1 |
//$Header$
|
2 |
//-------------------------------------------------------------------------------------------------
|
3 |
//This file is part of "David T. Ashley's Shared Source Code", a set of shared components
|
4 |
//integrated into many of David T. Ashley's projects.
|
5 |
//-------------------------------------------------------------------------------------------------
|
6 |
//This source code and any program in which it is compiled/used is provided under the MIT License,
|
7 |
//reproduced below.
|
8 |
//-------------------------------------------------------------------------------------------------
|
9 |
//Permission is hereby granted, free of charge, to any person obtaining a copy of
|
10 |
//this software and associated documentation files(the "Software"), to deal in the
|
11 |
//Software without restriction, including without limitation the rights to use,
|
12 |
//copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the
|
13 |
//Software, and to permit persons to whom the Software is furnished to do so,
|
14 |
//subject to the following conditions :
|
15 |
//
|
16 |
//The above copyright notice and this permission notice shall be included in all
|
17 |
//copies or substantial portions of the Software.
|
18 |
//
|
19 |
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
20 |
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
21 |
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
22 |
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
23 |
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
24 |
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
25 |
//SOFTWARE.
|
26 |
//-------------------------------------------------------------------------------------------------
|
27 |
#define MODULE_GMP_RALG
|
28 |
|
29 |
#include <assert.h>
|
30 |
#include <stdio.h>
|
31 |
#include <string.h>
|
32 |
#include <time.h>
|
33 |
|
34 |
|
35 |
#include "fcmiof.h"
|
36 |
#include "gmp_ints.h"
|
37 |
#include "gmp_rats.h"
|
38 |
#include "gmp_ralg.h"
|
39 |
#include "intfunc.h"
|
40 |
|
41 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
42 |
#include "ccmalloc.h"
|
43 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
44 |
#include "tclalloc.h"
|
45 |
#else
|
46 |
/* Do nothing. */
|
47 |
#endif
|
48 |
|
49 |
|
50 |
/******************************************************************/
|
51 |
/*** INITIALIZATION AND DESTRUCTION FUNCTIONS *******************/
|
52 |
/******************************************************************/
|
53 |
//08/16/01: Visual inspection OK.
|
54 |
void GMP_RALG_cfdecomp_init(
|
55 |
GMP_RALG_cf_app_struct *decomp,
|
56 |
int *failure,
|
57 |
GMP_INTS_mpz_struct *num,
|
58 |
GMP_INTS_mpz_struct *den)
|
59 |
{
|
60 |
int loop_counter, i;
|
61 |
GMP_INTS_mpz_struct arb_temp1, arb_temp2;
|
62 |
|
63 |
//Eyeball the input parameters. The rest of the eyeballing
|
64 |
//will occur as functions are called to manipulate the
|
65 |
//numerator and denominator passed in.
|
66 |
assert(decomp != NULL);
|
67 |
assert(failure != NULL);
|
68 |
assert(num != NULL);
|
69 |
assert(den != NULL);
|
70 |
|
71 |
//Allocate space for temporary integers.
|
72 |
GMP_INTS_mpz_init(&arb_temp1);
|
73 |
GMP_INTS_mpz_init(&arb_temp2);
|
74 |
|
75 |
//Begin believing no failure.
|
76 |
*failure = 0;
|
77 |
|
78 |
//Initialize the copy of the numerator and denominator and
|
79 |
//copy these into the structure.
|
80 |
GMP_INTS_mpz_init(&(decomp->num));
|
81 |
GMP_INTS_mpz_copy(&(decomp->num), num);
|
82 |
GMP_INTS_mpz_init(&(decomp->den));
|
83 |
GMP_INTS_mpz_copy(&(decomp->den), den);
|
84 |
|
85 |
//Allocate the space for the first increment of the
|
86 |
//growable areas. We need to use different memory
|
87 |
//allocation functions depending on whether we're
|
88 |
//in a Tcl build or a DOS command-line utility
|
89 |
//build.
|
90 |
//Space for partial quotients.
|
91 |
decomp->a =
|
92 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
93 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
94 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
95 |
(GMP_INTS_mpz_struct *)
|
96 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
97 |
#else
|
98 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
99 |
#endif
|
100 |
|
101 |
//Dividends.
|
102 |
decomp->dividend =
|
103 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
104 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
105 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
106 |
(GMP_INTS_mpz_struct *)
|
107 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
108 |
#else
|
109 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
110 |
#endif
|
111 |
|
112 |
//Divisors.
|
113 |
decomp->divisor =
|
114 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
115 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
116 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
117 |
(GMP_INTS_mpz_struct *)
|
118 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
119 |
#else
|
120 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
121 |
#endif
|
122 |
|
123 |
//Remainders.
|
124 |
decomp->remainder =
|
125 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
126 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
127 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
128 |
(GMP_INTS_mpz_struct *)
|
129 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
130 |
#else
|
131 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
132 |
#endif
|
133 |
|
134 |
//Convergent numerators.
|
135 |
decomp->p =
|
136 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
137 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
138 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
139 |
(GMP_INTS_mpz_struct *)
|
140 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
141 |
#else
|
142 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
143 |
#endif
|
144 |
|
145 |
//Convergent denominators.
|
146 |
decomp->q =
|
147 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
148 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
149 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
150 |
(GMP_INTS_mpz_struct *)
|
151 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
152 |
#else
|
153 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT);
|
154 |
#endif
|
155 |
|
156 |
//Now the number of allocated slots is what we just allocated.
|
157 |
decomp->nallocd = GMP_RALG_CF_ALLOC_INCREMENT;
|
158 |
|
159 |
//The number of slots actually used is zero, to start with.
|
160 |
decomp->n = 0;
|
161 |
|
162 |
//There are a number of conditions that will lead to an error
|
163 |
//where we can't successfully form the continued fraction
|
164 |
//decomposition. These errors are:
|
165 |
// a)Either component is NAN.
|
166 |
// b)Zero denominator.
|
167 |
// c)Either component negative.
|
168 |
//In these cases, we'll pretend we got 0/1 for the number
|
169 |
//and set things accordingly, and we'll set the failure
|
170 |
//flag for the caller.
|
171 |
//
|
172 |
if (GMP_INTS_mpz_get_flags(num)
|
173 |
||
|
174 |
GMP_INTS_mpz_get_flags(den)
|
175 |
||
|
176 |
GMP_INTS_mpz_is_zero(den)
|
177 |
||
|
178 |
GMP_INTS_mpz_is_neg(num)
|
179 |
||
|
180 |
GMP_INTS_mpz_is_neg(den))
|
181 |
{
|
182 |
*failure = 1;
|
183 |
decomp->n = 1;
|
184 |
|
185 |
GMP_INTS_mpz_set_ui(&(decomp->num), 0);
|
186 |
GMP_INTS_mpz_set_ui(&(decomp->den), 1);
|
187 |
|
188 |
GMP_INTS_mpz_init(decomp->dividend);
|
189 |
GMP_INTS_mpz_set_ui(decomp->dividend, 0);
|
190 |
|
191 |
GMP_INTS_mpz_init(decomp->divisor);
|
192 |
GMP_INTS_mpz_set_ui(decomp->divisor, 1);
|
193 |
|
194 |
GMP_INTS_mpz_init(decomp->a);
|
195 |
GMP_INTS_mpz_set_ui(decomp->a, 0);
|
196 |
|
197 |
GMP_INTS_mpz_init(decomp->remainder);
|
198 |
GMP_INTS_mpz_set_ui(decomp->remainder, 0);
|
199 |
|
200 |
GMP_INTS_mpz_init(decomp->p);
|
201 |
GMP_INTS_mpz_set_ui(decomp->p, 0);
|
202 |
|
203 |
GMP_INTS_mpz_init(decomp->q);
|
204 |
GMP_INTS_mpz_set_ui(decomp->q, 1);
|
205 |
|
206 |
goto return_point;
|
207 |
}
|
208 |
|
209 |
//If we're here there are not any errors that we
|
210 |
//are willing to detect. We should be clear
|
211 |
//for a continued fraction decomposition.
|
212 |
loop_counter = 0;
|
213 |
do
|
214 |
{
|
215 |
//Increment the count of "rows", because we're
|
216 |
//about to add one.
|
217 |
decomp->n++;
|
218 |
|
219 |
//If we have used up all the space available
|
220 |
//for integers, we have to allocate more.
|
221 |
if (decomp->n > decomp->nallocd)
|
222 |
{
|
223 |
//We now have more allocated space.
|
224 |
decomp->nallocd += GMP_RALG_CF_ALLOC_INCREMENT;
|
225 |
|
226 |
//Be absolutely sure we have not made a greivous
|
227 |
//error.
|
228 |
assert(decomp->n <= decomp->nallocd);
|
229 |
|
230 |
//Space for dividends.
|
231 |
decomp->dividend =
|
232 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
233 |
CCMALLOC_realloc(
|
234 |
decomp->dividend,
|
235 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
236 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
237 |
(GMP_INTS_mpz_struct *)
|
238 |
TclpRealloc((char *)decomp->dividend,
|
239 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
240 |
#else
|
241 |
realloc(decomp->dividend, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
242 |
#endif
|
243 |
|
244 |
//Space for divisors.
|
245 |
decomp->divisor =
|
246 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
247 |
CCMALLOC_realloc(
|
248 |
decomp->divisor,
|
249 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
250 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
251 |
(GMP_INTS_mpz_struct *)
|
252 |
TclpRealloc((char *)decomp->divisor,
|
253 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
254 |
#else
|
255 |
realloc(decomp->divisor, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
256 |
#endif
|
257 |
|
258 |
//Space for partial quotients.
|
259 |
decomp->a =
|
260 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
261 |
CCMALLOC_realloc(
|
262 |
decomp->a,
|
263 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
264 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
265 |
(GMP_INTS_mpz_struct *)
|
266 |
TclpRealloc((char *)decomp->a,
|
267 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
268 |
#else
|
269 |
realloc(decomp->a, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
270 |
#endif
|
271 |
|
272 |
//Space for remainders.
|
273 |
decomp->remainder =
|
274 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
275 |
CCMALLOC_realloc(
|
276 |
decomp->remainder,
|
277 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
278 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
279 |
(GMP_INTS_mpz_struct *)
|
280 |
TclpRealloc((char *)decomp->remainder,
|
281 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
282 |
#else
|
283 |
realloc(decomp->remainder, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
284 |
#endif
|
285 |
|
286 |
//Space for partial quotient numerators.
|
287 |
decomp->p =
|
288 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
289 |
CCMALLOC_realloc(
|
290 |
decomp->p,
|
291 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
292 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
293 |
(GMP_INTS_mpz_struct *)
|
294 |
TclpRealloc((char *)decomp->p,
|
295 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
296 |
#else
|
297 |
realloc(decomp->p, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
298 |
#endif
|
299 |
|
300 |
//Space for partial quotient denominators.
|
301 |
decomp->q =
|
302 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
303 |
CCMALLOC_realloc(
|
304 |
decomp->q,
|
305 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
306 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
307 |
(GMP_INTS_mpz_struct *)
|
308 |
TclpRealloc((char *)decomp->q,
|
309 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
310 |
#else
|
311 |
realloc(decomp->q, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd);
|
312 |
#endif
|
313 |
}
|
314 |
|
315 |
//At this point, we have enough space to do the next round of operations.
|
316 |
//Set up an index variable.
|
317 |
i = decomp->n - 1;
|
318 |
|
319 |
//Initialize all of the integers at this round.
|
320 |
GMP_INTS_mpz_init(decomp->dividend + i);
|
321 |
GMP_INTS_mpz_init(decomp->divisor + i);
|
322 |
GMP_INTS_mpz_init(decomp->a + i);
|
323 |
GMP_INTS_mpz_init(decomp->remainder + i);
|
324 |
GMP_INTS_mpz_init(decomp->p + i);
|
325 |
GMP_INTS_mpz_init(decomp->q + i);
|
326 |
|
327 |
//Perform the next round of continued fraction decomposition. This
|
328 |
//is standard stuff.
|
329 |
if (i==0)
|
330 |
{
|
331 |
//In the 0th round, we essentially perform initial assignments.
|
332 |
GMP_INTS_mpz_copy(decomp->dividend, &(decomp->num));
|
333 |
GMP_INTS_mpz_copy(decomp->divisor, &(decomp->den));
|
334 |
|
335 |
//Make the division to get quotient and remainder.
|
336 |
GMP_INTS_mpz_tdiv_qr(decomp->a, decomp->remainder, decomp->dividend, decomp->divisor);
|
337 |
|
338 |
//The convergents in the first round are always the quotient over 1.
|
339 |
GMP_INTS_mpz_copy(decomp->p, decomp->a);
|
340 |
GMP_INTS_mpz_set_ui(decomp->q, 1);
|
341 |
}
|
342 |
else if (i==1)
|
343 |
{
|
344 |
//In the 1st round, the only point of caution is that we have to
|
345 |
//consider p(k-2)/q(k-2) carefully.
|
346 |
GMP_INTS_mpz_copy(decomp->dividend + 1, decomp->divisor + 0);
|
347 |
GMP_INTS_mpz_copy(decomp->divisor + 1, decomp->remainder + 0);
|
348 |
|
349 |
//Make the division to get quotient and remainder.
|
350 |
GMP_INTS_mpz_tdiv_qr(decomp->a + 1,
|
351 |
decomp->remainder + 1,
|
352 |
decomp->dividend + 1,
|
353 |
decomp->divisor + 1);
|
354 |
|
355 |
//Need to compute the numerator of the convergent. This will be:
|
356 |
// a(1) p(0) + p(-1) = a(1)p(0) + 1.
|
357 |
GMP_INTS_mpz_mul(decomp->p + 1, decomp->a + 1, decomp->p + 0);
|
358 |
GMP_INTS_mpz_set_ui(&arb_temp1, 1);
|
359 |
GMP_INTS_mpz_add(decomp->p + 1, decomp->p + 1, &arb_temp1);
|
360 |
|
361 |
//Need to compute the denominator of the convergent. This will
|
362 |
//be a(1)q(0) + q(-1) = a(1) q(0) = a(1).
|
363 |
GMP_INTS_mpz_copy(decomp->q + 1, decomp->a + 1);
|
364 |
}
|
365 |
else
|
366 |
{
|
367 |
//In the general case, it is a simple formula.
|
368 |
//Rotate in the dividend and divisor from the previous round.
|
369 |
GMP_INTS_mpz_copy(decomp->dividend + i, decomp->divisor + i - 1);
|
370 |
GMP_INTS_mpz_copy(decomp->divisor + i, decomp->remainder + i - 1);
|
371 |
|
372 |
//Make the division to get quotient and remainder.
|
373 |
GMP_INTS_mpz_tdiv_qr(decomp->a + i,
|
374 |
decomp->remainder + i,
|
375 |
decomp->dividend + i,
|
376 |
decomp->divisor + i);
|
377 |
|
378 |
//Need to compute the numerator of the convergent. This will be:
|
379 |
// p(i) = a(i)p(i-1) + p(i-2)
|
380 |
GMP_INTS_mpz_mul(decomp->p + i, decomp->a + i, decomp->p + i - 1);
|
381 |
GMP_INTS_mpz_add(decomp->p + i, decomp->p + i, decomp->p + i - 2);
|
382 |
|
383 |
//Need to compute the numerator of the convergent. This will be:
|
384 |
// q(i) = q(i)q(i-1) + q(i-2)
|
385 |
GMP_INTS_mpz_mul(decomp->q + i, decomp->a + i, decomp->q + i - 1);
|
386 |
GMP_INTS_mpz_add(decomp->q + i, decomp->q + i, decomp->q + i - 2);
|
387 |
}
|
388 |
|
389 |
loop_counter++;
|
390 |
} while(!GMP_INTS_mpz_is_zero(decomp->remainder + decomp->n - 1) && loop_counter < 100000);
|
391 |
|
392 |
//In debug builds, be sure we did not terminate based on the loop counter.
|
393 |
assert(loop_counter != 100000);
|
394 |
|
395 |
return_point:
|
396 |
|
397 |
//Deallocate space for temporary integers.
|
398 |
GMP_INTS_mpz_clear(&arb_temp1);
|
399 |
GMP_INTS_mpz_clear(&arb_temp2);
|
400 |
}
|
401 |
|
402 |
|
403 |
//08/16/01: Visual inspection OK.
|
404 |
void GMP_RALG_cfdecomp_destroy(
|
405 |
GMP_RALG_cf_app_struct *decomp
|
406 |
)
|
407 |
{
|
408 |
int i;
|
409 |
|
410 |
//Eyeball the input parameters. Other eyeballing
|
411 |
//will be done as integers are destroyed.
|
412 |
assert(decomp != NULL);
|
413 |
|
414 |
//First, destroy the things that are bound directly
|
415 |
//to the record.
|
416 |
GMP_INTS_mpz_clear(&(decomp->num));
|
417 |
GMP_INTS_mpz_clear(&(decomp->den));
|
418 |
|
419 |
//Now, destroy every integer which is allocated.
|
420 |
for (i=0; i < decomp->n; i++)
|
421 |
{
|
422 |
GMP_INTS_mpz_clear(decomp->dividend + i);
|
423 |
GMP_INTS_mpz_clear(decomp->divisor + i);
|
424 |
GMP_INTS_mpz_clear(decomp->a + i);
|
425 |
GMP_INTS_mpz_clear(decomp->remainder + i);
|
426 |
GMP_INTS_mpz_clear(decomp->p + i);
|
427 |
GMP_INTS_mpz_clear(decomp->q + i);
|
428 |
}
|
429 |
|
430 |
//Now, destroy the arrays of integers.
|
431 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
432 |
CCMALLOC_free(decomp->dividend);
|
433 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
434 |
TclpFree((char *)decomp->dividend);
|
435 |
#else
|
436 |
free(decomp->dividend);
|
437 |
#endif
|
438 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
439 |
CCMALLOC_free(decomp->divisor);
|
440 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
441 |
TclpFree((char *)decomp->divisor);
|
442 |
#else
|
443 |
free(decomp->divisor);
|
444 |
#endif
|
445 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
446 |
CCMALLOC_free(decomp->a);
|
447 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
448 |
TclpFree((char *)decomp->a);
|
449 |
#else
|
450 |
free(decomp->a);
|
451 |
#endif
|
452 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
453 |
CCMALLOC_free(decomp->remainder);
|
454 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
455 |
TclpFree((char *)decomp->remainder);
|
456 |
#else
|
457 |
free(decomp->remainder);
|
458 |
#endif
|
459 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
460 |
CCMALLOC_free(decomp->p);
|
461 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
462 |
TclpFree((char *)decomp->p);
|
463 |
#else
|
464 |
free(decomp->p);
|
465 |
#endif
|
466 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
467 |
CCMALLOC_free(decomp->q);
|
468 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
469 |
TclpFree((char *)decomp->q);
|
470 |
#else
|
471 |
free(decomp->q);
|
472 |
#endif
|
473 |
}
|
474 |
|
475 |
|
476 |
/******************************************************************/
|
477 |
/*** FORMATTED OUTPUT FUNCTIONS *********************************/
|
478 |
/******************************************************************/
|
479 |
//08/16/01: Visual inspection OK.
|
480 |
void GMP_RALG_cfdecomp_emit(
|
481 |
FILE *s,
|
482 |
char *banner,
|
483 |
GMP_RALG_cf_app_struct *decomp,
|
484 |
int nf,
|
485 |
int dap,
|
486 |
const GMP_INTS_mpz_struct *dap_denominator)
|
487 |
{
|
488 |
int i;
|
489 |
|
490 |
GMP_INTS_mpz_struct arb_temp, arb_quotient, arb_remainder;
|
491 |
|
492 |
//Eyeball the input parameters. The banner is allowed to
|
493 |
//be null, so can't check that.
|
494 |
assert(s != NULL);
|
495 |
assert(decomp != NULL);
|
496 |
|
497 |
//Allocate our temporary integers.
|
498 |
GMP_INTS_mpz_init(&arb_temp);
|
499 |
GMP_INTS_mpz_init(&arb_quotient);
|
500 |
GMP_INTS_mpz_init(&arb_remainder);
|
501 |
|
502 |
//If banner requested and noformat option not used.
|
503 |
if (banner && !nf)
|
504 |
{
|
505 |
FCMIOF_stream_bannerheading(s, banner, 1);
|
506 |
}
|
507 |
|
508 |
//Dump the input numerator.
|
509 |
if (!nf)
|
510 |
{
|
511 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
512 |
&(decomp->num),
|
513 |
"Input Numerator");
|
514 |
}
|
515 |
else
|
516 |
{
|
517 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->num));
|
518 |
fprintf(s, "\n");
|
519 |
}
|
520 |
|
521 |
//Separator if not in unformatted mode.
|
522 |
if (!nf)
|
523 |
FCMIOF_stream_hline(s);
|
524 |
|
525 |
//Dump the input denominator.
|
526 |
if (!nf)
|
527 |
{
|
528 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
529 |
&(decomp->den),
|
530 |
"Input Denominator");
|
531 |
}
|
532 |
else
|
533 |
{
|
534 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->den));
|
535 |
fprintf(s, "\n");
|
536 |
}
|
537 |
|
538 |
//Separator if not in unformatted mode.
|
539 |
if (!nf)
|
540 |
FCMIOF_stream_hline(s);
|
541 |
|
542 |
for (i=0; i<decomp->n; i++)
|
543 |
{
|
544 |
char strbuf[100];
|
545 |
//Buffer to prepare description.
|
546 |
|
547 |
//Print out the dividend at each round.
|
548 |
if (!nf)
|
549 |
{
|
550 |
sprintf(strbuf, "dividend(%d)", i);
|
551 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
552 |
decomp->dividend + i,
|
553 |
strbuf);
|
554 |
}
|
555 |
else
|
556 |
{
|
557 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->dividend+i);
|
558 |
fprintf(s, "\n");
|
559 |
}
|
560 |
|
561 |
//Separator if not in unformatted mode.
|
562 |
if (!nf)
|
563 |
FCMIOF_stream_hline(s);
|
564 |
|
565 |
//Print out the divisor at each round.
|
566 |
if (!nf)
|
567 |
{
|
568 |
sprintf(strbuf, "divisor(%d)", i);
|
569 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
570 |
decomp->divisor + i,
|
571 |
strbuf);
|
572 |
}
|
573 |
else
|
574 |
{
|
575 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->divisor+i);
|
576 |
fprintf(s, "\n");
|
577 |
}
|
578 |
|
579 |
//Separator if not in unformatted mode.
|
580 |
if (!nf)
|
581 |
FCMIOF_stream_hline(s);
|
582 |
|
583 |
//Print out partial quotient at each round.
|
584 |
if (!nf)
|
585 |
{
|
586 |
sprintf(strbuf, "a(%d)", i);
|
587 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
588 |
decomp->a + i,
|
589 |
strbuf);
|
590 |
}
|
591 |
else
|
592 |
{
|
593 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->a+i);
|
594 |
fprintf(s, "\n");
|
595 |
}
|
596 |
|
597 |
//Separator if not in unformatted mode.
|
598 |
if (!nf)
|
599 |
FCMIOF_stream_hline(s);
|
600 |
|
601 |
//It doesn't make any sense to print out the
|
602 |
//remainder, because this becomes the divisor
|
603 |
//for the next round. It is just wasted output
|
604 |
//lines.
|
605 |
|
606 |
//Print out the convergent numerator at
|
607 |
//each round.
|
608 |
if (!nf)
|
609 |
{
|
610 |
sprintf(strbuf, "p(%d)", i);
|
611 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
612 |
decomp->p + i,
|
613 |
strbuf);
|
614 |
}
|
615 |
else
|
616 |
{
|
617 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->p+i);
|
618 |
fprintf(s, "\n");
|
619 |
}
|
620 |
|
621 |
//Separator if not in unformatted mode.
|
622 |
if (!nf)
|
623 |
FCMIOF_stream_hline(s);
|
624 |
|
625 |
//Print out the convergent denominator at
|
626 |
//each round.
|
627 |
if (!nf)
|
628 |
{
|
629 |
sprintf(strbuf, "q(%d)", i);
|
630 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
631 |
decomp->q + i,
|
632 |
strbuf);
|
633 |
}
|
634 |
else
|
635 |
{
|
636 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->q+i);
|
637 |
fprintf(s, "\n");
|
638 |
}
|
639 |
|
640 |
//Separator if not in unformatted mode.
|
641 |
if (!nf)
|
642 |
FCMIOF_stream_hline(s);
|
643 |
|
644 |
if (dap)
|
645 |
{
|
646 |
//Calculate the DAP numerator
|
647 |
GMP_INTS_mpz_mul(&arb_temp, dap_denominator, decomp->p + i);
|
648 |
GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder,
|
649 |
&arb_temp, decomp->q + i);
|
650 |
|
651 |
//Print DAP numerator.
|
652 |
if (!nf)
|
653 |
{
|
654 |
sprintf(strbuf, "dap_h(%d)", i);
|
655 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
656 |
&arb_quotient,
|
657 |
strbuf);
|
658 |
}
|
659 |
else
|
660 |
{
|
661 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &arb_quotient);
|
662 |
fprintf(s, "\n");
|
663 |
}
|
664 |
|
665 |
//Separator if not in unformatted mode.
|
666 |
if (!nf)
|
667 |
FCMIOF_stream_hline(s);
|
668 |
|
669 |
//Print DAP denominator.
|
670 |
if (!nf)
|
671 |
{
|
672 |
sprintf(strbuf, "dap_k(%d)", i);
|
673 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
674 |
dap_denominator,
|
675 |
strbuf);
|
676 |
}
|
677 |
else
|
678 |
{
|
679 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, dap_denominator);
|
680 |
fprintf(s, "\n");
|
681 |
}
|
682 |
|
683 |
//Separator if not in unformatted mode.
|
684 |
if (!nf)
|
685 |
FCMIOF_stream_hline(s);
|
686 |
}
|
687 |
}
|
688 |
|
689 |
//Deallocate our temporary integers.
|
690 |
GMP_INTS_mpz_clear(&arb_temp);
|
691 |
GMP_INTS_mpz_clear(&arb_quotient);
|
692 |
GMP_INTS_mpz_clear(&arb_remainder);
|
693 |
}
|
694 |
|
695 |
|
696 |
/******************************************************************/
|
697 |
/*** FAREY SERIES PREDECESSOR AND SUCCESSOR FUNCTIONS ***********/
|
698 |
/******************************************************************/
|
699 |
//08/16/01: Visual inspection OK.
|
700 |
void GMP_RALG_farey_predecessor(
|
701 |
GMP_RATS_mpq_struct *result,
|
702 |
const GMP_RATS_mpq_struct *plus_two,
|
703 |
const GMP_RATS_mpq_struct *plus_one,
|
704 |
const GMP_INTS_mpz_struct *N)
|
705 |
{
|
706 |
GMP_RATS_mpq_struct result_copy;
|
707 |
//Used to hold return value in case the result
|
708 |
//is the same as either of the input arguments.
|
709 |
GMP_INTS_mpz_struct temp1, temp2, floor_func;
|
710 |
//Temporary integers.
|
711 |
|
712 |
assert(result != NULL);
|
713 |
assert(plus_two != NULL);
|
714 |
assert(plus_one != NULL);
|
715 |
assert(N != NULL);
|
716 |
|
717 |
//Initialize the variables used.
|
718 |
GMP_RATS_mpq_init(&result_copy);
|
719 |
GMP_INTS_mpz_init(&temp1);
|
720 |
GMP_INTS_mpz_init(&temp2);
|
721 |
GMP_INTS_mpz_init(&floor_func);
|
722 |
|
723 |
//Numerator of the term in the floor function.
|
724 |
GMP_INTS_mpz_add(&temp1, &(plus_two->den), N);
|
725 |
|
726 |
//Term in the floor function. This is used to
|
727 |
//calculate both numerator and denominator, so we save it.
|
728 |
GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(plus_one->den));
|
729 |
|
730 |
//Product of result of floor function and numerator--now
|
731 |
//forming the numerator of the output.
|
732 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->num));
|
733 |
|
734 |
//Final result assigned to numerator.
|
735 |
GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(plus_two->num));
|
736 |
|
737 |
//Product of result of floor function and denominator--now
|
738 |
//forming the denominator of the output.
|
739 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->den));
|
740 |
|
741 |
//Final result assigned to denominator.
|
742 |
GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(plus_two->den));
|
743 |
|
744 |
//Copy the result to the object owned by the caller.
|
745 |
GMP_RATS_mpq_copy(result, &result_copy);
|
746 |
|
747 |
//Deallocate dynamic memory.
|
748 |
GMP_RATS_mpq_clear(&result_copy);
|
749 |
GMP_INTS_mpz_clear(&temp1);
|
750 |
GMP_INTS_mpz_clear(&temp2);
|
751 |
GMP_INTS_mpz_clear(&floor_func);
|
752 |
}
|
753 |
|
754 |
|
755 |
//08/16/01: Visual inspection OK.
|
756 |
void GMP_RALG_farey_successor(
|
757 |
GMP_RATS_mpq_struct *result,
|
758 |
const GMP_RATS_mpq_struct *minus_two,
|
759 |
const GMP_RATS_mpq_struct *minus_one,
|
760 |
const GMP_INTS_mpz_struct *N)
|
761 |
{
|
762 |
GMP_RATS_mpq_struct result_copy;
|
763 |
//Used to hold return value in case the result
|
764 |
//is the same as either of the input arguments.
|
765 |
GMP_INTS_mpz_struct temp1, temp2, floor_func;
|
766 |
//Temporary integers.
|
767 |
|
768 |
assert(result != NULL);
|
769 |
assert(minus_two != NULL);
|
770 |
assert(minus_one != NULL);
|
771 |
assert(N != NULL);
|
772 |
|
773 |
//Initialize the variables used.
|
774 |
GMP_RATS_mpq_init(&result_copy);
|
775 |
GMP_INTS_mpz_init(&temp1);
|
776 |
GMP_INTS_mpz_init(&temp2);
|
777 |
GMP_INTS_mpz_init(&floor_func);
|
778 |
|
779 |
//Numerator of the term in the floor function.
|
780 |
GMP_INTS_mpz_add(&temp1, &(minus_two->den), N);
|
781 |
|
782 |
//Term in the floor function. This is used to
|
783 |
//calculate both numerator and denominator, so we save it.
|
784 |
GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(minus_one->den));
|
785 |
|
786 |
//Product of result of floor function and numerator--now
|
787 |
//forming the numerator of the output.
|
788 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->num));
|
789 |
|
790 |
//Final result assigned to numerator.
|
791 |
GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(minus_two->num));
|
792 |
|
793 |
//Product of result of floor function and denominator--now
|
794 |
//forming the denominator of the output.
|
795 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->den));
|
796 |
|
797 |
//Final result assigned to denominator.
|
798 |
GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(minus_two->den));
|
799 |
|
800 |
//Copy the result to the object owned by the caller.
|
801 |
GMP_RATS_mpq_copy(result, &result_copy);
|
802 |
|
803 |
//Deallocate dynamic memory.
|
804 |
GMP_RATS_mpq_clear(&result_copy);
|
805 |
GMP_INTS_mpz_clear(&temp1);
|
806 |
GMP_INTS_mpz_clear(&temp2);
|
807 |
GMP_INTS_mpz_clear(&floor_func);
|
808 |
}
|
809 |
|
810 |
|
811 |
//08/16/01: Visual inspection OK.
|
812 |
void GMP_RALG_enclosing_farey_neighbors(
|
813 |
const GMP_RATS_mpq_struct *rn_in,
|
814 |
const GMP_INTS_mpz_struct *N,
|
815 |
const GMP_RALG_cf_app_struct *cf_rep,
|
816 |
int *equality,
|
817 |
GMP_RATS_mpq_struct *left,
|
818 |
GMP_RATS_mpq_struct *right)
|
819 |
{
|
820 |
GMP_RATS_mpq_struct rn_abs;
|
821 |
//Absolute value of rational number supplied.
|
822 |
GMP_RATS_mpq_struct previous_convergent;
|
823 |
//Convergent before the one that has the denominator
|
824 |
//not exceeding the order of the series. Need to fudge
|
825 |
//a little bit because don't have -1-th order convergents
|
826 |
//tabulated.
|
827 |
GMP_RATS_mpq_struct other_neighbor;
|
828 |
//The other neighbor besides the highest-order convergent
|
829 |
//without denominator too large.
|
830 |
GMP_INTS_mpz_struct temp1, temp2, temp3, temp4;
|
831 |
//Temporary integers.
|
832 |
int ho_conv;
|
833 |
//Index of highest-ordered convergent that does not have
|
834 |
//denominator too large.
|
835 |
|
836 |
//Eyeball the parameters.
|
837 |
assert(rn_in != NULL);
|
838 |
assert(N != NULL);
|
839 |
assert(cf_rep != NULL);
|
840 |
assert(equality != NULL);
|
841 |
assert(left != NULL);
|
842 |
assert(right != NULL);
|
843 |
|
844 |
//Allocate dynamic variables.
|
845 |
GMP_RATS_mpq_init(&rn_abs);
|
846 |
GMP_RATS_mpq_init(&previous_convergent);
|
847 |
GMP_RATS_mpq_init(&other_neighbor);
|
848 |
GMP_INTS_mpz_init(&temp1);
|
849 |
GMP_INTS_mpz_init(&temp2);
|
850 |
GMP_INTS_mpz_init(&temp3);
|
851 |
GMP_INTS_mpz_init(&temp4);
|
852 |
|
853 |
//Zero is a troublesome case, because it requires us to
|
854 |
//cross signs. Split this case out explicitly.
|
855 |
if (GMP_INTS_mpz_is_zero(&(rn_in->num)))
|
856 |
{
|
857 |
*equality = 1; //0/1 a member of Farey series of any order.
|
858 |
GMP_INTS_mpz_set_si(&(left->num), -1);
|
859 |
GMP_INTS_mpz_copy(&(left->den), N);
|
860 |
GMP_INTS_mpz_set_si(&(right->num), 1);
|
861 |
GMP_INTS_mpz_copy(&(right->den), N);
|
862 |
}
|
863 |
else
|
864 |
{
|
865 |
//Make a copy of the rational number in. As a condition of
|
866 |
//using this function, it must be normalized, but it still
|
867 |
//may be negative. Our strategy is to treat the number as
|
868 |
//positive, find the neighbors, then if it was negative
|
869 |
//complement and re-order the neighbors. In other words,
|
870 |
//find neighbors to a negative number by symmetry, not
|
871 |
//by forming the CF representation of a negative number.
|
872 |
//Also, we can't touch the input parameter.
|
873 |
GMP_RATS_mpq_copy(&rn_abs, rn_in);
|
874 |
GMP_INTS_mpz_abs(&(rn_abs.num));
|
875 |
|
876 |
//Find the index of the highest-ordered convergent
|
877 |
//with a denominator not exceeding the denominator of
|
878 |
//the rational number supplied. The zero'th order
|
879 |
//convergent has a denominator of 1, so that one
|
880 |
//at least is safe.
|
881 |
|
882 |
//Assign either the "left" or right
|
883 |
//neighbor to be the highest-ordered
|
884 |
//convergent with a denominator not exceeding the
|
885 |
//denominator of the rational number input. I say
|
886 |
//"either" because the properties of convergents let
|
887 |
//us know based on the oddness or evenness of the order
|
888 |
//which side it is on.
|
889 |
ho_conv = 0;
|
890 |
while (((ho_conv + 1) < cf_rep->n) && (GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, N) <= 0))
|
891 |
{
|
892 |
#if 0
|
893 |
//Some questions about this loop--debugging output.
|
894 |
printf("ho_conv : %d\n", ho_conv);
|
895 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
896 |
cf_rep->q + ho_conv + 1,
|
897 |
"decomp_den");
|
898 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
899 |
&(rn_abs.den),
|
900 |
"rn_in_den");
|
901 |
printf("Compare result: %d\n\n", GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, &(rn_abs.den)));
|
902 |
#endif
|
903 |
|
904 |
ho_conv++;
|
905 |
}
|
906 |
|
907 |
if (INTFUNC_is_even(ho_conv))
|
908 |
{
|
909 |
GMP_INTS_mpz_copy(&(left->num), cf_rep->p + ho_conv);
|
910 |
GMP_INTS_mpz_copy(&(left->den), cf_rep->q + ho_conv);
|
911 |
}
|
912 |
else
|
913 |
{
|
914 |
GMP_INTS_mpz_copy(&(right->num), cf_rep->p + ho_conv);
|
915 |
GMP_INTS_mpz_copy(&(right->den), cf_rep->q + ho_conv);
|
916 |
}
|
917 |
|
918 |
//Now, we need to calculate the other neighbor based
|
919 |
//on the standard formula. This is a little tricky
|
920 |
//because we don't have the -1-th order convergents
|
921 |
//tabulated so we have to fudge a little bit.
|
922 |
if (ho_conv == 0)
|
923 |
{
|
924 |
GMP_RATS_mpq_set_si(&previous_convergent, 1, 0);
|
925 |
}
|
926 |
else
|
927 |
{
|
928 |
GMP_INTS_mpz_copy(&(previous_convergent.num), cf_rep->p + ho_conv - 1);
|
929 |
GMP_INTS_mpz_copy(&(previous_convergent.den), cf_rep->q + ho_conv - 1);
|
930 |
}
|
931 |
|
932 |
//Calculate the other neighbor according to the standard
|
933 |
//formula.
|
934 |
GMP_INTS_mpz_sub(&temp1, N, &(previous_convergent.den));
|
935 |
GMP_INTS_mpz_tdiv_qr(&temp2, &temp3, &temp1, cf_rep->q + ho_conv);
|
936 |
//temp2 now contains term from floor() function in formula.
|
937 |
GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->p + ho_conv);
|
938 |
GMP_INTS_mpz_add(&(other_neighbor.num), &temp1, &(previous_convergent.num));
|
939 |
GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->q + ho_conv);
|
940 |
GMP_INTS_mpz_add(&(other_neighbor.den), &temp1, &(previous_convergent.den));
|
941 |
|
942 |
//Copy the other neighbor into the right slot.
|
943 |
if (INTFUNC_is_even(ho_conv))
|
944 |
{
|
945 |
GMP_RATS_mpq_copy(right, &other_neighbor);
|
946 |
}
|
947 |
else
|
948 |
{
|
949 |
GMP_RATS_mpq_copy(left, &other_neighbor);
|
950 |
}
|
951 |
|
952 |
//Set the equality flag. We have equality if and only
|
953 |
//if the denominator of the rational number is less than
|
954 |
//or equal to N.
|
955 |
if (GMP_INTS_mpz_cmp(&(rn_abs.den), N) <= 0)
|
956 |
{
|
957 |
*equality = 1;
|
958 |
}
|
959 |
else
|
960 |
{
|
961 |
*equality = 0;
|
962 |
}
|
963 |
|
964 |
//In the event of equality, we don't really have the true
|
965 |
//neighbors. If the final convergent is even-ordered,
|
966 |
//the left needs to be replaced. If the final convergent
|
967 |
//is odd-ordered, the right needs to be replaced.
|
968 |
if (*equality)
|
969 |
{
|
970 |
if (INTFUNC_is_even(ho_conv))
|
971 |
{
|
972 |
//Left needs to be replaced.
|
973 |
GMP_RALG_farey_predecessor(
|
974 |
left,
|
975 |
right,
|
976 |
&rn_abs,
|
977 |
N);
|
978 |
}
|
979 |
else
|
980 |
{
|
981 |
//Right needs to be replaced.
|
982 |
GMP_RALG_farey_successor(
|
983 |
right,
|
984 |
left,
|
985 |
&rn_abs,
|
986 |
N);
|
987 |
}
|
988 |
}
|
989 |
|
990 |
//OK, we should be all done. The final catch is that if
|
991 |
//the number supplied was negative, we need to invert
|
992 |
//and re-order the neighbors.
|
993 |
if (GMP_INTS_mpz_is_neg(&(rn_in->num)))
|
994 |
{
|
995 |
GMP_RATS_mpq_swap(left, right);
|
996 |
GMP_INTS_mpz_negate(&(left->num));
|
997 |
GMP_INTS_mpz_negate(&(right->num));
|
998 |
}
|
999 |
} //End if (rn==0) else clause
|
1000 |
|
1001 |
//Deallocate dynamic variables.
|
1002 |
GMP_RATS_mpq_clear(&rn_abs);
|
1003 |
GMP_RATS_mpq_clear(&previous_convergent);
|
1004 |
GMP_RATS_mpq_clear(&other_neighbor);
|
1005 |
GMP_INTS_mpz_clear(&temp1);
|
1006 |
GMP_INTS_mpz_clear(&temp2);
|
1007 |
GMP_INTS_mpz_clear(&temp3);
|
1008 |
GMP_INTS_mpz_clear(&temp4);
|
1009 |
}
|
1010 |
|
1011 |
|
1012 |
|
1013 |
//08/16/01: Visual inspection OK. Did not fully inspect the
|
1014 |
//iterative part of this function. Unit testing will be
|
1015 |
//careful, expect that to catch any anomalies.
|
1016 |
void GMP_RALG_consecutive_fab_terms(
|
1017 |
const GMP_RATS_mpq_struct *rn_in,
|
1018 |
const GMP_INTS_mpz_struct *kmax,
|
1019 |
const GMP_INTS_mpz_struct *hmax,
|
1020 |
int n_left_in,
|
1021 |
int n_right_in,
|
1022 |
GMP_RALG_fab_neighbor_collection_struct *result
|
1023 |
)
|
1024 |
{
|
1025 |
int error_flag, equality_flag;
|
1026 |
char *estring_kmax_neg = "KMAX is zero, negative, or NAN.";
|
1027 |
char *estring_hmax_neg = "HMAX is negative or NAN.";
|
1028 |
char *estring_general = "Unspecified general error in GMP_RALG_consecutive_fab_terms().";
|
1029 |
|
1030 |
GMP_RATS_mpq_struct q_temp1, q_temp2, q_temp3, q_temp4,
|
1031 |
left_neighbor, right_neighbor,
|
1032 |
left_neighbor_abs, right_neighbor_abs,
|
1033 |
hmax_over_one_neg, corner_point_neg,
|
1034 |
abs_norm_recip_rn;
|
1035 |
|
1036 |
//Eyeball input parameters.
|
1037 |
assert(rn_in != NULL);
|
1038 |
assert(kmax != NULL);
|
1039 |
assert(n_left_in >= 0);
|
1040 |
assert(n_left_in <= 0x00FFFFFF);
|
1041 |
assert(n_right_in >= 0);
|
1042 |
assert(n_right_in <= 0x00FFFFFF);
|
1043 |
assert(result != NULL);
|
1044 |
|
1045 |
//Allocate all of the dynamic memory we'll need for this function. It will be
|
1046 |
//released at the end.
|
1047 |
GMP_RATS_mpq_init(&q_temp1);
|
1048 |
GMP_RATS_mpq_init(&q_temp2);
|
1049 |
GMP_RATS_mpq_init(&q_temp3);
|
1050 |
GMP_RATS_mpq_init(&q_temp4);
|
1051 |
GMP_RATS_mpq_init(&left_neighbor);
|
1052 |
GMP_RATS_mpq_init(&right_neighbor);
|
1053 |
GMP_RATS_mpq_init(&left_neighbor_abs);
|
1054 |
GMP_RATS_mpq_init(&right_neighbor_abs);
|
1055 |
GMP_RATS_mpq_init(&hmax_over_one_neg);
|
1056 |
GMP_RATS_mpq_init(&corner_point_neg);
|
1057 |
GMP_RATS_mpq_init(&abs_norm_recip_rn);
|
1058 |
|
1059 |
//Zero out the result block. This is the easiest way to give many variables
|
1060 |
//default values of 0, FALSE, and NULL.
|
1061 |
memset(result, 0, sizeof(GMP_RALG_fab_neighbor_collection_struct));
|
1062 |
|
1063 |
//Allocate all integer and rational number structures in the result block.
|
1064 |
GMP_RATS_mpq_init(&(result->rn_in));
|
1065 |
GMP_INTS_mpz_init(&(result->kmax_in));
|
1066 |
GMP_INTS_mpz_init(&(result->hmax_in));
|
1067 |
GMP_RATS_mpq_init(&(result->hmax_over_one));
|
1068 |
GMP_RATS_mpq_init(&(result->corner_point));
|
1069 |
GMP_RATS_mpq_init(&(result->corner_point_minus_one));
|
1070 |
GMP_RATS_mpq_init(&(result->corner_point_plus_one));
|
1071 |
GMP_RATS_mpq_init(&(result->norm_rn));
|
1072 |
GMP_RATS_mpq_init(&(result->abs_norm_rn));
|
1073 |
|
1074 |
//Fill in the rational number, exactly as passed.
|
1075 |
GMP_RATS_mpq_copy(&(result->rn_in), rn_in);
|
1076 |
|
1077 |
//Fill in the number of left and right neighbors that the caller wants.
|
1078 |
//However, let's of course say nothing less than zero and nothing more
|
1079 |
//than 10000 neighbors on either side.
|
1080 |
result->n_left_in = INTFUNC_min(INTFUNC_max(0, n_left_in), 10000);
|
1081 |
result->n_right_in = INTFUNC_min(INTFUNC_max(0, n_right_in), 10000);
|
1082 |
|
1083 |
//Fill in the value of KMAX, exactly as passed. If it is not at least
|
1084 |
//the value of 1 or if error flags, croak.
|
1085 |
GMP_INTS_mpz_copy(&(result->kmax_in), kmax);
|
1086 |
if (GMP_INTS_mpz_get_flags(kmax) || GMP_INTS_mpz_is_zero(kmax) || GMP_INTS_mpz_is_neg(kmax))
|
1087 |
{
|
1088 |
result->error =
|
1089 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1090 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1));
|
1091 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1092 |
TclpAlloc(sizeof(char) * (strlen(estring_kmax_neg) + 1));
|
1093 |
#else
|
1094 |
malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1));
|
1095 |
#endif
|
1096 |
strcpy(result->error, estring_kmax_neg);
|
1097 |
goto return_point;
|
1098 |
}
|
1099 |
|
1100 |
//Decide whether the caller intends to use HMAX. Neg is error, but zero
|
1101 |
//is a signal that don't intend to use.
|
1102 |
if (hmax)
|
1103 |
{
|
1104 |
GMP_INTS_mpz_copy(&(result->hmax_in), hmax);
|
1105 |
if (GMP_INTS_mpz_get_flags(hmax) || GMP_INTS_mpz_is_neg(hmax))
|
1106 |
{
|
1107 |
result->error =
|
1108 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1109 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1));
|
1110 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1111 |
TclpAlloc(sizeof(char) * (strlen(estring_hmax_neg) + 1));
|
1112 |
#else
|
1113 |
malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1));
|
1114 |
#endif
|
1115 |
strcpy(result->error, estring_hmax_neg);
|
1116 |
goto return_point;
|
1117 |
}
|
1118 |
else if (GMP_INTS_mpz_is_pos(hmax))
|
1119 |
{
|
1120 |
result->hmax_supplied = 1;
|
1121 |
}
|
1122 |
}
|
1123 |
|
1124 |
//If HMAX has been supplied, assign and normalize the
|
1125 |
//corner point.
|
1126 |
if (result->hmax_supplied)
|
1127 |
{
|
1128 |
GMP_INTS_mpz_copy(&(result->corner_point.num), &(result->hmax_in));
|
1129 |
GMP_INTS_mpz_copy(&(result->corner_point.den), &(result->kmax_in));
|
1130 |
GMP_RATS_mpq_normalize(&(result->corner_point));
|
1131 |
}
|
1132 |
|
1133 |
//If HMAX has been supplied, we want to get the continued
|
1134 |
//fraction representation of both the corner point and its
|
1135 |
//reciprocal. This is because we're going to need to
|
1136 |
//find its adjacent points so we can easily crawl
|
1137 |
//around a rectangular region of the integer lattice.
|
1138 |
if (result->hmax_supplied)
|
1139 |
{
|
1140 |
//CF representation of corner point.
|
1141 |
GMP_RALG_cfdecomp_init(&(result->corner_point_cf_rep),
|
1142 |
&error_flag,
|
1143 |
&(result->corner_point.num),
|
1144 |
&(result->corner_point.den));
|
1145 |
result->corner_point_cf_rep_formed = 1;
|
1146 |
|
1147 |
//If there was an error forming the CF representation
|
1148 |
//of the corner point, bail out.
|
1149 |
if (error_flag)
|
1150 |
{
|
1151 |
result->error =
|
1152 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1153 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1154 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1155 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1156 |
#else
|
1157 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1158 |
#endif
|
1159 |
strcpy(result->error, estring_general);
|
1160 |
goto return_point;
|
1161 |
}
|
1162 |
|
1163 |
//CF representation of reciprocal of corner point.
|
1164 |
GMP_RALG_cfdecomp_init(&(result->corner_point_recip_cf_rep),
|
1165 |
&error_flag,
|
1166 |
&(result->corner_point.den),
|
1167 |
&(result->corner_point.num));
|
1168 |
result->corner_point_recip_cf_rep_formed = 1;
|
1169 |
|
1170 |
//If there was an error forming the CF representation
|
1171 |
//of the reciprocal of the corner point, bail out.
|
1172 |
if (error_flag)
|
1173 |
{
|
1174 |
result->error =
|
1175 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1176 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1177 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1178 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1179 |
#else
|
1180 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1181 |
#endif
|
1182 |
strcpy(result->error, estring_general);
|
1183 |
goto return_point;
|
1184 |
}
|
1185 |
}
|
1186 |
|
1187 |
//Normalize the rational number supplied.
|
1188 |
GMP_RATS_mpq_copy(&(result->norm_rn), rn_in);
|
1189 |
GMP_RATS_mpq_normalize(&(result->norm_rn));
|
1190 |
|
1191 |
//Form the absolute value of the normalized
|
1192 |
//version, and set the neg flag.
|
1193 |
GMP_RATS_mpq_copy(&(result->abs_norm_rn),&(result->norm_rn));
|
1194 |
if (GMP_INTS_mpz_is_neg(&(result->abs_norm_rn.num)))
|
1195 |
{
|
1196 |
GMP_INTS_mpz_negate(&(result->abs_norm_rn.num));
|
1197 |
result->rn_is_neg = 1;
|
1198 |
}
|
1199 |
|
1200 |
//Form the continued fraction representation of the
|
1201 |
//absolute value of the rational number supplied.
|
1202 |
//This is always required, because we cannot get any
|
1203 |
//neighbors without it.
|
1204 |
GMP_RALG_cfdecomp_init(&(result->rn_abs_cf_rep),
|
1205 |
&error_flag,
|
1206 |
&(result->abs_norm_rn.num),
|
1207 |
&(result->abs_norm_rn.den));
|
1208 |
result->rn_abs_cf_rep_formed = 1;
|
1209 |
|
1210 |
//If there was an error forming the CF representation
|
1211 |
//of the absolute value of rational number supplied, bail out.
|
1212 |
if (error_flag)
|
1213 |
{
|
1214 |
result->error =
|
1215 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1216 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1217 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1218 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1219 |
#else
|
1220 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1221 |
#endif
|
1222 |
strcpy(result->error, estring_general);
|
1223 |
goto return_point;
|
1224 |
}
|
1225 |
|
1226 |
//Set the equality flag. The rational number supplied is
|
1227 |
//in the series of interest if and only if, in its normalized
|
1228 |
//form, K <= KMAX, and if HMAX was supplied, H <= HMAX.
|
1229 |
if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.den), kmax) <= 0)
|
1230 |
{
|
1231 |
if (result->hmax_supplied)
|
1232 |
{
|
1233 |
if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.num), hmax) <= 0)
|
1234 |
{
|
1235 |
result->equality = 1;
|
1236 |
}
|
1237 |
else
|
1238 |
{
|
1239 |
result->equality = 0;
|
1240 |
}
|
1241 |
}
|
1242 |
else
|
1243 |
{
|
1244 |
result->equality = 1;
|
1245 |
}
|
1246 |
}
|
1247 |
else
|
1248 |
{
|
1249 |
result->equality = 0;
|
1250 |
}
|
1251 |
|
1252 |
//The final cause of error is if the rational number
|
1253 |
//supplied is outside the interval [-HMAX/1, HMAX/1].
|
1254 |
//In such cases, simply refuse to calculate
|
1255 |
//any approximations. This error can only occur
|
1256 |
//if HMAX is specified. If only KMAX is specified,
|
1257 |
//this error cannot occur.
|
1258 |
if (result->hmax_supplied)
|
1259 |
{
|
1260 |
//Form the rational number HMAX/1. We will use it for
|
1261 |
//a comparison.
|
1262 |
GMP_INTS_mpz_copy(&(result->hmax_over_one.num), hmax);
|
1263 |
GMP_INTS_mpz_set_ui(&(result->hmax_over_one.den), 1);
|
1264 |
|
1265 |
//If the comparison shows that the absolute value of
|
1266 |
//the rational number in is larger than HMAX over 1,
|
1267 |
//then declare an error.
|
1268 |
if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->hmax_over_one),NULL) > 0)
|
1269 |
{
|
1270 |
result->error =
|
1271 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1272 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1273 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1274 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1));
|
1275 |
#else
|
1276 |
malloc(sizeof(char) * (strlen(estring_general) + 1));
|
1277 |
#endif
|
1278 |
strcpy(result->error, estring_general);
|
1279 |
goto return_point;
|
1280 |
}
|
1281 |
}
|
1282 |
|
1283 |
//If we're here, we're very much clean. The only thing
|
1284 |
//that could go wrong is an overflow.
|
1285 |
|
1286 |
//Allocate space for the left and right arrays of
|
1287 |
//neighbors.
|
1288 |
if (result->n_left_in)
|
1289 |
{
|
1290 |
result->lefts =
|
1291 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1292 |
CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in);
|
1293 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1294 |
(GMP_RALG_fab_neighbor_struct *)
|
1295 |
TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in);
|
1296 |
#else
|
1297 |
malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in);
|
1298 |
#endif
|
1299 |
}
|
1300 |
|
1301 |
if (result->n_right_in)
|
1302 |
{
|
1303 |
result->rights =
|
1304 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
1305 |
CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in);
|
1306 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
1307 |
(GMP_RALG_fab_neighbor_struct *)
|
1308 |
TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in);
|
1309 |
#else
|
1310 |
malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in);
|
1311 |
#endif
|
1312 |
}
|
1313 |
|
1314 |
//If the rational number supplied is above the corner
|
1315 |
//point, we want to form the continued fraction representation
|
1316 |
//of its reciprocal.
|
1317 |
if (result->hmax_supplied)
|
1318 |
{
|
1319 |
if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->corner_point),NULL) > 0)
|
1320 |
{
|
1321 |
GMP_RALG_cfdecomp_init(&(result->rn_abs_recip_cf_rep),
|
1322 |
&error_flag,
|
1323 |
&(result->abs_norm_rn.den),
|
1324 |
&(result->abs_norm_rn.num));
|
1325 |
result->rn_abs_recip_cf_rep_formed = 1;
|
1326 |
}
|
1327 |
}
|
1328 |
|
1329 |
//If HMAX has been supplied, we want to calculate the points just below and above
|
1330 |
//the corner point. The reason we want to do this is because we need to gracefully
|
1331 |
//"round the corner" in either direction.
|
1332 |
//
|
1333 |
//Calculate the point just to the left of the corner point.
|
1334 |
if (result->hmax_supplied)
|
1335 |
{
|
1336 |
GMP_RALG_enclosing_farey_neighbors(
|
1337 |
&(result->corner_point),
|
1338 |
&(result->kmax_in),
|
1339 |
&(result->corner_point_cf_rep),
|
1340 |
&equality_flag,
|
1341 |
&(result->corner_point_minus_one),
|
1342 |
&(q_temp1)
|
1343 |
);
|
1344 |
}
|
1345 |
|
1346 |
//Calculate the point just to the right of the corner point. This is
|
1347 |
//where HMAX is the dominant constraint. We need to find the left
|
1348 |
//Farey neighbor to the reciprocal of the corner point in the Farey
|
1349 |
//series of order HMAX, then take its reciprocal. There is the possibility
|
1350 |
//if KMAX=1 that this point will have a denominator of zero, but we
|
1351 |
//will accept that as a number here, since we should never hit it,
|
1352 |
//as it will be beyond HMAX/1.
|
1353 |
if (result->hmax_supplied)
|
1354 |
{
|
1355 |
GMP_RATS_mpq_copy(&q_temp1, &(result->corner_point));
|
1356 |
GMP_INTS_mpz_swap(&(q_temp1.num), &(q_temp1.den));
|
1357 |
GMP_RALG_enclosing_farey_neighbors(
|
1358 |
&q_temp1,
|
1359 |
&(result->hmax_in),
|
1360 |
&(result->corner_point_recip_cf_rep),
|
1361 |
&equality_flag,
|
1362 |
&(result->corner_point_plus_one),
|
1363 |
&(q_temp2)
|
1364 |
);
|
1365 |
GMP_INTS_mpz_swap(&(result->corner_point_plus_one.num), &(result->corner_point_plus_one.den));
|
1366 |
}
|
1367 |
|
1368 |
//Calculate the complement of HMAX/1. Nothing that we generate can go beyond
|
1369 |
//this to the south.
|
1370 |
if (result->hmax_supplied)
|
1371 |
{
|
1372 |
GMP_RATS_mpq_copy(&(hmax_over_one_neg), &(result->hmax_over_one));
|
1373 |
GMP_INTS_mpz_negate(&(hmax_over_one_neg.num));
|
1374 |
}
|
1375 |
|
1376 |
//Also calculate the complement of HMAX/KMAX.
|
1377 |
if (result->hmax_supplied)
|
1378 |
{
|
1379 |
GMP_RATS_mpq_copy(&(corner_point_neg), &(result->corner_point));
|
1380 |
GMP_INTS_mpz_negate(&(corner_point_neg.num));
|
1381 |
}
|
1382 |
|
1383 |
//Form the reciprocal of the absolute value of the normalized value of
|
1384 |
//the rational number in.
|
1385 |
GMP_RATS_mpq_copy(&abs_norm_recip_rn, &(result->abs_norm_rn));
|
1386 |
GMP_RATS_mpq_swap_components(&abs_norm_recip_rn);
|
1387 |
|
1388 |
//OK, now we get down to brass tacks. Iterate first to get the
|
1389 |
//left neighbors. The ordinary complexity of this is also compounded
|
1390 |
//by the fact that we must handle negative numbers as well--everything
|
1391 |
//from -HMAX/1 to HMAX/1.
|
1392 |
//
|
1393 |
//PSEUDO-CODE:
|
1394 |
// a)If the rational number to approximate is <= -HMAX/1 or there are no
|
1395 |
// left neighbors requested, terminate with no neighbors on the left.
|
1396 |
//
|
1397 |
// b)Find the right neighbor of the rational number supplied.
|
1398 |
//
|
1399 |
// c)Find the left neighbor of the rational number supplied.
|
1400 |
//
|
1401 |
// d)While (queued_count < count)
|
1402 |
//
|
1403 |
// e)Queue the left neighbor, queued_count++
|
1404 |
//
|
1405 |
// f)If (queued_count >= count), break.
|
1406 |
//
|
1407 |
// g)If (left_neighbor <= -HMAX/1), break
|
1408 |
//
|
1409 |
// h)Advance the frame one to the left.
|
1410 |
//
|
1411 |
//**************************************************************************
|
1412 |
// a)If the rational number to approximate is <= -HMAX/1 or there are no
|
1413 |
// left neighbors requested, terminate with no neighbors on the left.
|
1414 |
//**************************************************************************
|
1415 |
if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &hmax_over_one_neg, NULL) <= 0)
|
1416 |
|| (n_left_in <= 0))
|
1417 |
goto done_with_left_neighbors;
|
1418 |
|
1419 |
//**************************************************************************
|
1420 |
// b)Find the right neighbor of the rational number supplied.
|
1421 |
//**************************************************************************
|
1422 |
// c)Find the left neighbor of the rational number supplied.
|
1423 |
//**************************************************************************
|
1424 |
if (!result->hmax_supplied)
|
1425 |
{
|
1426 |
//In this case, the notion of corner point is meaningless, because
|
1427 |
//there is no constraint on H. We can just go on our merry way. Get
|
1428 |
//the two neighbors.
|
1429 |
GMP_RALG_enclosing_farey_neighbors(
|
1430 |
&(result->norm_rn),
|
1431 |
&(result->kmax_in),
|
1432 |
&(result->rn_abs_cf_rep),
|
1433 |
&equality_flag,
|
1434 |
&left_neighbor,
|
1435 |
&right_neighbor
|
1436 |
);
|
1437 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
1438 |
//rational number itself as a Farey term. If the number is in the Farey
|
1439 |
//series, we must replace the right neighbor, otherwise we cannot apply
|
1440 |
//the standard recursive formulas.
|
1441 |
if (equality_flag)
|
1442 |
{
|
1443 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn));
|
1444 |
}
|
1445 |
}
|
1446 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0)
|
1447 |
{
|
1448 |
//The rational number specified is negative and below the negative corner point.
|
1449 |
//This means that HMAX is the dominant constraint. We need to find the
|
1450 |
//neighbors in the Farey series of order HMAX, then reorder and invert, etc.
|
1451 |
GMP_RALG_enclosing_farey_neighbors(
|
1452 |
&abs_norm_recip_rn,
|
1453 |
&(result->hmax_in),
|
1454 |
&(result->rn_abs_recip_cf_rep),
|
1455 |
&equality_flag,
|
1456 |
&left_neighbor,
|
1457 |
&right_neighbor
|
1458 |
);
|
1459 |
|
1460 |
//Again, if the number specified was already in the series of interest,
|
1461 |
//we need to swap in the right neighbor.
|
1462 |
if (equality_flag)
|
1463 |
{
|
1464 |
GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn);
|
1465 |
}
|
1466 |
|
1467 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
1468 |
//then negate them, which will put them back in order.
|
1469 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
1470 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1471 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
1472 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
1473 |
}
|
1474 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0)
|
1475 |
{
|
1476 |
//The rational number specified is the negative corner point. In this case
|
1477 |
//Because we can never return the corner point itself as a left neighbor,
|
1478 |
//we need to set the left value to be the negative of one past, and the right
|
1479 |
//to be the negative of the corner point.
|
1480 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one));
|
1481 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1482 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point));
|
1483 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
1484 |
}
|
1485 |
else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0)
|
1486 |
&&
|
1487 |
(GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0))
|
1488 |
{
|
1489 |
//The rational number specified is in the area dominated by the KMAX constraint
|
1490 |
//between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will
|
1491 |
//handle this correctly. Again, we need to adjust the output if the number
|
1492 |
//is already formable, because the Farey neighbor function is prohibited from
|
1493 |
//returning the number itself as a neighbor.
|
1494 |
GMP_RALG_enclosing_farey_neighbors(
|
1495 |
&(result->norm_rn),
|
1496 |
&(result->kmax_in),
|
1497 |
&(result->rn_abs_cf_rep),
|
1498 |
&equality_flag,
|
1499 |
&left_neighbor,
|
1500 |
&right_neighbor
|
1501 |
);
|
1502 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
1503 |
//rational number itself as a Farey term. If the number is in the Farey
|
1504 |
//series, we must replace the right neighbor, otherwise we cannot apply
|
1505 |
//the standard recursive formulas.
|
1506 |
if (equality_flag)
|
1507 |
{
|
1508 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn));
|
1509 |
}
|
1510 |
}
|
1511 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0)
|
1512 |
{
|
1513 |
//The rational number specified is the corner point. In this case
|
1514 |
//because we can never return the corner point itself as a left neighbor,
|
1515 |
//we need to set the left value to be one before, and the right
|
1516 |
//to be the corner point.
|
1517 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one));
|
1518 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point));
|
1519 |
}
|
1520 |
else
|
1521 |
{
|
1522 |
//The only possibility left is that the number is positive and above the
|
1523 |
//corner point where HMAX is the dominant constraint.
|
1524 |
GMP_RALG_enclosing_farey_neighbors(
|
1525 |
&abs_norm_recip_rn,
|
1526 |
&(result->hmax_in),
|
1527 |
&(result->rn_abs_recip_cf_rep),
|
1528 |
&equality_flag,
|
1529 |
&left_neighbor,
|
1530 |
&right_neighbor
|
1531 |
);
|
1532 |
|
1533 |
//Again, if the number specified was already in the series of interest,
|
1534 |
//we need to swap in the neighbor. This time, however, it must be the
|
1535 |
//left neighbor because taking the reciprocals will reverse the order.
|
1536 |
if (equality_flag)
|
1537 |
{
|
1538 |
GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn);
|
1539 |
}
|
1540 |
|
1541 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
1542 |
//then swap them, which will put them back in order.
|
1543 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
1544 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
1545 |
GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor);
|
1546 |
}
|
1547 |
|
1548 |
#if 0
|
1549 |
//Print out the left neighbor and right neighbor determined, for debugging.
|
1550 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1551 |
&(left_neighbor.num),
|
1552 |
"left_neigh_num");
|
1553 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1554 |
&(left_neighbor.den),
|
1555 |
"left_neigh_den");
|
1556 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1557 |
&(right_neighbor.num),
|
1558 |
"right_neigh_num");
|
1559 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1560 |
&(right_neighbor.den),
|
1561 |
"right_neigh_den");
|
1562 |
#endif
|
1563 |
|
1564 |
|
1565 |
//**************************************************************************
|
1566 |
// d)While (queued_count < count)
|
1567 |
//**************************************************************************
|
1568 |
while (result->n_left_out < result->n_left_in)
|
1569 |
{
|
1570 |
//**************************************************************************
|
1571 |
// e)Queue the left neighbor, queued_count++
|
1572 |
//**************************************************************************
|
1573 |
(result->lefts + result->n_left_out)->index = -(result->n_left_out + 1);
|
1574 |
GMP_RATS_mpq_init(&((result->lefts + result->n_left_out)->neighbor));
|
1575 |
GMP_RATS_mpq_copy(&((result->lefts + result->n_left_out)->neighbor), &left_neighbor);
|
1576 |
(result->n_left_out)++;
|
1577 |
|
1578 |
//**************************************************************************
|
1579 |
// f)If (queued_count >= count), break.
|
1580 |
//**************************************************************************
|
1581 |
//By the way, this step is to save unnecessary contortions once we've met
|
1582 |
//the quota.
|
1583 |
if (result->n_left_out >= result->n_left_in)
|
1584 |
break;
|
1585 |
|
1586 |
//**************************************************************************
|
1587 |
// g)If (left_neighbor <= -HMAX/1), break
|
1588 |
//**************************************************************************
|
1589 |
//This breaks us when we've queued the most negative number we can--can't go
|
1590 |
//further. This only applies for cases where KMAX is also specified.
|
1591 |
if (result->hmax_supplied
|
1592 |
&&
|
1593 |
GMP_RATS_mpq_cmp(&left_neighbor, &hmax_over_one_neg, NULL) <= 0)
|
1594 |
break;
|
1595 |
|
1596 |
//**************************************************************************
|
1597 |
// h)Advance the frame one to the left.
|
1598 |
//**************************************************************************
|
1599 |
//Advancing one frame to the left is a complicated affair, requiring several
|
1600 |
//subcases. We break it up into regions which are best visualized using
|
1601 |
//a graph of the integer lattice with dots for each rational number.
|
1602 |
if (!(result->hmax_supplied))
|
1603 |
{
|
1604 |
//This is the case where we're are looking only in the
|
1605 |
//Farey series.
|
1606 |
if (GMP_INTS_mpz_is_pos(&left_neighbor.num))
|
1607 |
{
|
1608 |
//In this case, the left neighbor and right neighbor
|
1609 |
//are both positive, and we can apply the standard
|
1610 |
//formulas.
|
1611 |
GMP_RALG_farey_predecessor(&q_temp1,
|
1612 |
&right_neighbor,
|
1613 |
&left_neighbor,
|
1614 |
&(result->kmax_in));
|
1615 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1616 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp1);
|
1617 |
}
|
1618 |
else if (GMP_INTS_mpz_is_zero(&left_neighbor.num))
|
1619 |
{
|
1620 |
//In this case, we are making the transition from positive
|
1621 |
//to negative.
|
1622 |
GMP_INTS_mpz_set_si(&(left_neighbor.num), -1);
|
1623 |
GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in));
|
1624 |
GMP_RATS_mpq_set_si(&right_neighbor, 0, 1);
|
1625 |
}
|
1626 |
else
|
1627 |
{
|
1628 |
//Here, we are purely negative and decreasing. Need to negate
|
1629 |
//the numbers, find successor, then negate.
|
1630 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1631 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1632 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
1633 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
1634 |
GMP_RALG_farey_successor(&q_temp3,
|
1635 |
&q_temp2,
|
1636 |
&q_temp1,
|
1637 |
&(result->kmax_in));
|
1638 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1639 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
1640 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1641 |
}
|
1642 |
}
|
1643 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) > 0)
|
1644 |
{
|
1645 |
//We are above the top corner point. In this case HMAX is the dominant
|
1646 |
//constraint, and we find our food by taking reciprocals and applying
|
1647 |
//the standard relationships in the Farey series of order HMAX.
|
1648 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1649 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1650 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
1651 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
1652 |
GMP_RALG_farey_successor(&q_temp3,
|
1653 |
&q_temp2,
|
1654 |
&q_temp1,
|
1655 |
&(result->hmax_in));
|
1656 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
1657 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1658 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
1659 |
}
|
1660 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) == 0)
|
1661 |
{
|
1662 |
//We are precisely at the corner point. This is where we round the corner.
|
1663 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1664 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one));
|
1665 |
}
|
1666 |
else if (GMP_INTS_mpz_is_pos(&left_neighbor.num))
|
1667 |
{
|
1668 |
//In this region we are going straight down the Farey series.
|
1669 |
GMP_RALG_farey_predecessor(&q_temp1,
|
1670 |
&right_neighbor,
|
1671 |
&left_neighbor,
|
1672 |
&(result->kmax_in));
|
1673 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1674 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp1);
|
1675 |
}
|
1676 |
else if (GMP_INTS_mpz_is_zero(&left_neighbor.num))
|
1677 |
{
|
1678 |
//In this case, we are making the transition from positive
|
1679 |
//to negative.
|
1680 |
GMP_INTS_mpz_set_si(&(left_neighbor.num), -1);
|
1681 |
GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in));
|
1682 |
GMP_RATS_mpq_set_si(&right_neighbor, 0, 1);
|
1683 |
}
|
1684 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) > 0)
|
1685 |
{
|
1686 |
//Here, we are purely negative and decreasing. Need to negate
|
1687 |
//the numbers, find successor, then negate.
|
1688 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1689 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1690 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
1691 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
1692 |
GMP_RALG_farey_successor(&q_temp3,
|
1693 |
&q_temp2,
|
1694 |
&q_temp1,
|
1695 |
&(result->kmax_in));
|
1696 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1697 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
1698 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1699 |
}
|
1700 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) == 0)
|
1701 |
{
|
1702 |
//This is where we are rounding the negative corner.
|
1703 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1704 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one));
|
1705 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1706 |
}
|
1707 |
else
|
1708 |
{
|
1709 |
//Here we're going in the negative direction along the "bottom" of the
|
1710 |
//rectangle.
|
1711 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1712 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1713 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
1714 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
1715 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
1716 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
1717 |
GMP_RALG_farey_predecessor(&q_temp3,
|
1718 |
&q_temp2,
|
1719 |
&q_temp1,
|
1720 |
&(result->hmax_in));
|
1721 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
1722 |
GMP_INTS_mpz_negate(&(q_temp3.num));
|
1723 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor);
|
1724 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3);
|
1725 |
}
|
1726 |
}
|
1727 |
|
1728 |
|
1729 |
done_with_left_neighbors: ;
|
1730 |
|
1731 |
//**************************************************************************
|
1732 |
// a)If the rational number to approximate is >= HMAX/1 or there are no
|
1733 |
// right neighbors requested, terminate with no neighbors on the right.
|
1734 |
//**************************************************************************
|
1735 |
if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->hmax_over_one), NULL) >= 0)
|
1736 |
|| (n_right_in <= 0))
|
1737 |
goto done_with_right_neighbors;
|
1738 |
|
1739 |
//**************************************************************************
|
1740 |
// b)Find the right neighbor of the rational number supplied.
|
1741 |
//**************************************************************************
|
1742 |
// c)Find the left neighbor of the rational number supplied.
|
1743 |
//**************************************************************************
|
1744 |
if (!result->hmax_supplied)
|
1745 |
{
|
1746 |
//In this case, the notion of corner point is meaningless, because
|
1747 |
//there is no constraint on H. We can just go on our merry way. Get
|
1748 |
//the two neighbors.
|
1749 |
GMP_RALG_enclosing_farey_neighbors(
|
1750 |
&(result->norm_rn),
|
1751 |
&(result->kmax_in),
|
1752 |
&(result->rn_abs_cf_rep),
|
1753 |
&equality_flag,
|
1754 |
&left_neighbor,
|
1755 |
&right_neighbor
|
1756 |
);
|
1757 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
1758 |
//rational number itself as a Farey term. If the number is in the Farey
|
1759 |
//series, we must replace the left neighbor, otherwise we cannot apply
|
1760 |
//the standard recursive formulas.
|
1761 |
if (equality_flag)
|
1762 |
{
|
1763 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn));
|
1764 |
}
|
1765 |
}
|
1766 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0)
|
1767 |
{
|
1768 |
//The rational number specified is negative and below the negative corner point.
|
1769 |
//This means that HMAX is the dominant constraint. We need to find the
|
1770 |
//neighbors in the Farey series of order HMAX, then reorder and invert, etc.
|
1771 |
GMP_RALG_enclosing_farey_neighbors(
|
1772 |
&abs_norm_recip_rn,
|
1773 |
&(result->hmax_in),
|
1774 |
&(result->rn_abs_recip_cf_rep),
|
1775 |
&equality_flag,
|
1776 |
&left_neighbor,
|
1777 |
&right_neighbor
|
1778 |
);
|
1779 |
|
1780 |
//Again, if the number specified was already in the series of interest,
|
1781 |
//we need to swap in the left neighbor.
|
1782 |
if (equality_flag)
|
1783 |
{
|
1784 |
GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn);
|
1785 |
}
|
1786 |
|
1787 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
1788 |
//then negate them, which will put them back in order.
|
1789 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
1790 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1791 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
1792 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
1793 |
}
|
1794 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0)
|
1795 |
{
|
1796 |
//The rational number specified is the negative corner point. In this case
|
1797 |
//Because we can never return the corner point itself as a left neighbor,
|
1798 |
//we need to set the right value to be the negative of one before, and the left
|
1799 |
//to be the negative of the corner point.
|
1800 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point));
|
1801 |
GMP_INTS_mpz_negate(&(left_neighbor.num));
|
1802 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one));
|
1803 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
1804 |
}
|
1805 |
else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0)
|
1806 |
&&
|
1807 |
(GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0))
|
1808 |
{
|
1809 |
//The rational number specified is in the area dominated by the KMAX constraint
|
1810 |
//between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will
|
1811 |
//handle this correctly. Again, we need to adjust the output if the number
|
1812 |
//is already formable, because the Farey neighbor function is prohibited from
|
1813 |
//returning the number itself as a neighbor.
|
1814 |
GMP_RALG_enclosing_farey_neighbors(
|
1815 |
&(result->norm_rn),
|
1816 |
&(result->kmax_in),
|
1817 |
&(result->rn_abs_cf_rep),
|
1818 |
&equality_flag,
|
1819 |
&left_neighbor,
|
1820 |
&right_neighbor
|
1821 |
);
|
1822 |
//The enclosing Farey neighbor function is prohibited from identifying the
|
1823 |
//rational number itself as a Farey term. If the number is in the Farey
|
1824 |
//series, we must replace the left neighbor, otherwise we cannot apply
|
1825 |
//the standard recursive formulas.
|
1826 |
if (equality_flag)
|
1827 |
{
|
1828 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn));
|
1829 |
}
|
1830 |
}
|
1831 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0)
|
1832 |
{
|
1833 |
//The rational number specified is the positive corner point. In this case.
|
1834 |
//because we can never return the corner point itself as a right neighbor,
|
1835 |
//we need to set the right value to be one after, and the left
|
1836 |
//to be the corner point.
|
1837 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point));
|
1838 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one));
|
1839 |
}
|
1840 |
else
|
1841 |
{
|
1842 |
//The only possibility left is that the number is positive and at or above the
|
1843 |
//corner point where HMAX is the dominant constraint.
|
1844 |
GMP_RALG_enclosing_farey_neighbors(
|
1845 |
&abs_norm_recip_rn,
|
1846 |
&(result->hmax_in),
|
1847 |
&(result->rn_abs_recip_cf_rep),
|
1848 |
&equality_flag,
|
1849 |
&left_neighbor,
|
1850 |
&right_neighbor
|
1851 |
);
|
1852 |
|
1853 |
//Again, if the number specified was already in the series of interest,
|
1854 |
//we need to swap in the neighbor. This time, however, it must be the
|
1855 |
//right neighbor because taking the reciprocals will reverse the order.
|
1856 |
if (equality_flag)
|
1857 |
{
|
1858 |
GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn);
|
1859 |
}
|
1860 |
|
1861 |
//Take the reciprocal of both neighbors, which will put them out of order,
|
1862 |
//then swap them, which will put them back in order.
|
1863 |
GMP_RATS_mpq_swap_components(&left_neighbor);
|
1864 |
GMP_RATS_mpq_swap_components(&right_neighbor);
|
1865 |
GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor);
|
1866 |
}
|
1867 |
|
1868 |
#if 0
|
1869 |
//Print out the left neighbor and right neighbor determined, for debugging.
|
1870 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1871 |
&(left_neighbor.num),
|
1872 |
"left_neigh_num");
|
1873 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1874 |
&(left_neighbor.den),
|
1875 |
"left_neigh_den");
|
1876 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1877 |
&(right_neighbor.num),
|
1878 |
"right_neigh_num");
|
1879 |
GMP_INTS_mpz_long_int_format_to_stream(stdout,
|
1880 |
&(right_neighbor.den),
|
1881 |
"right_neigh_den");
|
1882 |
#endif
|
1883 |
|
1884 |
|
1885 |
//**************************************************************************
|
1886 |
// d)While (queued_count < count)
|
1887 |
//**************************************************************************
|
1888 |
while (result->n_right_out < result->n_right_in)
|
1889 |
{
|
1890 |
//**************************************************************************
|
1891 |
// e)Queue the right neighbor, queued_count++
|
1892 |
//**************************************************************************
|
1893 |
(result->rights + result->n_right_out)->index = (result->n_right_out + 1);
|
1894 |
GMP_RATS_mpq_init(&((result->rights + result->n_right_out)->neighbor));
|
1895 |
GMP_RATS_mpq_copy(&((result->rights + result->n_right_out)->neighbor), &right_neighbor);
|
1896 |
(result->n_right_out)++;
|
1897 |
|
1898 |
//**************************************************************************
|
1899 |
// f)If (queued_count >= count), break.
|
1900 |
//**************************************************************************
|
1901 |
//By the way, this step is to save unnecessary contortions once we've met
|
1902 |
//the quota.
|
1903 |
if (result->n_right_out >= result->n_right_in)
|
1904 |
break;
|
1905 |
|
1906 |
//**************************************************************************
|
1907 |
// g)If (right_neighbor >= HMAX/1), break
|
1908 |
//**************************************************************************
|
1909 |
//This breaks us when we've queued the most positive number we can--can't go
|
1910 |
//further. This only applies for cases where KMAX is also specified.
|
1911 |
if (result->hmax_supplied
|
1912 |
&&
|
1913 |
GMP_RATS_mpq_cmp(&right_neighbor, &(result->hmax_over_one), NULL) >= 0)
|
1914 |
break;
|
1915 |
|
1916 |
//**************************************************************************
|
1917 |
// h)Advance the frame one to the right.
|
1918 |
//**************************************************************************
|
1919 |
//Advancing one frame to the right is a complicated affair, requiring several
|
1920 |
//subcases. We break it up into regions which are best visualized using
|
1921 |
//a graph of the integer lattice with dots for each rational number.
|
1922 |
if (!(result->hmax_supplied))
|
1923 |
{
|
1924 |
//This is the case where we're are looking only in the
|
1925 |
//Farey series.
|
1926 |
if (GMP_INTS_mpz_is_neg(&right_neighbor.num))
|
1927 |
{
|
1928 |
//Neg and increasing towards zero. Can handle by symmetry.
|
1929 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1930 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1931 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
1932 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
1933 |
GMP_RALG_farey_predecessor(&q_temp3,
|
1934 |
&q_temp1,
|
1935 |
&q_temp2,
|
1936 |
&(result->kmax_in));
|
1937 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
1938 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
1939 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
1940 |
}
|
1941 |
else if (GMP_INTS_mpz_is_zero(&right_neighbor.num))
|
1942 |
{
|
1943 |
//Right term just hit zero and are increasing.
|
1944 |
//Left will become 0/1, right becomes 1/KMAX.
|
1945 |
GMP_RATS_mpq_set_si(&left_neighbor, 0, 1);
|
1946 |
GMP_INTS_mpz_set_si(&(right_neighbor.num), 1);
|
1947 |
GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in));
|
1948 |
}
|
1949 |
else
|
1950 |
{
|
1951 |
//Are above zero and increasing. Can use standard Farey
|
1952 |
//successor formula.
|
1953 |
GMP_RALG_farey_successor(&q_temp1,
|
1954 |
&left_neighbor,
|
1955 |
&right_neighbor,
|
1956 |
&(result->kmax_in));
|
1957 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
1958 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp1);
|
1959 |
}
|
1960 |
}
|
1961 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) < 0)
|
1962 |
{
|
1963 |
//We are below the negative corner point and moving towards
|
1964 |
//zero, with HMAX the dominant constraint. We can proceed by
|
1965 |
//symmetry, producing a Farey successor and negating and inverting.
|
1966 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1967 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1968 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
1969 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
1970 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
1971 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
1972 |
GMP_RALG_farey_successor(&q_temp3,
|
1973 |
&q_temp1,
|
1974 |
&q_temp2,
|
1975 |
&(result->hmax_in));
|
1976 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
1977 |
GMP_INTS_mpz_negate(&(q_temp3.num));
|
1978 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
1979 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
1980 |
}
|
1981 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) == 0)
|
1982 |
{
|
1983 |
//We are at the bottom negative corner point and need to "round the corner".
|
1984 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
1985 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one));
|
1986 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
1987 |
}
|
1988 |
else if (GMP_INTS_mpz_is_neg(&right_neighbor.num))
|
1989 |
{
|
1990 |
//In this region we are going straight up the Farey series approaching
|
1991 |
//zero. Need to negate to use standard relationships.
|
1992 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
1993 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
1994 |
GMP_INTS_mpz_abs(&(q_temp1.num));
|
1995 |
GMP_INTS_mpz_abs(&(q_temp2.num));
|
1996 |
GMP_RALG_farey_predecessor(&q_temp3,
|
1997 |
&q_temp1,
|
1998 |
&q_temp2,
|
1999 |
&(result->kmax_in));
|
2000 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2001 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
2002 |
GMP_INTS_mpz_negate(&(right_neighbor.num));
|
2003 |
}
|
2004 |
else if (GMP_INTS_mpz_is_zero(&right_neighbor.num))
|
2005 |
{
|
2006 |
//Zero crossover.
|
2007 |
GMP_RATS_mpq_set_si(&left_neighbor, 0, 1);
|
2008 |
GMP_INTS_mpz_set_si(&(right_neighbor.num), 1);
|
2009 |
GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in));
|
2010 |
}
|
2011 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) < 0)
|
2012 |
{
|
2013 |
//Below corner point. Standard relationship applies.
|
2014 |
GMP_RALG_farey_successor(&q_temp1,
|
2015 |
&left_neighbor,
|
2016 |
&right_neighbor,
|
2017 |
&(result->kmax_in));
|
2018 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2019 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp1);
|
2020 |
}
|
2021 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) == 0)
|
2022 |
{
|
2023 |
//At the positive corner point.
|
2024 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2025 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one));
|
2026 |
}
|
2027 |
else
|
2028 |
{
|
2029 |
//Above the positive corner point and heading for HMAX/1.
|
2030 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor);
|
2031 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor);
|
2032 |
GMP_RATS_mpq_swap_components(&q_temp1);
|
2033 |
GMP_RATS_mpq_swap_components(&q_temp2);
|
2034 |
GMP_RALG_farey_predecessor(&q_temp3,
|
2035 |
&q_temp1,
|
2036 |
&q_temp2,
|
2037 |
&(result->hmax_in));
|
2038 |
GMP_RATS_mpq_swap_components(&q_temp3);
|
2039 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor);
|
2040 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3);
|
2041 |
}
|
2042 |
}
|
2043 |
|
2044 |
done_with_right_neighbors: ;
|
2045 |
|
2046 |
//This is a single return point so we catch all the dynamic memory
|
2047 |
//deallocation.
|
2048 |
return_point:
|
2049 |
GMP_RATS_mpq_clear(&q_temp1);
|
2050 |
GMP_RATS_mpq_clear(&q_temp2);
|
2051 |
GMP_RATS_mpq_clear(&q_temp3);
|
2052 |
GMP_RATS_mpq_clear(&q_temp4);
|
2053 |
GMP_RATS_mpq_clear(&left_neighbor);
|
2054 |
GMP_RATS_mpq_clear(&right_neighbor);
|
2055 |
GMP_RATS_mpq_clear(&left_neighbor_abs);
|
2056 |
GMP_RATS_mpq_clear(&right_neighbor_abs);
|
2057 |
GMP_RATS_mpq_clear(&hmax_over_one_neg);
|
2058 |
GMP_RATS_mpq_clear(&corner_point_neg);
|
2059 |
GMP_RATS_mpq_clear(&abs_norm_recip_rn);
|
2060 |
}
|
2061 |
|
2062 |
|
2063 |
//08/16/01: Visual inspection OK.
|
2064 |
void GMP_RALG_consecutive_fab_terms_result_free(
|
2065 |
GMP_RALG_fab_neighbor_collection_struct *arg
|
2066 |
)
|
2067 |
{
|
2068 |
int i;
|
2069 |
|
2070 |
//Eyeball the input.
|
2071 |
assert(arg != NULL);
|
2072 |
|
2073 |
//Deallocate all rational numbers and integers that MUST be allocated, i.e. they are
|
2074 |
//never conditional.
|
2075 |
GMP_RATS_mpq_clear(&(arg->rn_in));
|
2076 |
GMP_INTS_mpz_clear(&(arg->kmax_in));
|
2077 |
GMP_INTS_mpz_clear(&(arg->hmax_in));
|
2078 |
GMP_RATS_mpq_clear(&(arg->hmax_over_one));
|
2079 |
GMP_RATS_mpq_clear(&(arg->corner_point));
|
2080 |
GMP_RATS_mpq_clear(&(arg->corner_point_minus_one));
|
2081 |
GMP_RATS_mpq_clear(&(arg->corner_point_plus_one));
|
2082 |
GMP_RATS_mpq_clear(&(arg->norm_rn));
|
2083 |
GMP_RATS_mpq_clear(&(arg->abs_norm_rn));
|
2084 |
|
2085 |
//Destroy any continued fraction representations that were
|
2086 |
//formed.
|
2087 |
if (arg->rn_abs_cf_rep_formed)
|
2088 |
{
|
2089 |
GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_cf_rep));
|
2090 |
}
|
2091 |
if (arg->rn_abs_recip_cf_rep_formed)
|
2092 |
{
|
2093 |
GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_recip_cf_rep));
|
2094 |
}
|
2095 |
if(arg->corner_point_cf_rep_formed)
|
2096 |
{
|
2097 |
GMP_RALG_cfdecomp_destroy(&(arg->corner_point_cf_rep));
|
2098 |
}
|
2099 |
if(arg->corner_point_recip_cf_rep_formed)
|
2100 |
{
|
2101 |
GMP_RALG_cfdecomp_destroy(&(arg->corner_point_recip_cf_rep));
|
2102 |
}
|
2103 |
|
2104 |
//Walk through the lefts, freeing up any allocated rational numbers.
|
2105 |
for (i=0; i < arg->n_left_out; i++)
|
2106 |
{
|
2107 |
GMP_RATS_mpq_clear(&(arg->lefts[i].neighbor));
|
2108 |
}
|
2109 |
|
2110 |
//Walk through the rights, freeing up any allocated rational numbers.
|
2111 |
for (i=0; i < arg->n_right_out; i++)
|
2112 |
{
|
2113 |
GMP_RATS_mpq_clear(&(arg->rights[i].neighbor));
|
2114 |
}
|
2115 |
|
2116 |
//Deallocate any area assigned for lefts.
|
2117 |
if (arg->lefts)
|
2118 |
{
|
2119 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
2120 |
CCMALLOC_free(arg->lefts);
|
2121 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
2122 |
TclpFree((char *)arg->lefts);
|
2123 |
#else
|
2124 |
free(arg->lefts);
|
2125 |
#endif
|
2126 |
|
2127 |
arg->lefts = NULL;
|
2128 |
}
|
2129 |
|
2130 |
//Deallocate any area assigned for rights.
|
2131 |
if (arg->rights)
|
2132 |
{
|
2133 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
2134 |
CCMALLOC_free(arg->rights);
|
2135 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
2136 |
TclpFree((char *)arg->rights);
|
2137 |
#else
|
2138 |
free(arg->rights);
|
2139 |
#endif
|
2140 |
|
2141 |
arg->rights = NULL;
|
2142 |
}
|
2143 |
}
|
2144 |
|
2145 |
|
2146 |
//08/16/01: Visual inspection OK.
|
2147 |
void GMP_RALG_consecutive_fab_terms_result_dump(
|
2148 |
FILE *s,
|
2149 |
GMP_RALG_fab_neighbor_collection_struct *arg
|
2150 |
)
|
2151 |
{
|
2152 |
int i;
|
2153 |
char buf[250];
|
2154 |
|
2155 |
//Eyeball the input parameters.
|
2156 |
assert(s != NULL);
|
2157 |
assert(arg != NULL);
|
2158 |
|
2159 |
//Announce intent.
|
2160 |
FCMIOF_stream_bannerheading(s,
|
2161 |
"Emitting Neighbor Decomp For Analysis",
|
2162 |
1);
|
2163 |
|
2164 |
//Dump the fields, in order.
|
2165 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2166 |
&(arg->rn_in.num),
|
2167 |
"rn_in_num");
|
2168 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2169 |
&(arg->rn_in.den),
|
2170 |
"rn_in_den");
|
2171 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2172 |
&(arg->kmax_in),
|
2173 |
"kmax_in");
|
2174 |
fprintf(s, " hmax_supplied: %12d\n", arg->hmax_supplied);
|
2175 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2176 |
&(arg->hmax_in),
|
2177 |
"hmax_in");
|
2178 |
if (arg->error)
|
2179 |
{
|
2180 |
fprintf(s, " error: %s\n", arg->error);
|
2181 |
}
|
2182 |
else
|
2183 |
{
|
2184 |
fprintf(s, " error: NULL\n");
|
2185 |
}
|
2186 |
|
2187 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2188 |
&(arg->corner_point.num),
|
2189 |
"corner_point_num");
|
2190 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2191 |
&(arg->corner_point.den),
|
2192 |
"corner_point_den");
|
2193 |
|
2194 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2195 |
&(arg->corner_point_minus_one.num),
|
2196 |
"cor_pt_minus_one_num");
|
2197 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2198 |
&(arg->corner_point_minus_one.den),
|
2199 |
"cor_pt_minus_one_den");
|
2200 |
|
2201 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2202 |
&(arg->corner_point_plus_one.num),
|
2203 |
"cor_pt_plus_one_num");
|
2204 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2205 |
&(arg->corner_point_plus_one.den),
|
2206 |
"cor_pt_plus_one_den");
|
2207 |
|
2208 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2209 |
&(arg->hmax_over_one.num),
|
2210 |
"hmax/1_num");
|
2211 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2212 |
&(arg->hmax_over_one.den),
|
2213 |
"hmax/1_den");
|
2214 |
|
2215 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2216 |
&(arg->norm_rn.num),
|
2217 |
"norm_rn_num");
|
2218 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2219 |
&(arg->norm_rn.den),
|
2220 |
"norm_rn_den");
|
2221 |
|
2222 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2223 |
&(arg->abs_norm_rn.num),
|
2224 |
"abs_norm_rn_num");
|
2225 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2226 |
&(arg->abs_norm_rn.den),
|
2227 |
"abs_norm_rn_den");
|
2228 |
|
2229 |
fprintf(s, " rn_is_neg: %12d\n", arg->rn_is_neg);
|
2230 |
|
2231 |
fprintf(s, " n_left_in: %12d\n", arg->n_left_in);
|
2232 |
|
2233 |
fprintf(s, " n_right_in: %12d\n", arg->n_right_in);
|
2234 |
|
2235 |
fprintf(s, "rn_abs_cf_rep_formed: %12d\n", arg->rn_abs_cf_rep_formed);
|
2236 |
|
2237 |
if (arg->rn_abs_cf_rep_formed)
|
2238 |
{
|
2239 |
GMP_RALG_cfdecomp_emit(s, "Abs Of RN In CF Decomp", &(arg->rn_abs_cf_rep), 0, 0, NULL);
|
2240 |
}
|
2241 |
|
2242 |
fprintf(s, "rn_abs_recip_cf_rep_formed: %12d\n", arg->rn_abs_recip_cf_rep_formed);
|
2243 |
|
2244 |
if (arg->rn_abs_recip_cf_rep_formed)
|
2245 |
{
|
2246 |
GMP_RALG_cfdecomp_emit(s, "Abs Of Recip Of RN In CF Decomp", &(arg->rn_abs_recip_cf_rep), 0, 0, NULL);
|
2247 |
}
|
2248 |
|
2249 |
fprintf(s, "corner_point_cf_rep_formed: %12d\n", arg->corner_point_cf_rep_formed);
|
2250 |
|
2251 |
if (arg->corner_point_cf_rep_formed)
|
2252 |
{
|
2253 |
GMP_RALG_cfdecomp_emit(s, "Corner Point CF Decomp", &(arg->corner_point_cf_rep), 0, 0, NULL);
|
2254 |
}
|
2255 |
|
2256 |
fprintf(s, "cor_pt_recip_cf_rep_formed: %12d\n", arg->corner_point_recip_cf_rep_formed);
|
2257 |
|
2258 |
if (arg->corner_point_recip_cf_rep_formed)
|
2259 |
{
|
2260 |
GMP_RALG_cfdecomp_emit(s, "Corner Point Recip CF Decomp", &(arg->corner_point_recip_cf_rep), 0, 0, NULL);
|
2261 |
}
|
2262 |
|
2263 |
fprintf(s, " equality: %12d\n", arg->equality);
|
2264 |
|
2265 |
fprintf(s, " n_left_out: %12d\n", arg->n_left_out);
|
2266 |
|
2267 |
fprintf(s, " n_right_out: %12d\n", arg->n_right_out);
|
2268 |
|
2269 |
for (i=0; i < arg->n_left_out; i++)
|
2270 |
{
|
2271 |
sprintf(buf, "Contents Of Left Neighbor Array [%d]", i);
|
2272 |
FCMIOF_stream_bannerheading(s,
|
2273 |
buf,
|
2274 |
0);
|
2275 |
fprintf(s, " index: %12d\n", arg->lefts[i].index);
|
2276 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2277 |
&(arg->lefts[i].neighbor.num),
|
2278 |
"neighbor_num");
|
2279 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2280 |
&(arg->lefts[i].neighbor.den),
|
2281 |
"neighbor_den");
|
2282 |
}
|
2283 |
|
2284 |
for (i=0; i < arg->n_right_out; i++)
|
2285 |
{
|
2286 |
sprintf(buf, "Contents Of Right Neighbor Array [%d]", i);
|
2287 |
FCMIOF_stream_bannerheading(s,
|
2288 |
buf,
|
2289 |
0);
|
2290 |
fprintf(s, " index: %12d\n", arg->rights[i].index);
|
2291 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2292 |
&(arg->rights[i].neighbor.num),
|
2293 |
"neighbor_num");
|
2294 |
GMP_INTS_mpz_long_int_format_to_stream(s,
|
2295 |
&(arg->rights[i].neighbor.den),
|
2296 |
"neighbor_den");
|
2297 |
}
|
2298 |
|
2299 |
FCMIOF_stream_hline(s);
|
2300 |
}
|
2301 |
|
2302 |
|
2303 |
/******************************************************************/
|
2304 |
/*** VERSION CONTROL REPORTING FUNCTIONS ************************/
|
2305 |
/******************************************************************/
|
2306 |
|
2307 |
//08/16/01: Visual inspection OK.
|
2308 |
const char *GMP_RALG_cvcinfo(void)
|
2309 |
{
|
2310 |
return("$Header$");
|
2311 |
}
|
2312 |
|
2313 |
|
2314 |
//08/16/01: Visual inspection OK.
|
2315 |
const char *GMP_RALG_hvcinfo(void)
|
2316 |
{
|
2317 |
return(GMP_RALG_H_VERSION);
|
2318 |
}
|
2319 |
|
2320 |
//End of gmp_ralg.c.
|