
1548 |
while (((ho_conv + 1) < cf_rep->n) && (GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, N) <= 0))
|
1549 |
{
|
1550 |
#if 0
|
1551 |
//Some questions about this loop--debugging output.
|
1552 |
printf("ho_conv : %d\n", ho_conv);
|
1553 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1554 |
cf_rep->q + ho_conv + 1,
|
1555 |
"decomp_den");
|
1556 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1557 |
&(rn_abs.den),
|
1558 |
"rn_in_den");
|
1559 |
printf("Compare result: %d\n\n", GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, &(rn_abs.den)));
|
1560 |
#endif
|
1561 |
|
1562 |
ho_conv++;
|
1563 |
}
|
1564 |
|
1565 |
if (INTFUNC_is_even(ho_conv))
|
1566 |
{
|
1567 |
GMP_INTS_mpz_copy(&(left->num), cf_rep->p + ho_conv);
|
1568 |
GMP_INTS_mpz_copy(&(left->den), cf_rep->q + ho_conv);
|
1569 |
}
|
1570 |
else
|
1571 |
{
|
1572 |
GMP_INTS_mpz_copy(&(right->num), cf_rep->p + ho_conv);
|
1573 |
GMP_INTS_mpz_copy(&(right->den), cf_rep->q + ho_conv);
|
1574 |
}
|
1575 |
|
1576 |
//Now, we need to calculate the other neighbor based
|
1577 |
//on the standard formula. This is a little tricky
|
1578 |
//because we don't have the -1-th order convergents
|
1579 |
//tabulated so we have to fudge a little bit.
|
1580 |
if (ho_conv == 0)
|
1581 |
{
|
1582 |
GMP_RATS_mpq_set_si(&previous_convergent, 1, 0);
|
1583 |
}
|
1584 |
else
|
1585 |
{
|
1586 |
GMP_INTS_mpz_copy(&(previous_convergent.num), cf_rep->p + ho_conv - 1);
|
1587 |
GMP_INTS_mpz_copy(&(previous_convergent.den), cf_rep->q + ho_conv - 1);
|
1588 |
}
|
1589 |
|
1590 |
//Calculate the other neighbor according to the standard
|
1591 |
//formula.
|
1592 |
GMP_INTS_mpz_sub(&temp1, N, &(previous_convergent.den));
|
1593 |
GMP_INTS_mpz_tdiv_qr(&temp2, &temp3, &temp1, cf_rep->q + ho_conv);
|
1594 |
//temp2 now contains term from floor() function in formula.
|
1595 |
GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->p + ho_conv);
|
1596 |
GMP_INTS_mpz_add(&(other_neighbor.num), &temp1, &(previous_convergent.num));
|
1597 |
GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->q + ho_conv);
|
1598 |
GMP_INTS_mpz_add(&(other_neighbor.den), &temp1, &(previous_convergent.den));
|
1599 |
|
1600 |
//Copy the other neighbor into the right slot.
|
1601 |
if (INTFUNC_is_even(ho_conv))
|
1602 |
{
|
1603 |
GMP_RATS_mpq_copy(right, &other_neighbor);
|
1604 |
}
|
1605 |
else
|
1606 |
{
|
1607 |
GMP_RATS_mpq_copy(left, &other_neighbor);
|
1608 |
}
|
1609 |
|
1610 |
//Set the equality flag. We have equality if and only
|
1611 |
//if the denominator of the rational number is less than
|
1612 |
//or equal to N.
|
1613 |
if (GMP_INTS_mpz_cmp(&(rn_abs.den), N) <= 0)
|
1614 |
{
|
1615 |
*equality = 1;
|
1616 |
}
|
1617 |
else
|
1618 |
{
|
1619 |
*equality = 0;
|
1620 |
}
|
1621 |
|
1622 |
//In the event of equality, we don't really have the true
|
1623 |
//neighbors. If the final convergent is even-ordered,
|
1624 |
//the left needs to be replaced. If the final convergent
|
1625 |
//is odd-ordered, the right needs to be replaced.
|
1626 |
if (*equality)
|
1627 |
{
|
1628 |
if (INTFUNC_is_even(ho_conv))
|
1629 |
{
|
1630 |
//Left needs to be replaced.
|
1631 |
GMP_RALG_farey_predecessor(
|
1632 |
left,
|
1633 |
right,
|
1634 |
&rn_abs,
|
1635 |
N);
|
1636 |
}
|
1637 |
else
|
1638 |
{
|
1639 |
//Right needs to be replaced.
|
1640 |
GMP_RALG_farey_successor(
|
1641 |
right,
|
1642 |
left,
|
1643 |
&rn_abs,
|
1644 |
N);
|
1645 |
}
|
1646 |
}
|
1647 |
|
1648 |
//OK, we should be all done. The final catch is that if
|
1649 |
//the number supplied was negative, we need to invert
|
1650 |
//and re-order the neighbors.
|
1651 |
if (GMP_INTS_mpz_is_neg(&(rn_in->num)))
|
1652 |
{
|
1653 |
GMP_RATS_mpq_swap(left, right);
|
1654 |
GMP_INTS_mpz_negate(&(left->num));
|
1655 |
GMP_INTS_mpz_negate(&(right->num));
|
1656 |
}
|
1657 |
} //End if (rn==0) else clause
|
1658 |
|
1659 |
//Deallocate dynamic variables.
|
1660 |
GMP_RATS_mpq_clear(&rn_abs);
|
1661 |
GMP_RATS_mpq_clear(&previous_convergent);
|
1662 |
GMP_RATS_mpq_clear(&other_neighbor);
|
1663 |
GMP_INTS_mpz_clear(&temp1);
|
1664 |
GMP_INTS_mpz_clear(&temp2);
|
1665 |
GMP_INTS_mpz_clear(&temp3);
|
1666 |
GMP_INTS_mpz_clear(&temp4);
|
1667 |
}
|
1668 |
|
1669 |
|
1670 |
|
1671 |
//08/16/01: Visual inspection OK. Did not fully inspect the
|
1672 |
//iterative part of this function. Unit testing will be
|
1673 |
//careful, expect that to catch any anomalies.
|
1674 |
void GMP_RALG_consecutive_fab_terms(
|
1675 |
const GMP_RATS_mpq_struct *rn_in,
|
1676 |
const GMP_INTS_mpz_struct *kmax,
|
1677 |
const GMP_INTS_mpz_struct *hmax,
|
1678 |
int n_left_in,
|
1679 |
int n_right_in,
|
1680 |
GMP_RALG_fab_neighbor_collection_struct *result
|
1681 |
)
|
1682 |
{
|
1683 |
int error_flag, equality_flag;
|
1684 |
char *estring_kmax_neg = "KMAX is zero, negative, or NAN.";
|
1685 |
char *estring_hmax_neg = "HMAX is negative or NAN.";
|
1686 |
char *estring_general = "Unspecified general error in GMP_RALG_consecutive_fab_terms().";
|
1687 |
|
1688 |
GMP_RATS_mpq_struct q_temp1, q_temp2, q_temp3, q_temp4,
|
1689 |
left_neighbor, right_neighbor,
|
1690 |
left_neighbor_abs, right_neighbor_abs,
|
1691 |
hmax_over_one_neg, corner_point_neg,
|
1692 |
abs_norm_recip_rn;
|
1693 |
|
1694 |
//Eyeball input parameters.
|
1695 |
assert(rn_in != NULL);
|
1696 |
assert(kmax != NULL);
|
1697 |
assert(n_left_in >= 0);
|
1698 |
assert(n_left_in <= 0x00FFFFFF);
|
1699 |
assert(n_right_in >= 0);
|
1700 |
assert(n_right_in <= 0x00FFFFFF);
|
1701 |
assert(result != NULL);
|
1702 |
|
1703 |
//Allocate all of the dynamic memory we'll need for this function. It will be
|
1704 |
//released at the end.
|
1705 |
GMP_RATS_mpq_init(&q_temp1);
|
1706 |
GMP_RATS_mpq_init(&q_temp2);
|
1707 |
GMP_RATS_mpq_init(&q_temp3);
|
1708 |
GMP_RATS_mpq_init(&q_temp4);
|
1709 |
GMP_RATS_mpq_init(&left_neighbor);
|
1710 |
GMP_RATS_mpq_init(&right_neighbor);
|
1711 |
GMP_RATS_mpq_init(&left_neighbor_abs);
|
1712 |
GMP_RATS_mpq_init(&right_neighbor_abs);
|
1713 |
GMP_RATS_mpq_init(&hmax_over_one_neg);
|
1714 |
GMP_RATS_mpq_init(&corner_point_neg);
|
1715 |
GMP_RATS_mpq_init(&abs_norm_recip_rn);
|
1716 |
|
1717 |
//Zero out the result block. This is the easiest way to give many variables
|
1718 |
//default values of 0, FALSE, and NULL.
|
1719 |
memset(result, 0, sizeof(GMP_RALG_fab_neighbor_collection_struct));
|
1720 |
|
1721 |
//Allocate all integer and rational number structures in the result block.
|
1722 |
GMP_RATS_mpq_init(&(result->rn_in));
|
1723 |
GMP_INTS_mpz_init(&(result->kmax_in));
|
1724 |
GMP_INTS_mpz_init(&(result->hmax_in));
|
1725 |
GMP_RATS_mpq_init(&(result->hmax_over_one));
|
1726 |
GMP_RATS_mpq_init(&(result->corner_point));
|
1727 |
GMP_RATS_mpq_init(&(result->corner_point_minus_one));
|
1728 |
GMP_RATS_mpq_init(&(result->corner_point_plus_one));
|
1729 |
GMP_RATS_mpq_init(&(result->norm_rn));
|
1730 |
GMP_RATS_mpq_init(&(result->abs_norm_rn));
|
1731 |
|
1732 |
//Fill in the rational number, exactly as passed.
|
1733 |
GMP_RATS_mpq_copy(&(result->rn_in), rn_in);
|
1734 |
|
1735 |
//Fill in the number of left and right neighbors that the caller wants.
|
1736 |
//However, let's of course say nothing less than zero and nothing more
|
1737 |
//than 10000 neighbors on either side.
|
1738 |
result->n_left_in = INTFUNC_min(INTFUNC_max(0, n_left_in), 10000);
|
1739 |
result->n_right_in = INTFUNC_min(INTFUNC_max(0, n_right_in), 10000);
|
1740 |
|
1741 |
//Fill in the value of KMAX, exactly as passed. If it is not at least
|
1742 |
//the value of 1 or if error flags, croak.
|
1743 |
GMP_INTS_mpz_copy(&(result->kmax_in), kmax);
|
1744 |
if (GMP_INTS_mpz_get_flags(kmax) || GMP_INTS_mpz_is_zero(kmax) || GMP_INTS_mpz_is_neg(kmax))
|
1745 |
{
|
1746 |
result->error =
|
1747 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1748 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1));
|
1749 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1750 |
TclpAlloc(sizeof(char) * (strlen(estring_kmax_neg) + 1));
|
1751 |
#else
|
1752 |
malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1));
|
1753 |
#endif
|
1754 |
strcpy(result->error, estring_kmax_neg);
|
1755 |
goto return_point;
|
1756 |
}
|
1757 |
|
1758 |
//Decide whether the caller intends to use HMAX. Neg is error, but zero
|
1759 |
//is a signal that don't intend to use.
|
1760 |
if (hmax)
|
1761 |
{
|
1762 |
GMP_INTS_mpz_copy(&(result->hmax_in), hmax);
|
1763 |
if (GMP_INTS_mpz_get_flags(hmax) || GMP_INTS_mpz_is_neg(hmax))
|
1764 |
{
|
1765 |
result->error =
|
1766 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1767 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1));
|
1768 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1769 |
TclpAlloc(sizeof(char) * (strlen(estring_hmax_neg) + 1));
|
1770 |
#else
|
1771 |
malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1));
|
1772 |
#endif
|
1773 |
strcpy(result->error, estring_hmax_neg);
|
1774 |
goto return_point;
|
1775 |
}
|
1776 |
else if (GMP_INTS_mpz_is_pos(hmax))
|
1777 |
{
|
1778 |
result->hmax_supplied = 1;
|
1779 |
}
|
1780 |
}
|
1781 |
|
1782 |
//If HMAX has been supplied, assign and normalize the
|
1783 |
//corner point.
|
1784 |
if (result->hmax_supplied)
|
1785 |
{
|
1786 |
GMP_INTS_mpz_copy(&(result->corner_point.num), &(result->hmax_in));
|
1787 |
GMP_INTS_mpz_copy(&(result->corner_point.den), &(result->kmax_in));
|
1788 |
GMP_RATS_mpq_normalize(&(result->corner_point));
|
1789 |
}
|
1790 |
|
1791 |
//If HMAX has been supplied, we want to get the continued
|
1792 |
//fraction representation of both the corner point and its
|
1793 |
//reciprocal. This is because we're going to need to
|
1794 |
//find its adjacent points so we can easily crawl
|
1795 |
//around a rectangular region of the integer lattice.
|
1796 |
if (result->hmax_supplied)
|
1797 |
{
|
1798 |
//CF representation of corner point.
|
1799 |
GMP_RALG_cfdecomp_init(&(result->corner_point_cf_rep),
|
1800 |
&error_flag,
|
1801 |
&(result->corner_point.num),
|
1802 |
&(result->corner_point.den));
|
1803 |
result->corner_point_cf_rep_formed = 1;
|
1804 |
|
1805 |
//If there was an error forming the CF representation
|
1806 |
//of the corner point, bail out.
|
1807 |
if (error_flag)
|
1808 |
{
|
1809 |
result->error =
|
1810 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1811 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1812 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1813 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1814 |
#else
|
1815 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1816 |
#endif
|
1817 |
strcpy(result->error, estring_general);
|
1818 |
goto return_point;
|
1819 |
}
|
1820 |
|
1821 |
//CF representation of reciprocal of corner point.
|
1822 |
GMP_RALG_cfdecomp_init(&(result->corner_point_recip_cf_rep),
|
1823 |
&error_flag,
|
1824 |
&(result->corner_point.den),
|
1825 |
&(result->corner_point.num));
|
1826 |
result->corner_point_recip_cf_rep_formed = 1;
|
1827 |
|
1828 |
//If there was an error forming the CF representation
|
1829 |
//of the reciprocal of the corner point, bail out.
|
1830 |
if (error_flag)
|
1831 |
{
|
1832 |
result->error =
|
1833 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1834 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1835 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1836 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1837 |
#else
|
1838 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1839 |
#endif
|
1840 |
strcpy(result->error, estring_general);
|
1841 |
goto return_point;
|
1842 |
}
|
1843 |
}
|
1844 |
|
1845 |
//Normalize the rational number supplied.
|
1846 |
GMP_RATS_mpq_copy(&(result->norm_rn), rn_in);
|
1847 |
GMP_RATS_mpq_normalize(&(result->norm_rn));
|
1848 |
|
1849 |
//Form the absolute value of the normalized
|
1850 |
//version, and set the neg flag.
|
1851 |
GMP_RATS_mpq_copy(&(result->abs_norm_rn),&(result->norm_rn));
|
1852 |
if (GMP_INTS_mpz_is_neg(&(result->abs_norm_rn.num)))
|
1853 |
{
|
1854 |
GMP_INTS_mpz_negate(&(result->abs_norm_rn.num));
|
1855 |
result->rn_is_neg = 1;
|
1856 |
}
|
1857 |
|
1858 |
//Form the continued fraction representation of the
|
1859 |
//absolute value of the rational number supplied.
|
1860 |
//This is always required, because we cannot get any
|
1861 |
//neighbors without it.
|
1862 |
GMP_RALG_cfdecomp_init(&(result->rn_abs_cf_rep),
|
1863 |
&error_flag,
|
1864 |
&(result->abs_norm_rn.num),
|
1865 |
&(result->abs_norm_rn.den));
|
1866 |
result->rn_abs_cf_rep_formed = 1;
|
1867 |
|
1868 |
//If there was an error forming the CF representation
|
1869 |
//of the absolute value of rational number supplied, bail out.
|
1870 |
if (error_flag)
|
1871 |
{
|
1872 |
result->error =
|
1873 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1874 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1875 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1876 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1877 |
#else
|
1878 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1879 |
#endif
|
1880 |
strcpy(result->error, estring_general);
|
1881 |
goto return_point;
|
1882 |
}
|
1883 |
|
1884 |
//Set the equality flag. The rational number supplied is
|
1885 |
//in the series of interest if and only if, in its normalized
|
1886 |
//form, K <= KMAX, and if HMAX was supplied, H <= HMAX.
|
1887 |
if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.den), kmax) <= 0)
|
1888 |
{
|
1889 |
if (result->hmax_supplied)
|
1890 |
{
|
1891 |
if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.num), hmax) <= 0)
|
1892 |
{
|
1893 |
result->equality = 1;
|
1894 |
}
|
1895 |
else
|
1896 |
{
|
1897 |
result->equality = 0;
|
1898 |
}
|
1899 |
}
|
1900 |
else
|
1901 |
{
|
1902 |
result->equality = 1;
|
1903 |
}
|
1904 |
}
|
1905 |
else
|
1906 |
{
|
1907 |
result->equality = 0;
|
1908 |
}
|
1909 |
|
1910 |
//The final cause of error is if the rational number
|
1911 |
//supplied is outside the interval [-HMAX/1, HMAX/1].
|
1912 |
//In such cases, simply refuse to calculate
|
1913 |
//any approximations. This error can only occur
|
1914 |
//if HMAX is specified. If only KMAX is specified,
|
1915 |
//this error cannot occur.
|
1916 |
if (result->hmax_supplied)
|
1917 |
{
|
1918 |
//Form the rational number HMAX/1. We will use it for
|
1919 |
//a comparison.
|
1920 |
GMP_INTS_mpz_copy(&(result->hmax_over_one.num), hmax);
|
1921 |
GMP_INTS_mpz_set_ui(&(result->hmax_over_one.den), 1);
|
1922 |
|
1923 |
//If the comparison shows that the absolute value of
|
1924 |
//the rational number in is larger than HMAX over 1,
|
1925 |
//then declare an error.
|
1926 |
if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->hmax_over_one),NULL) > 0)
|
1927 |
{
|
1928 |
result->error =
|
1929 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1930 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1931 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1932 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1933 |
#else
|
1934 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1935 |
#endif
|
1936 |
strcpy(result->error, estring_general);
|
1937 |
goto return_point;
|
1938 |
}
|
1939 |
}
|
1940 |
|
1941 |
//If we're here, we're very much clean. The only thing
|
1942 |
//that could go wrong is an overflow.
|
1943 |
|
1944 |
//Allocate space for the left and right arrays of
|
1945 |
//neighbors.
|
1946 |
if (result->n_left_in)
|
1947 |
{
|
1948 |
result->lefts =
|
1949 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1950 |
CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in);
|
1951 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1952 |
(GMP_RALG_fab_neighbor_struct *)
|
1953 |
TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in);
|
1954 |
#else
|
1955 |
malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in);
|
1956 |
#endif
|
1957 |
}
|
1958 |
|
1959 |
if (result->n_right_in)
|
1960 |
{
|
1961 |
result->rights =
|
1962 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1963 |
CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in);
|
1964 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1965 |
(GMP_RALG_fab_neighbor_struct *)
|
1966 |
TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in);
|
1967 |
#else
|
1968 |
malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in);
|
1969 |
#endif
|
1970 |
}
|
1971 |
|
1972 |
//If the rational number supplied is above the corner
|
1973 |
//point, we want to form the continued fraction representation
|
1974 |
//of its reciprocal.
|
1975 |
if (result->hmax_supplied)
|
1976 |
{
|
1977 |
if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->corner_point),NULL) > 0)
|
1978 |
{
|
1979 |
GMP_RALG_cfdecomp_init(&(result->rn_abs_recip_cf_rep),
|
1980 |
&error_flag,
|
1981 |
&(result->abs_norm_rn.den),
|
1982 |
&(result->abs_norm_rn.num));
|
1983 |
result->rn_abs_recip_cf_rep_formed = 1;
|
1984 |
}
|
1985 |
}
|
1986 |
|
1987 |
//If HMAX has been supplied, we want to calculate the points just below and above
|
1988 |
//the corner point. The reason we want to do this is because we need to gracefully
|
1989 |
//"round the corner" in either direction.
|
1990 |
//
|
1991 |
//Calculate the point just to the left of the corner point.
|
1992 |
if (result->hmax_supplied)
|
1993 |
{
|
1994 |
GMP_RALG_enclosing_farey_neighbors(
|
1995 |
&(result->corner_point),
|
1996 |
&(result->kmax_in),
|
1997 |
&(result->corner_point_cf_rep),
|
1998 |
&equality_flag,
|
1999 |
&(result->corner_point_minus_one),
|
2000 |
&(q_temp1)
|
2001 |
);
|
2002 |
}
|
2003 |
|
2004 |
//Calculate the point just to the right of the corner point. This is
|
2005 |
//where HMAX is the dominant constraint. We need to find the left
|
2006 |
//Farey neighbor to the reciprocal of the corner point in the Farey
|
2007 |
//series of order HMAX, then take its reciprocal. There is the possibility
|
2008 |
//if KMAX=1 that this point will have a denominator of zero, but we
|
2009 |
//will accept that as a number here, since we should never hit it,
|
2010 |
//as it will be beyond HMAX/1.
|
2011 |
if (result->hmax_supplied)
|
2012 |
{
|
2013 |
GMP_RATS_mpq_copy(&q_temp1, &(result->corner_point));
|
2014 |
GMP_INTS_mpz_swap(&(q_temp1.num), &(q_temp1.den));
|
2015 |
GMP_RALG_enclosing_farey_neighbors(
|
2016 |
&q_temp1,
|
2017 |
&(result->hmax_in),
|
2018 |
&(result->corner_point_recip_cf_rep),
|
2019 |
&equality_flag,
|
2020 |
&(result->corner_point_plus_one),
|
2021 |
&(q_temp2)
|
2022 |
);
|
2023 |
GMP_INTS_mpz_swap(&(result->corner_point_plus_one.num), &(result->corner_point_plus_one.den));
|
2024 |
}
|
2025 |
|
2026 |
//Calculate the complement of HMAX/1. Nothing that we generate can go beyond
|
2027 |
//this to the south.
|
2028 |
if (result->hmax_supplied)
|
2029 |
{
|
2030 |
GMP_RATS_mpq_copy(&(hmax_over_one_neg), &(result->hmax_over_one));
|
2031 |
GMP_INTS_mpz_negate(&(hmax_over_one_neg.num));
|
2032 |
}
|
2033 |
|
2034 |
//Also calculate the complement of HMAX/KMAX.
|
2035 |
if (result->hmax_supplied)
|
2036 |
{
|
2037 |
GMP_RATS_mpq_copy(&(corner_point_neg), &(result->corner_point));
|
2038 |
GMP_INTS_mpz_negate(&(corner_point_neg.num));
|
2039 |
}
|
2040 |
|
2041 |
//Form the reciprocal of the absolute value of the normalized value of
|
2042 |
//the rational number in.
|
2043 |
GMP_RATS_mpq_copy(&abs_norm_recip_rn, &(result->abs_norm_rn));
|
2044 |
GMP_RATS_mpq_swap_components(&abs_norm_recip_rn);
|
2045 |
|
2046 |
//OK, now we get down to brass tacks. Iterate first to get the
|
2047 |
//left neighbors. The ordinary complexity of this is also compounded
|
2048 |
//by the fact that we must handle negative numbers as well--everything
|
2049 |
//from -HMAX/1 to HMAX/1.
|
2050 |
//
|
2051 |
//PSEUDO-CODE:
|
2052 |
// a)If the rational number to approximate is <= -HMAX/1 or there are no
|
2053 |
// left neighbors requested, terminate with no neighbors on the left.
|
2054 |
//
|
2055 |
// b)Find the right neighbor of the rational number supplied.
|
2056 |
//
|
2057 |
// c)Find the left neighbor of the rational number supplied.
|
2058 |
//
|
2059 |
// d)While (queued_count < count)
|
2060 |
//
|
2061 |
// e)Queue the left neighbor, queued_count++
|
2062 |
//
|
2063 |
// f)If (queued_count >= count), break.
|
2064 |
//
|
2065 |
// g)If (left_neighbor <= -HMAX/1), break
|
2066 |
//
|
2067 |
// h)Advance the frame one to the left.
|
2068 |
//
|
2069 |
//**************************************************************************
|
2070 |
// a)If the rational number to approximate is <= -HMAX/1 or there are no
|
2071 |
// left neighbors requested, terminate with no neighbors on the left.
|
2072 |
//**************************************************************************
|
2073 |
if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &hmax_over_one_neg, NULL) <= 0)
|
2074 |
|| (n_left_in <= 0))
|
2075 |
goto done_with_left_neighbors;
|
2076 |
|
2077 |
//**************************************************************************
|
2078 |
// b)Find the right neighbor of the rational number supplied.
|
2079 |
//**************************************************************************
|
2080 |
// c)Find the left neighbor of the rational number supplied.
|
2081 |
//**************************************************************************
|
2082 |
if (!result->hmax_supplied)
|
2083 |
{
|
2084 |
//In this case, the notion of corner point is meaningless, because
|
2085 |
//there is no constraint on H. We can just go on our merry way. Get
|
2086 |
//the two neighbors.
|
2087 |
GMP_RALG_enclosing_farey_neighbors(
|
2088 |
&(result->norm_rn),
|
2089 |
&(result->kmax_in),
|
2090 |
&(result->rn_abs_cf_rep),
|
2091 |
&equality_flag,
|
2092 |
&left_neighbor,
|
2093 |
&right_neighbor
|
2094 |
);
|
2095 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
2096 |
//rational number itself as a Farey term. If the number is in the Farey
|
2097 |
//series, we must replace the right neighbor, otherwise we cannot apply
|
2098 |
//the standard recursive formulas.
|
2099 |
if (equality_flag)
|
2100 |
{
|
2101 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn));
|
2102 |
}
|
2103 |
}
|
2104 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0)
|
2105 |
{
|
2106 |
//The rational number specified is negative and below the negative corner point.
|
2107 |
//This means that HMAX is the dominant constraint. We need to find the
|
2108 |
//neighbors in the Farey series of order HMAX, then reorder and invert, etc.
|
2109 |
GMP_RALG_enclosing_farey_neighbors(
|
2110 |
&abs_norm_recip_rn,
|
2111 |
&(result->hmax_in),
|
2112 |
&(result->rn_abs_recip_cf_rep),
|
2113 |
&equality_flag,
|
2114 |
&left_neighbor,
|
2115 |
&right_neighbor
|
2116 |
);
|
2117 |
|
2118 |
//Again, if the number specified was already in the series of interest,
|
2119 |
//we need to swap in the right neighbor.
|
2120 |
if (equality_flag)
|
2121 |
{
|
2122 |
GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn);
|
2123 |
}
|
2124 |
|
2125 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
2126 |
//then negate them, which will put them back in order.
|
2127 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
2128 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2129 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
2130 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2131 |
}
|
2132 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0)
|
2133 |
{
|
2134 |
//The rational number specified is the negative corner point. In this case
|
2135 |
//Because we can never return the corner point itself as a left neighbor,
|
2136 |
//we need to set the left value to be the negative of one past, and the right
|
2137 |
//to be the negative of the corner point.
|
2138 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one));
|
2139 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2140 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point));
|
2141 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2142 |
}
|
2143 |
else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0)
|
2144 |
&&
|
2145 |
(GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0))
|
2146 |
{
|
2147 |
//The rational number specified is in the area dominated by the KMAX constraint
|
2148 |
//between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will
|
2149 |
//handle this correctly. Again, we need to adjust the output if the number
|
2150 |
//is already formable, because the Farey neighbor function is prohibited from
|
2151 |
//returning the number itself as a neighbor.
|
2152 |
GMP_RALG_enclosing_farey_neighbors(
|
2153 |
&(result->norm_rn),
|
2154 |
&(result->kmax_in),
|
2155 |
&(result->rn_abs_cf_rep),
|
2156 |
&equality_flag,
|
2157 |
&left_neighbor,
|
2158 |
&right_neighbor
|
2159 |
);
|
2160 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
2161 |
//rational number itself as a Farey term. If the number is in the Farey
|
2162 |
//series, we must replace the right neighbor, otherwise we cannot apply
|
2163 |
//the standard recursive formulas.
|
2164 |
if (equality_flag)
|
2165 |
{
|
2166 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn));
|
2167 |
}
|
2168 |
}
|
2169 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0)
|
2170 |
{
|
2171 |
//The rational number specified is the corner point. In this case
|
2172 |
//because we can never return the corner point itself as a left neighbor,
|
2173 |
//we need to set the left value to be one before, and the right
|
2174 |
//to be the corner point.
|
2175 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one));
|
2176 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point));
|
2177 |
}
|
2178 |
else
|
2179 |
{
|
2180 |
//The only possibility left is that the number is positive and above the
|
2181 |
//corner point where HMAX is the dominant constraint.
|
2182 |
GMP_RALG_enclosing_farey_neighbors(
|
2183 |
&abs_norm_recip_rn,
|
2184 |
&(result->hmax_in),
|
2185 |
&(result->rn_abs_recip_cf_rep),
|
2186 |
&equality_flag,
|
2187 |
&left_neighbor,
|
2188 |
&right_neighbor
|
2189 |
);
|
2190 |
|
2191 |
//Again, if the number specified was already in the series of interest,
|
2192 |
//we need to swap in the neighbor. This time, however, it must be the
|
2193 |
//left neighbor because taking the reciprocals will reverse the order.
|
2194 |
if (equality_flag)
|
2195 |
{
|
2196 |
GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn);
|
2197 |
}
|
2198 |
|
2199 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
2200 |
//then swap them, which will put them back in order.
|
2201 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
2202 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
2203 |
GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor);
|
2204 |
}
|
2205 |
|
2206 |
#if 0
|
2207 |
//Print out the left neighbor and right neighbor determined, for debugging.
|
2208 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2209 |
&(left_neighbor.num),
|
2210 |
"left_neigh_num");
|
2211 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2212 |
&(left_neighbor.den),
|
2213 |
"left_neigh_den");
|
2214 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2215 |
&(right_neighbor.num),
|
2216 |
"right_neigh_num");
|
2217 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2218 |
&(right_neighbor.den),
|
2219 |
"right_neigh_den");
|
2220 |
#endif
|
2221 |
|
2222 |
|
2223 |
//**************************************************************************
|
2224 |
// d)While (queued_count < count)
|
2225 |
//**************************************************************************
|
2226 |
while (result->n_left_out < result->n_left_in)
|
2227 |
{
|
2228 |
//**************************************************************************
|
2229 |
// e)Queue the left neighbor, queued_count++
|
2230 |
//**************************************************************************
|
2231 |
(result->lefts + result->n_left_out)->index = -(result->n_left_out + 1);
|
2232 |
GMP_RATS_mpq_init(&((result->lefts + result->n_left_out)->neighbor));
|
2233 |
GMP_RATS_mpq_copy(&((result->lefts + result->n_left_out)->neighbor), &left_neighbor);
|
2234 |
(result->n_left_out)++;
|
2235 |
|
2236 |
//**************************************************************************
|
2237 |
// f)If (queued_count >= count), break.
|
2238 |
//**************************************************************************
|
2239 |
//By the way, this step is to save unnecessary contortions once we've met
|
2240 |
//the quota.
|
2241 |
if (result->n_left_out >= result->n_left_in)
|
2242 |
break;
|
2243 |
|
2244 |
//**************************************************************************
|
2245 |
// g)If (left_neighbor <= -HMAX/1), break
|
2246 |
//**************************************************************************
|
2247 |
//This breaks us when we've queued the most negative number we can--can't go
|
2248 |
//further. This only applies for cases where KMAX is also specified.
|
2249 |
if (result->hmax_supplied
|
2250 |
&&
|
2251 |
GMP_RATS_mpq_cmp(&left_neighbor, &hmax_over_one_neg, NULL) <= 0)
|
2252 |
break;
|
2253 |
|
2254 |
//**************************************************************************
|
2255 |
// h)Advance the frame one to the left.
|
2256 |
//**************************************************************************
|
2257 |
//Advancing one frame to the left is a complicated affair, requiring several
|
2258 |
//subcases. We break it up into regions which are best visualized using
|
2259 |
//a graph of the integer lattice with dots for each rational number.
|
2260 |
if (!(result->hmax_supplied))
|
2261 |
{
|
2262 |
//This is the case where we're are looking only in the
|
2263 |
//Farey series.
|
2264 |
if (GMP_INTS_mpz_is_pos(&left_neighbor.num))
|
2265 |
{
|
2266 |
//In this case, the left neighbor and right neighbor
|
2267 |
//are both positive, and we can apply the standard
|
2268 |
//formulas.
|
2269 |
GMP_RALG_farey_predecessor(&q_temp1,
|
2270 |
&right_neighbor,
|
2271 |
&left_neighbor,
|
2272 |
&(result->kmax_in));
|
2273 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2274 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp1);
|
2275 |
}
|
2276 |
else if (GMP_INTS_mpz_is_zero(&left_neighbor.num))
|
2277 |
{
|
2278 |
//In this case, we are making the transition from positive
|
2279 |
//to negative.
|
2280 |
GMP_INTS_mpz_set_si(&(left_neighbor.num), -1);
|
2281 |
GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in));
|
2282 |
GMP_RATS_mpq_set_si(&right_neighbor, 0, 1);
|
2283 |
}
|
2284 |
else
|
2285 |
{
|
2286 |
//Here, we are purely negative and decreasing. Need to negate
|
2287 |
//the numbers, find successor, then negate.
|
2288 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2289 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2290 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
2291 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
2292 |
GMP_RALG_farey_successor(&q_temp3,
|
2293 |
&q_temp2,
|
2294 |
&q_temp1,
|
2295 |
&(result->kmax_in));
|
2296 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2297 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
2298 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2299 |
}
|
2300 |
}
|
2301 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) > 0)
|
2302 |
{
|
2303 |
//We are above the top corner point. In this case HMAX is the dominant
|
2304 |
//constraint, and we find our food by taking reciprocals and applying
|
2305 |
//the standard relationships in the Farey series of order HMAX.
|
2306 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2307 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2308 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
2309 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
2310 |
GMP_RALG_farey_successor(&q_temp3,
|
2311 |
&q_temp2,
|
2312 |
&q_temp1,
|
2313 |
&(result->hmax_in));
|
2314 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
2315 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2316 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
2317 |
}
|
2318 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) == 0)
|
2319 |
{
|
2320 |
//We are precisely at the corner point. This is where we round the corner.
|
2321 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2322 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one));
|
2323 |
}
|
2324 |
else if (GMP_INTS_mpz_is_pos(&left_neighbor.num))
|
2325 |
{
|
2326 |
//In this region we are going straight down the Farey series.
|
2327 |
GMP_RALG_farey_predecessor(&q_temp1,
|
2328 |
&right_neighbor,
|
2329 |
&left_neighbor,
|
2330 |
&(result->kmax_in));
|
2331 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2332 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp1);
|
2333 |
}
|
2334 |
else if (GMP_INTS_mpz_is_zero(&left_neighbor.num))
|
2335 |
{
|
2336 |
//In this case, we are making the transition from positive
|
2337 |
//to negative.
|
2338 |
GMP_INTS_mpz_set_si(&(left_neighbor.num), -1);
|
2339 |
GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in));
|
2340 |
GMP_RATS_mpq_set_si(&right_neighbor, 0, 1);
|
2341 |
}
|
2342 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) > 0)
|
2343 |
{
|
2344 |
//Here, we are purely negative and decreasing. Need to negate
|
2345 |
//the numbers, find successor, then negate.
|
2346 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2347 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2348 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
2349 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
2350 |
GMP_RALG_farey_successor(&q_temp3,
|
2351 |
&q_temp2,
|
2352 |
&q_temp1,
|
2353 |
&(result->kmax_in));
|
2354 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2355 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
2356 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2357 |
}
|
2358 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) == 0)
|
2359 |
{
|
2360 |
//This is where we are rounding the negative corner.
|
2361 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2362 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one));
|
2363 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2364 |
}
|
2365 |
else
|
2366 |
{
|
2367 |
//Here we're going in the negative direction along the "bottom" of the
|
2368 |
//rectangle.
|
2369 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2370 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2371 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
2372 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
2373 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
2374 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
2375 |
GMP_RALG_farey_predecessor(&q_temp3,
|
2376 |
&q_temp2,
|
2377 |
&q_temp1,
|
2378 |
&(result->hmax_in));
|
2379 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
2380 |
GMP_INTS_mpz_negate(&(q_temp3.num));
|
2381 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
2382 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
2383 |
}
|
2384 |
}
|
2385 |
|
2386 |
|
2387 |
done_with_left_neighbors: ;
|
2388 |
|
2389 |
//**************************************************************************
|
2390 |
// a)If the rational number to approximate is >= HMAX/1 or there are no
|
2391 |
// right neighbors requested, terminate with no neighbors on the right.
|
2392 |
//**************************************************************************
|
2393 |
if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->hmax_over_one), NULL) >= 0)
|
2394 |
|| (n_right_in <= 0))
|
2395 |
goto done_with_right_neighbors;
|
2396 |
|
2397 |
//**************************************************************************
|
2398 |
// b)Find the right neighbor of the rational number supplied.
|
2399 |
//**************************************************************************
|
2400 |
// c)Find the left neighbor of the rational number supplied.
|
2401 |
//**************************************************************************
|
2402 |
if (!result->hmax_supplied)
|
2403 |
{
|
2404 |
//In this case, the notion of corner point is meaningless, because
|
2405 |
//there is no constraint on H. We can just go on our merry way. Get
|
2406 |
//the two neighbors.
|
2407 |
GMP_RALG_enclosing_farey_neighbors(
|
2408 |
&(result->norm_rn),
|
2409 |
&(result->kmax_in),
|
2410 |
&(result->rn_abs_cf_rep),
|
2411 |
&equality_flag,
|
2412 |
&left_neighbor,
|
2413 |
&right_neighbor
|
2414 |
);
|
2415 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
2416 |
//rational number itself as a Farey term. If the number is in the Farey
|
2417 |
//series, we must replace the left neighbor, otherwise we cannot apply
|
2418 |
//the standard recursive formulas.
|
2419 |
if (equality_flag)
|
2420 |
{
|
2421 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn));
|
2422 |
}
|
2423 |
}
|
2424 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0)
|
2425 |
{
|
2426 |
//The rational number specified is negative and below the negative corner point.
|
2427 |
//This means that HMAX is the dominant constraint. We need to find the
|
2428 |
//neighbors in the Farey series of order HMAX, then reorder and invert, etc.
|
2429 |
GMP_RALG_enclosing_farey_neighbors(
|
2430 |
&abs_norm_recip_rn,
|
2431 |
&(result->hmax_in),
|
2432 |
&(result->rn_abs_recip_cf_rep),
|
2433 |
&equality_flag,
|
2434 |
&left_neighbor,
|
2435 |
&right_neighbor
|
2436 |
);
|
2437 |
|
2438 |
//Again, if the number specified was already in the series of interest,
|
2439 |
//we need to swap in the left neighbor.
|
2440 |
if (equality_flag)
|
2441 |
{
|
2442 |
GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn);
|
2443 |
}
|
2444 |
|
2445 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
2446 |
//then negate them, which will put them back in order.
|
2447 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
2448 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2449 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
2450 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2451 |
}
|
2452 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0)
|
2453 |
{
|
2454 |
//The rational number specified is the negative corner point. In this case
|
2455 |
//Because we can never return the corner point itself as a left neighbor,
|
2456 |
//we need to set the right value to be the negative of one before, and the left
|
2457 |
//to be the negative of the corner point.
|
2458 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point));
|
2459 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
2460 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one));
|
2461 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2462 |
}
|
2463 |
else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0)
|
2464 |
&&
|
2465 |
(GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0))
|
2466 |
{
|
2467 |
//The rational number specified is in the area dominated by the KMAX constraint
|
2468 |
//between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will
|
2469 |
//handle this correctly. Again, we need to adjust the output if the number
|
2470 |
//is already formable, because the Farey neighbor function is prohibited from
|
2471 |
//returning the number itself as a neighbor.
|
2472 |
GMP_RALG_enclosing_farey_neighbors(
|
2473 |
&(result->norm_rn),
|
2474 |
&(result->kmax_in),
|
2475 |
&(result->rn_abs_cf_rep),
|
2476 |
&equality_flag,
|
2477 |
&left_neighbor,
|
2478 |
&right_neighbor
|
2479 |
);
|
2480 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
2481 |
//rational number itself as a Farey term. If the number is in the Farey
|
2482 |
//series, we must replace the left neighbor, otherwise we cannot apply
|
2483 |
//the standard recursive formulas.
|
2484 |
if (equality_flag)
|
2485 |
{
|
2486 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn));
|
2487 |
}
|
2488 |
}
|
2489 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0)
|
2490 |
{
|
2491 |
//The rational number specified is the positive corner point. In this case.
|
2492 |
//because we can never return the corner point itself as a right neighbor,
|
2493 |
//we need to set the right value to be one after, and the left
|
2494 |
//to be the corner point.
|
2495 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point));
|
2496 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one));
|
2497 |
}
|
2498 |
else
|
2499 |
{
|
2500 |
//The only possibility left is that the number is positive and at or above the
|
2501 |
//corner point where HMAX is the dominant constraint.
|
2502 |
GMP_RALG_enclosing_farey_neighbors(
|
2503 |
&abs_norm_recip_rn,
|
2504 |
&(result->hmax_in),
|
2505 |
&(result->rn_abs_recip_cf_rep),
|
2506 |
&equality_flag,
|
2507 |
&left_neighbor,
|
2508 |
&right_neighbor
|
2509 |
);
|
2510 |
|
2511 |
//Again, if the number specified was already in the series of interest,
|
2512 |
//we need to swap in the neighbor. This time, however, it must be the
|
2513 |
//right neighbor because taking the reciprocals will reverse the order.
|
2514 |
if (equality_flag)
|
2515 |
{
|
2516 |
GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn);
|
2517 |
}
|
2518 |
|
2519 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
2520 |
//then swap them, which will put them back in order.
|
2521 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
2522 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
2523 |
GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor);
|
2524 |
}
|
2525 |
|
2526 |
#if 0
|
2527 |
//Print out the left neighbor and right neighbor determined, for debugging.
|
2528 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2529 |
&(left_neighbor.num),
|
2530 |
"left_neigh_num");
|
2531 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2532 |
&(left_neighbor.den),
|
2533 |
"left_neigh_den");
|
2534 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2535 |
&(right_neighbor.num),
|
2536 |
"right_neigh_num");
|
2537 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
2538 |
&(right_neighbor.den),
|
2539 |
"right_neigh_den");
|
2540 |
#endif
|
2541 |
|
2542 |
|
2543 |
//**************************************************************************
|
2544 |
// d)While (queued_count < count)
|
2545 |
//**************************************************************************
|
2546 |
while (result->n_right_out < result->n_right_in)
|
2547 |
{
|
2548 |
//**************************************************************************
|
2549 |
// e)Queue the right neighbor, queued_count++
|
2550 |
//**************************************************************************
|
2551 |
(result->rights + result->n_right_out)->index = (result->n_right_out + 1);
|
2552 |
GMP_RATS_mpq_init(&((result->rights + result->n_right_out)->neighbor));
|
2553 |
GMP_RATS_mpq_copy(&((result->rights + result->n_right_out)->neighbor), &right_neighbor);
|
2554 |
(result->n_right_out)++;
|
2555 |
|
2556 |
//**************************************************************************
|
2557 |
// f)If (queued_count >= count), break.
|
2558 |
//**************************************************************************
|
2559 |
//By the way, this step is to save unnecessary contortions once we've met
|
2560 |
//the quota.
|
2561 |
if (result->n_right_out >= result->n_right_in)
|
2562 |
break;
|
2563 |
|
2564 |
//**************************************************************************
|
2565 |
// g)If (right_neighbor >= HMAX/1), break
|
2566 |
//**************************************************************************
|
2567 |
//This breaks us when we've queued the most positive number we can--can't go
|
2568 |
//further. This only applies for cases where KMAX is also specified.
|
2569 |
if (result->hmax_supplied
|
2570 |
&&
|
2571 |
GMP_RATS_mpq_cmp(&right_neighbor, &(result->hmax_over_one), NULL) >= 0)
|
2572 |
break;
|
2573 |
|
2574 |
//**************************************************************************
|
2575 |
// h)Advance the frame one to the right.
|
2576 |
//**************************************************************************
|
2577 |
//Advancing one frame to the right is a complicated affair, requiring several
|
2578 |
//subcases. We break it up into regions which are best visualized using
|
2579 |
//a graph of the integer lattice with dots for each rational number.
|
2580 |
if (!(result->hmax_supplied))
|
2581 |
{
|
2582 |
//This is the case where we're are looking only in the
|
2583 |
//Farey series.
|
2584 |
if (GMP_INTS_mpz_is_neg(&right_neighbor.num))
|
2585 |
{
|
2586 |
//Neg and increasing towards zero. Can handle by symmetry.
|
2587 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2588 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2589 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
2590 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
2591 |
GMP_RALG_farey_predecessor(&q_temp3,
|
2592 |
&q_temp1,
|
2593 |
&q_temp2,
|
2594 |
&(result->kmax_in));
|
2595 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2596 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
2597 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2598 |
}
|
2599 |
else if (GMP_INTS_mpz_is_zero(&right_neighbor.num))
|
2600 |
{
|
2601 |
//Right term just hit zero and are increasing.
|
2602 |
//Left will become 0/1, right becomes 1/KMAX.
|
2603 |
GMP_RATS_mpq_set_si(&left_neighbor, 0, 1);
|
2604 |
GMP_INTS_mpz_set_si(&(right_neighbor.num), 1);
|
2605 |
GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in));
|
2606 |
}
|
2607 |
else
|
2608 |
{
|
2609 |
//Are above zero and increasing. Can use standard Farey
|
2610 |
//successor formula.
|
2611 |
GMP_RALG_farey_successor(&q_temp1,
|
2612 |
&left_neighbor,
|
2613 |
&right_neighbor,
|
2614 |
&(result->kmax_in));
|
2615 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2616 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp1);
|
2617 |
}
|
2618 |
}
|
2619 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) < 0)
|
2620 |
{
|
2621 |
//We are below the negative corner point and moving towards
|
2622 |
//zero, with HMAX the dominant constraint. We can proceed by
|
2623 |
//symmetry, producing a Farey successor and negating and inverting.
|
2624 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2625 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2626 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
2627 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
2628 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
2629 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
2630 |
GMP_RALG_farey_successor(&q_temp3,
|
2631 |
&q_temp1,
|
2632 |
&q_temp2,
|
2633 |
&(result->hmax_in));
|
2634 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
2635 |
GMP_INTS_mpz_negate(&(q_temp3.num));
|
2636 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2637 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
2638 |
}
|
2639 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) == 0)
|
2640 |
{
|
2641 |
//We are at the bottom negative corner point and need to "round the corner".
|
2642 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2643 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one));
|
2644 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2645 |
}
|
2646 |
else if (GMP_INTS_mpz_is_neg(&right_neighbor.num))
|
2647 |
{
|
2648 |
//In this region we are going straight up the Farey series approaching
|
2649 |
//zero. Need to negate to use standard relationships.
|
2650 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2651 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2652 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
2653 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
2654 |
GMP_RALG_farey_predecessor(&q_temp3,
|
2655 |
&q_temp1,
|
2656 |
&q_temp2,
|
2657 |
&(result->kmax_in));
|
2658 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2659 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
2660 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2661 |
}
|
2662 |
else if (GMP_INTS_mpz_is_zero(&right_neighbor.num))
|
2663 |
{
|
2664 |
//Zero crossover.
|
2665 |
GMP_RATS_mpq_set_si(&left_neighbor, 0, 1);
|
2666 |
GMP_INTS_mpz_set_si(&(right_neighbor.num), 1);
|
2667 |
GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in));
|
2668 |
}
|
2669 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) < 0)
|
2670 |
{
|
2671 |
//Below corner point. Standard relationship applies.
|
2672 |
GMP_RALG_farey_successor(&q_temp1,
|
2673 |
&left_neighbor,
|
2674 |
&right_neighbor,
|
2675 |
&(result->kmax_in));
|
2676 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2677 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp1);
|
2678 |
}
|
2679 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) == 0)
|
2680 |
{
|
2681 |
//At the positive corner point.
|
2682 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2683 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one));
|
2684 |
}
|
2685 |
else
|
2686 |
{
|
2687 |
//Above the positive corner point and heading for HMAX/1.
|
2688 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2689 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2690 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
2691 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
2692 |
GMP_RALG_farey_predecessor(&q_temp3,
|
2693 |
&q_temp1,
|
2694 |
&q_temp2,
|
2695 |
&(result->hmax_in));
|
2696 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
2697 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2698 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
2699 |
}
|
2700 |
}
|
2701 |
|
2702 |
done_with_right_neighbors: ;
|
2703 |
|
2704 |
//This is a single return point so we catch all the dynamic memory
|
2705 |
//deallocation.
|
2706 |
return_point:
|
2707 |
GMP_RATS_mpq_clear(&q_temp1);
|
2708 |
GMP_RATS_mpq_clear(&q_temp2);
|
2709 |
GMP_RATS_mpq_clear(&q_temp3);
|
2710 |
GMP_RATS_mpq_clear(&q_temp4);
|
2711 |
GMP_RATS_mpq_clear(&left_neighbor);
|
2712 |
GMP_RATS_mpq_clear(&right_neighbor);
|
2713 |
GMP_RATS_mpq_clear(&left_neighbor_abs);
|
2714 |
GMP_RATS_mpq_clear(&right_neighbor_abs);
|
2715 |
GMP_RATS_mpq_clear(&hmax_over_one_neg);
|
2716 |
GMP_RATS_mpq_clear(&corner_point_neg);
|
2717 |
GMP_RATS_mpq_clear(&abs_norm_recip_rn);
|
2718 |
}
|
2719 |
|
2720 |
|
2721 |
//08/16/01: Visual inspection OK.
|
2722 |
void GMP_RALG_consecutive_fab_terms_result_free(
|
2723 |
GMP_RALG_fab_neighbor_collection_struct *arg
|
2724 |
)
|
2725 |
{
|
2726 |
int i;
|
2727 |
|
2728 |
//Eyeball the input.
|
2729 |
assert(arg != NULL);
|
2730 |
|
2731 |
//Deallocate all rational numbers and integers that MUST be allocated, i.e. they are
|
2732 |
//never conditional.
|
2733 |
GMP_RATS_mpq_clear(&(arg->rn_in));
|
2734 |
GMP_INTS_mpz_clear(&(arg->kmax_in));
|
2735 |
GMP_INTS_mpz_clear(&(arg->hmax_in));
|
2736 |
GMP_RATS_mpq_clear(&(arg->hmax_over_one));
|
2737 |
GMP_RATS_mpq_clear(&(arg->corner_point));
|
2738 |
GMP_RATS_mpq_clear(&(arg->corner_point_minus_one));
|
2739 |
GMP_RATS_mpq_clear(&(arg->corner_point_plus_one));
|
2740 |
GMP_RATS_mpq_clear(&(arg->norm_rn));
|
2741 |
GMP_RATS_mpq_clear(&(arg->abs_norm_rn));
|
2742 |
|
2743 |
//Destroy any continued fraction representations that were
|
2744 |
//formed.
|
2745 |
if (arg->rn_abs_cf_rep_formed)
|
2746 |
{
|
2747 |
GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_cf_rep));
|
2748 |
}
|
2749 |
if (arg->rn_abs_recip_cf_rep_formed)
|
2750 |
{
|
2751 |
GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_recip_cf_rep));
|
2752 |
}
|
2753 |
if(arg->corner_point_cf_rep_formed)
|
2754 |
{
|
2755 |
GMP_RALG_cfdecomp_destroy(&(arg->corner_point_cf_rep));
|
2756 |
}
|
2757 |
if(arg->corner_point_recip_cf_rep_formed)
|
2758 |
{
|
2759 |
GMP_RALG_cfdecomp_destroy(&(arg->corner_point_recip_cf_rep));
|
2760 |
}
|
2761 |
|
2762 |
//Walk through the lefts, freeing up any allocated rational numbers.
|
2763 |
for (i=0; i < arg->n_left_out; i++)
|
2764 |
{
|
2765 |
GMP_RATS_mpq_clear(&(arg->lefts[i].neighbor));
|
2766 |
}
|
2767 |
|
2768 |
//Walk through the rights, freeing up any allocated rational numbers.
|
2769 |
for (i=0; i < arg->n_right_out; i++)
|
2770 |
{
|
2771 |
GMP_RATS_mpq_clear(&(arg->rights[i].neighbor));
|
2772 |
}
|
2773 |
|
2774 |
//Deallocate any area assigned for lefts.
|
2775 |
if (arg->lefts)
|
2776 |
{
|
2777 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
2778 |
CCMALLOC_free(arg->lefts);
|
2779 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
2780 |
TclpFree((char *)arg->lefts);
|
2781 |
#else
|
2782 |
free(arg->lefts);
|
2783 |
#endif
|
2784 |
|
2785 |
arg->lefts = NULL;
|
2786 |
}
|
2787 |
|
2788 |
//Deallocate any area assigned for rights.
|
2789 |
if (arg->rights)
|
2790 |
{
|
2791 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
2792 |
CCMALLOC_free(arg->rights);
|
2793 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
2794 |
TclpFree((char *)arg->rights);
|
2795 |
#else
|
2796 |
free(arg->rights);
|
2797 |
#endif
|
2798 |
|
2799 |
arg->rights = NULL;
|
2800 |
}
|
2801 |
}
|
2802 |
|
2803 |
|
2804 |
//08/16/01: Visual inspection OK.
|
2805 |
void GMP_RALG_consecutive_fab_terms_result_dump(
|
2806 |
FILE *s,
|
2807 |
GMP_RALG_fab_neighbor_collection_struct *arg
|
2808 |
)
|
2809 |
{
|
2810 |
int i;
|
2811 |
char buf[250];
|
2812 |
|
2813 |
//Eyeball the input parameters.
|
2814 |
assert(s != NULL);
|
2815 |
assert(arg != NULL);
|
2816 |
|
2817 |
//Announce intent.
|
2818 |
FCMIOF_stream_bannerheading(s,
|
2819 |
"Emitting Neighbor Decomp For Analysis",
|
2820 |
1);
|
2821 |
|
2822 |
//Dump the fields, in order.
|
2823 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2824 |
&(arg->rn_in.num),
|
2825 |
"rn_in_num");
|
2826 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2827 |
&(arg->rn_in.den),
|
2828 |
"rn_in_den");
|
2829 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2830 |
&(arg->kmax_in),
|
2831 |
"kmax_in");
|
2832 |
fprintf(s, " hmax_supplied: %12d\n", arg->hmax_supplied);
|
2833 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2834 |
&(arg->hmax_in),
|
2835 |
"hmax_in");
|
2836 |
if (arg->error)
|
2837 |
{
|
2838 |
fprintf(s, " error: %s\n", arg->error);
|
2839 |
}
|
2840 |
else
|
2841 |
{
|
2842 |
fprintf(s, " error: NULL\n");
|
2843 |
}
|
2844 |
|
2845 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2846 |
&(arg->corner_point.num),
|
2847 |
"corner_point_num");
|
2848 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2849 |
&(arg->corner_point.den),
|
2850 |
"corner_point_den");
|
2851 |
|
2852 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2853 |
&(arg->corner_point_minus_one.num),
|
2854 |
"cor_pt_minus_one_num");
|
2855 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2856 |
&(arg->corner_point_minus_one.den),
|
2857 |
"cor_pt_minus_one_den");
|
2858 |
|
2859 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2860 |
&(arg->corner_point_plus_one.num),
|
2861 |
"cor_pt_plus_one_num");
|
2862 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2863 |
&(arg->corner_point_plus_one.den),
|
2864 |
"cor_pt_plus_one_den");
|
2865 |
|
2866 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2867 |
&(arg->hmax_over_one.num),
|
2868 |
"hmax/1_num");
|
2869 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2870 |
&(arg->hmax_over_one.den),
|
2871 |
"hmax/1_den");
|
2872 |
|
2873 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2874 |
&(arg->norm_rn.num),
|
2875 |
"norm_rn_num");
|
2876 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2877 |
&(arg->norm_rn.den),
|
2878 |
"norm_rn_den");
|
2879 |
|
2880 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2881 |
&(arg->abs_norm_rn.num),
|
2882 |
"abs_norm_rn_num");
|
2883 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2884 |
&(arg->abs_norm_rn.den),
|
2885 |
"abs_norm_rn_den");
|
2886 |
|
2887 |
fprintf(s, " rn_is_neg: %12d\n", arg->rn_is_neg);
|
2888 |
|
2889 |
fprintf(s, " n_left_in: %12d\n", arg->n_left_in);
|
2890 |
|
2891 |
fprintf(s, " n_right_in: %12d\n", arg->n_right_in);
|
2892 |
|
2893 |
fprintf(s, "rn_abs_cf_rep_formed: %12d\n", arg->rn_abs_cf_rep_formed);
|
2894 |
|
2895 |
if (arg->rn_abs_cf_rep_formed)
|
2896 |
{
|
2897 |
GMP_RALG_cfdecomp_emit(s, "Abs Of RN In CF Decomp", &(arg->rn_abs_cf_rep), 0, 0, NULL);
|
2898 |
}
|
2899 |
|
2900 |
fprintf(s, "rn_abs_recip_cf_rep_formed: %12d\n", arg->rn_abs_recip_cf_rep_formed);
|
2901 |
|
2902 |
if (arg->rn_abs_recip_cf_rep_formed)
|
2903 |
{
|
2904 |
GMP_RALG_cfdecomp_emit(s, "Abs Of Recip Of RN In CF Decomp", &(arg->rn_abs_recip_cf_rep), 0, 0, NULL);
|
2905 |
}
|
2906 |
|
2907 |
fprintf(s, "corner_point_cf_rep_formed: %12d\n", arg->corner_point_cf_rep_formed);
|
2908 |
|
2909 |
if (arg->corner_point_cf_rep_formed)
|
2910 |
{
|
2911 |
GMP_RALG_cfdecomp_emit(s, "Corner Point CF Decomp", &(arg->corner_point_cf_rep), 0, 0, NULL);
|
2912 |
}
|
2913 |
|
2914 |
fprintf(s, "cor_pt_recip_cf_rep_formed: %12d\n", arg->corner_point_recip_cf_rep_formed);
|
2915 |
|
2916 |
if (arg->corner_point_recip_cf_rep_formed)
|
2917 |
{
|
2918 |
GMP_RALG_cfdecomp_emit(s, "Corner Point Recip CF Decomp", &(arg->corner_point_recip_cf_rep), 0, 0, NULL);
|
2919 |
}
|
2920 |
|
2921 |
fprintf(s, " equality: %12d\n", arg->equality);
|
2922 |
|
2923 |
fprintf(s, " n_left_out: %12d\n", arg->n_left_out);
|
2924 |
|
2925 |
fprintf(s, " n_right_out: %12d\n", arg->n_right_out);
|
2926 |
|
2927 |
for (i=0; i < arg->n_left_out; i++)
|
2928 |
{
|
2929 |
sprintf(buf, "Contents Of Left Neighbor Array [%d]", i);
|
2930 |
FCMIOF_stream_bannerheading(s,
|
2931 |
buf,
|
2932 |
0);
|
2933 |
fprintf(s, " index: %12d\n", arg->lefts[i].index);
|
2934 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2935 |
&(arg->lefts[i].neighbor.num),
|
2936 |
"neighbor_num");
|
2937 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2938 |
&(arg->lefts[i].neighbor.den),
|
2939 |
"neighbor_den");
|
2940 |
}
|
2941 |
|
2942 |
for (i=0; i < arg->n_right_out; i++)
|
2943 |
{
|
2944 |
sprintf(buf, "Contents Of Right Neighbor Array [%d]", i);
|
2945 |
FCMIOF_stream_bannerheading(s,
|
2946 |
buf,
|
2947 |
0);
|
2948 |
fprintf(s, " index: %12d\n", arg->rights[i].index);
|
2949 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2950 |
&(arg->rights[i].neighbor.num),
|
2951 |
"neighbor_num");
|
2952 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2953 |
&(arg->rights[i].neighbor.den),
|
2954 |
"neighbor_den");
|
2955 |
}
|
2956 |
|
2957 |
FCMIOF_stream_hline(s);
|
2958 |
}
|
2959 |
|
2960 |
|
2961 |
/******************************************************************/
|
2962 |
/*** VERSION CONTROL REPORTING FUNCTIONS ************************/
|
2963 |
/******************************************************************/
|
2964 |
|
2965 |
//08/16/01: Visual inspection OK.
|
2966 |
const char *GMP_RALG_cvcinfo(void)
|
2967 |
{
|
2968 |
return("$Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/c_datd/gmp_ralg.c,v 1.10 2002/01/27 17:58:15 dtashley Exp $");
|
2969 |
}
|
2970 |
|
2971 |
|
2972 |
//08/16/01: Visual inspection OK.
|
2973 |
const char *GMP_RALG_hvcinfo(void)
|
2974 |
{
|
2975 |
return(GMP_RALG_H_VERSION);
|
2976 |
}
|
2977 |
|
2978 |
|
2979 |
//**************************************************************************
|
2980 |
// $Log: gmp_ralg.c,v $
|
2981 |
// Revision 1.10 2002/01/27 17:58:15 dtashley
|
2982 |
// CRC32, other programs modified to work under new directory structure.
|
2983 |
//
|
2984 |
// Revision 1.9 2001/08/18 18:33:13 dtashley
|
2985 |
// Preparing for release of v1.05.
|
2986 |
//
|
2987 |
// Revision 1.8 2001/08/16 19:49:40 dtashley
|
2988 |
// Beginning to prepare for v1.05 release.
|
2989 |
//
|
2990 |
// Revision 1.7 2001/08/15 06:56:05 dtashley
|
2991 |
// Substantial progress. Safety check-in.
|
2992 |
//
|
2993 |
// Revision 1.6 2001/08/12 10:20:58 dtashley
|
2994 |
// Safety check-in. Substantial progress.
|
2995 |
//
|
2996 |
// Revision 1.5 2001/08/07 10:42:48 dtashley
|
2997 |
// Completion of CFRATNUM extensions and DOS command-line utility.
|
2998 |
//
|
2999 |
// Revision 1.4 2001/07/13 21:02:20 dtashley
|
3000 |
// Version control reporting changes.
|
3001 |
//
|
3002 |
// Revision 1.3 2001/07/13 20:44:42 dtashley
|
3003 |
// Changes, CVS keyword expansion test.
|
3004 |
//
|
3005 |
// Revision 1.2 2001/07/13 00:57:08 dtashley
|
3006 |
// Safety check-in. Substantial progress on port.
|
3007 |
//
|
3008 |
// Revision 1.1 2001/07/12 05:42:06 dtashley
|
3009 |
// Initial checkin.
|
3010 |
//
|
3011 |
//**************************************************************************
|
3012 |
// End of GMP_RALG.C. |