1 |
//$Header$ |
2 |
//------------------------------------------------------------------------------------------------- |
3 |
//This file is part of "David T. Ashley's Shared Source Code", a set of shared components |
4 |
//integrated into many of David T. Ashley's projects. |
5 |
//------------------------------------------------------------------------------------------------- |
6 |
//This source code and any program in which it is compiled/used is provided under the MIT License, |
7 |
//reproduced below. |
8 |
//------------------------------------------------------------------------------------------------- |
9 |
//Permission is hereby granted, free of charge, to any person obtaining a copy of |
10 |
//this software and associated documentation files(the "Software"), to deal in the |
11 |
//Software without restriction, including without limitation the rights to use, |
12 |
//copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the |
13 |
//Software, and to permit persons to whom the Software is furnished to do so, |
14 |
//subject to the following conditions : |
15 |
// |
16 |
//The above copyright notice and this permission notice shall be included in all |
17 |
//copies or substantial portions of the Software. |
18 |
// |
19 |
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 |
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 |
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE |
22 |
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 |
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 |
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
25 |
//SOFTWARE. |
26 |
//------------------------------------------------------------------------------------------------- |
27 |
#define MODULE_GMP_RALG |
28 |
|
29 |
#include <assert.h> |
30 |
#include <stdio.h> |
31 |
#include <string.h> |
32 |
#include <time.h> |
33 |
|
34 |
|
35 |
#include "fcmiof.h" |
36 |
#include "gmp_ints.h" |
37 |
#include "gmp_rats.h" |
38 |
#include "gmp_ralg.h" |
39 |
#include "intfunc.h" |
40 |
|
41 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
42 |
#include "ccmalloc.h" |
43 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
44 |
#include "tclalloc.h" |
45 |
#else |
46 |
/* Do nothing. */ |
47 |
#endif |
48 |
|
49 |
|
50 |
/******************************************************************/ |
51 |
/*** INITIALIZATION AND DESTRUCTION FUNCTIONS *******************/ |
52 |
/******************************************************************/ |
53 |
//08/16/01: Visual inspection OK. |
54 |
void GMP_RALG_cfdecomp_init( |
55 |
GMP_RALG_cf_app_struct *decomp, |
56 |
int *failure, |
57 |
GMP_INTS_mpz_struct *num, |
58 |
GMP_INTS_mpz_struct *den) |
59 |
{ |
60 |
int loop_counter, i; |
61 |
GMP_INTS_mpz_struct arb_temp1, arb_temp2; |
62 |
|
63 |
//Eyeball the input parameters. The rest of the eyeballing |
64 |
//will occur as functions are called to manipulate the |
65 |
//numerator and denominator passed in. |
66 |
assert(decomp != NULL); |
67 |
assert(failure != NULL); |
68 |
assert(num != NULL); |
69 |
assert(den != NULL); |
70 |
|
71 |
//Allocate space for temporary integers. |
72 |
GMP_INTS_mpz_init(&arb_temp1); |
73 |
GMP_INTS_mpz_init(&arb_temp2); |
74 |
|
75 |
//Begin believing no failure. |
76 |
*failure = 0; |
77 |
|
78 |
//Initialize the copy of the numerator and denominator and |
79 |
//copy these into the structure. |
80 |
GMP_INTS_mpz_init(&(decomp->num)); |
81 |
GMP_INTS_mpz_copy(&(decomp->num), num); |
82 |
GMP_INTS_mpz_init(&(decomp->den)); |
83 |
GMP_INTS_mpz_copy(&(decomp->den), den); |
84 |
|
85 |
//Allocate the space for the first increment of the |
86 |
//growable areas. We need to use different memory |
87 |
//allocation functions depending on whether we're |
88 |
//in a Tcl build or a DOS command-line utility |
89 |
//build. |
90 |
//Space for partial quotients. |
91 |
decomp->a = |
92 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
93 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
94 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
95 |
(GMP_INTS_mpz_struct *) |
96 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
97 |
#else |
98 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
99 |
#endif |
100 |
|
101 |
//Dividends. |
102 |
decomp->dividend = |
103 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
104 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
105 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
106 |
(GMP_INTS_mpz_struct *) |
107 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
108 |
#else |
109 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
110 |
#endif |
111 |
|
112 |
//Divisors. |
113 |
decomp->divisor = |
114 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
115 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
116 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
117 |
(GMP_INTS_mpz_struct *) |
118 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
119 |
#else |
120 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
121 |
#endif |
122 |
|
123 |
//Remainders. |
124 |
decomp->remainder = |
125 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
126 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
127 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
128 |
(GMP_INTS_mpz_struct *) |
129 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
130 |
#else |
131 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
132 |
#endif |
133 |
|
134 |
//Convergent numerators. |
135 |
decomp->p = |
136 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
137 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
138 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
139 |
(GMP_INTS_mpz_struct *) |
140 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
141 |
#else |
142 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
143 |
#endif |
144 |
|
145 |
//Convergent denominators. |
146 |
decomp->q = |
147 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
148 |
CCMALLOC_malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
149 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
150 |
(GMP_INTS_mpz_struct *) |
151 |
TclpAlloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
152 |
#else |
153 |
malloc(sizeof(GMP_INTS_mpz_struct) * GMP_RALG_CF_ALLOC_INCREMENT); |
154 |
#endif |
155 |
|
156 |
//Now the number of allocated slots is what we just allocated. |
157 |
decomp->nallocd = GMP_RALG_CF_ALLOC_INCREMENT; |
158 |
|
159 |
//The number of slots actually used is zero, to start with. |
160 |
decomp->n = 0; |
161 |
|
162 |
//There are a number of conditions that will lead to an error |
163 |
//where we can't successfully form the continued fraction |
164 |
//decomposition. These errors are: |
165 |
// a)Either component is NAN. |
166 |
// b)Zero denominator. |
167 |
// c)Either component negative. |
168 |
//In these cases, we'll pretend we got 0/1 for the number |
169 |
//and set things accordingly, and we'll set the failure |
170 |
//flag for the caller. |
171 |
// |
172 |
if (GMP_INTS_mpz_get_flags(num) |
173 |
|| |
174 |
GMP_INTS_mpz_get_flags(den) |
175 |
|| |
176 |
GMP_INTS_mpz_is_zero(den) |
177 |
|| |
178 |
GMP_INTS_mpz_is_neg(num) |
179 |
|| |
180 |
GMP_INTS_mpz_is_neg(den)) |
181 |
{ |
182 |
*failure = 1; |
183 |
decomp->n = 1; |
184 |
|
185 |
GMP_INTS_mpz_set_ui(&(decomp->num), 0); |
186 |
GMP_INTS_mpz_set_ui(&(decomp->den), 1); |
187 |
|
188 |
GMP_INTS_mpz_init(decomp->dividend); |
189 |
GMP_INTS_mpz_set_ui(decomp->dividend, 0); |
190 |
|
191 |
GMP_INTS_mpz_init(decomp->divisor); |
192 |
GMP_INTS_mpz_set_ui(decomp->divisor, 1); |
193 |
|
194 |
GMP_INTS_mpz_init(decomp->a); |
195 |
GMP_INTS_mpz_set_ui(decomp->a, 0); |
196 |
|
197 |
GMP_INTS_mpz_init(decomp->remainder); |
198 |
GMP_INTS_mpz_set_ui(decomp->remainder, 0); |
199 |
|
200 |
GMP_INTS_mpz_init(decomp->p); |
201 |
GMP_INTS_mpz_set_ui(decomp->p, 0); |
202 |
|
203 |
GMP_INTS_mpz_init(decomp->q); |
204 |
GMP_INTS_mpz_set_ui(decomp->q, 1); |
205 |
|
206 |
goto return_point; |
207 |
} |
208 |
|
209 |
//If we're here there are not any errors that we |
210 |
//are willing to detect. We should be clear |
211 |
//for a continued fraction decomposition. |
212 |
loop_counter = 0; |
213 |
do |
214 |
{ |
215 |
//Increment the count of "rows", because we're |
216 |
//about to add one. |
217 |
decomp->n++; |
218 |
|
219 |
//If we have used up all the space available |
220 |
//for integers, we have to allocate more. |
221 |
if (decomp->n > decomp->nallocd) |
222 |
{ |
223 |
//We now have more allocated space. |
224 |
decomp->nallocd += GMP_RALG_CF_ALLOC_INCREMENT; |
225 |
|
226 |
//Be absolutely sure we have not made a greivous |
227 |
//error. |
228 |
assert(decomp->n <= decomp->nallocd); |
229 |
|
230 |
//Space for dividends. |
231 |
decomp->dividend = |
232 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
233 |
CCMALLOC_realloc( |
234 |
decomp->dividend, |
235 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
236 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
237 |
(GMP_INTS_mpz_struct *) |
238 |
TclpRealloc((char *)decomp->dividend, |
239 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
240 |
#else |
241 |
realloc(decomp->dividend, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
242 |
#endif |
243 |
|
244 |
//Space for divisors. |
245 |
decomp->divisor = |
246 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
247 |
CCMALLOC_realloc( |
248 |
decomp->divisor, |
249 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
250 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
251 |
(GMP_INTS_mpz_struct *) |
252 |
TclpRealloc((char *)decomp->divisor, |
253 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
254 |
#else |
255 |
realloc(decomp->divisor, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
256 |
#endif |
257 |
|
258 |
//Space for partial quotients. |
259 |
decomp->a = |
260 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
261 |
CCMALLOC_realloc( |
262 |
decomp->a, |
263 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
264 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
265 |
(GMP_INTS_mpz_struct *) |
266 |
TclpRealloc((char *)decomp->a, |
267 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
268 |
#else |
269 |
realloc(decomp->a, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
270 |
#endif |
271 |
|
272 |
//Space for remainders. |
273 |
decomp->remainder = |
274 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
275 |
CCMALLOC_realloc( |
276 |
decomp->remainder, |
277 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
278 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
279 |
(GMP_INTS_mpz_struct *) |
280 |
TclpRealloc((char *)decomp->remainder, |
281 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
282 |
#else |
283 |
realloc(decomp->remainder, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
284 |
#endif |
285 |
|
286 |
//Space for partial quotient numerators. |
287 |
decomp->p = |
288 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
289 |
CCMALLOC_realloc( |
290 |
decomp->p, |
291 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
292 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
293 |
(GMP_INTS_mpz_struct *) |
294 |
TclpRealloc((char *)decomp->p, |
295 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
296 |
#else |
297 |
realloc(decomp->p, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
298 |
#endif |
299 |
|
300 |
//Space for partial quotient denominators. |
301 |
decomp->q = |
302 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
303 |
CCMALLOC_realloc( |
304 |
decomp->q, |
305 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
306 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
307 |
(GMP_INTS_mpz_struct *) |
308 |
TclpRealloc((char *)decomp->q, |
309 |
sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
310 |
#else |
311 |
realloc(decomp->q, sizeof(GMP_INTS_mpz_struct) * decomp->nallocd); |
312 |
#endif |
313 |
} |
314 |
|
315 |
//At this point, we have enough space to do the next round of operations. |
316 |
//Set up an index variable. |
317 |
i = decomp->n - 1; |
318 |
|
319 |
//Initialize all of the integers at this round. |
320 |
GMP_INTS_mpz_init(decomp->dividend + i); |
321 |
GMP_INTS_mpz_init(decomp->divisor + i); |
322 |
GMP_INTS_mpz_init(decomp->a + i); |
323 |
GMP_INTS_mpz_init(decomp->remainder + i); |
324 |
GMP_INTS_mpz_init(decomp->p + i); |
325 |
GMP_INTS_mpz_init(decomp->q + i); |
326 |
|
327 |
//Perform the next round of continued fraction decomposition. This |
328 |
//is standard stuff. |
329 |
if (i==0) |
330 |
{ |
331 |
//In the 0th round, we essentially perform initial assignments. |
332 |
GMP_INTS_mpz_copy(decomp->dividend, &(decomp->num)); |
333 |
GMP_INTS_mpz_copy(decomp->divisor, &(decomp->den)); |
334 |
|
335 |
//Make the division to get quotient and remainder. |
336 |
GMP_INTS_mpz_tdiv_qr(decomp->a, decomp->remainder, decomp->dividend, decomp->divisor); |
337 |
|
338 |
//The convergents in the first round are always the quotient over 1. |
339 |
GMP_INTS_mpz_copy(decomp->p, decomp->a); |
340 |
GMP_INTS_mpz_set_ui(decomp->q, 1); |
341 |
} |
342 |
else if (i==1) |
343 |
{ |
344 |
//In the 1st round, the only point of caution is that we have to |
345 |
//consider p(k-2)/q(k-2) carefully. |
346 |
GMP_INTS_mpz_copy(decomp->dividend + 1, decomp->divisor + 0); |
347 |
GMP_INTS_mpz_copy(decomp->divisor + 1, decomp->remainder + 0); |
348 |
|
349 |
//Make the division to get quotient and remainder. |
350 |
GMP_INTS_mpz_tdiv_qr(decomp->a + 1, |
351 |
decomp->remainder + 1, |
352 |
decomp->dividend + 1, |
353 |
decomp->divisor + 1); |
354 |
|
355 |
//Need to compute the numerator of the convergent. This will be: |
356 |
// a(1) p(0) + p(-1) = a(1)p(0) + 1. |
357 |
GMP_INTS_mpz_mul(decomp->p + 1, decomp->a + 1, decomp->p + 0); |
358 |
GMP_INTS_mpz_set_ui(&arb_temp1, 1); |
359 |
GMP_INTS_mpz_add(decomp->p + 1, decomp->p + 1, &arb_temp1); |
360 |
|
361 |
//Need to compute the denominator of the convergent. This will |
362 |
//be a(1)q(0) + q(-1) = a(1) q(0) = a(1). |
363 |
GMP_INTS_mpz_copy(decomp->q + 1, decomp->a + 1); |
364 |
} |
365 |
else |
366 |
{ |
367 |
//In the general case, it is a simple formula. |
368 |
//Rotate in the dividend and divisor from the previous round. |
369 |
GMP_INTS_mpz_copy(decomp->dividend + i, decomp->divisor + i - 1); |
370 |
GMP_INTS_mpz_copy(decomp->divisor + i, decomp->remainder + i - 1); |
371 |
|
372 |
//Make the division to get quotient and remainder. |
373 |
GMP_INTS_mpz_tdiv_qr(decomp->a + i, |
374 |
decomp->remainder + i, |
375 |
decomp->dividend + i, |
376 |
decomp->divisor + i); |
377 |
|
378 |
//Need to compute the numerator of the convergent. This will be: |
379 |
// p(i) = a(i)p(i-1) + p(i-2) |
380 |
GMP_INTS_mpz_mul(decomp->p + i, decomp->a + i, decomp->p + i - 1); |
381 |
GMP_INTS_mpz_add(decomp->p + i, decomp->p + i, decomp->p + i - 2); |
382 |
|
383 |
//Need to compute the numerator of the convergent. This will be: |
384 |
// q(i) = q(i)q(i-1) + q(i-2) |
385 |
GMP_INTS_mpz_mul(decomp->q + i, decomp->a + i, decomp->q + i - 1); |
386 |
GMP_INTS_mpz_add(decomp->q + i, decomp->q + i, decomp->q + i - 2); |
387 |
} |
388 |
|
389 |
loop_counter++; |
390 |
} while(!GMP_INTS_mpz_is_zero(decomp->remainder + decomp->n - 1) && loop_counter < 100000); |
391 |
|
392 |
//In debug builds, be sure we did not terminate based on the loop counter. |
393 |
assert(loop_counter != 100000); |
394 |
|
395 |
return_point: |
396 |
|
397 |
//Deallocate space for temporary integers. |
398 |
GMP_INTS_mpz_clear(&arb_temp1); |
399 |
GMP_INTS_mpz_clear(&arb_temp2); |
400 |
} |
401 |
|
402 |
|
403 |
//08/16/01: Visual inspection OK. |
404 |
void GMP_RALG_cfdecomp_destroy( |
405 |
GMP_RALG_cf_app_struct *decomp |
406 |
) |
407 |
{ |
408 |
int i; |
409 |
|
410 |
//Eyeball the input parameters. Other eyeballing |
411 |
//will be done as integers are destroyed. |
412 |
assert(decomp != NULL); |
413 |
|
414 |
//First, destroy the things that are bound directly |
415 |
//to the record. |
416 |
GMP_INTS_mpz_clear(&(decomp->num)); |
417 |
GMP_INTS_mpz_clear(&(decomp->den)); |
418 |
|
419 |
//Now, destroy every integer which is allocated. |
420 |
for (i=0; i < decomp->n; i++) |
421 |
{ |
422 |
GMP_INTS_mpz_clear(decomp->dividend + i); |
423 |
GMP_INTS_mpz_clear(decomp->divisor + i); |
424 |
GMP_INTS_mpz_clear(decomp->a + i); |
425 |
GMP_INTS_mpz_clear(decomp->remainder + i); |
426 |
GMP_INTS_mpz_clear(decomp->p + i); |
427 |
GMP_INTS_mpz_clear(decomp->q + i); |
428 |
} |
429 |
|
430 |
//Now, destroy the arrays of integers. |
431 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
432 |
CCMALLOC_free(decomp->dividend); |
433 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
434 |
TclpFree((char *)decomp->dividend); |
435 |
#else |
436 |
free(decomp->dividend); |
437 |
#endif |
438 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
439 |
CCMALLOC_free(decomp->divisor); |
440 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
441 |
TclpFree((char *)decomp->divisor); |
442 |
#else |
443 |
free(decomp->divisor); |
444 |
#endif |
445 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
446 |
CCMALLOC_free(decomp->a); |
447 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
448 |
TclpFree((char *)decomp->a); |
449 |
#else |
450 |
free(decomp->a); |
451 |
#endif |
452 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
453 |
CCMALLOC_free(decomp->remainder); |
454 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
455 |
TclpFree((char *)decomp->remainder); |
456 |
#else |
457 |
free(decomp->remainder); |
458 |
#endif |
459 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
460 |
CCMALLOC_free(decomp->p); |
461 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
462 |
TclpFree((char *)decomp->p); |
463 |
#else |
464 |
free(decomp->p); |
465 |
#endif |
466 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
467 |
CCMALLOC_free(decomp->q); |
468 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
469 |
TclpFree((char *)decomp->q); |
470 |
#else |
471 |
free(decomp->q); |
472 |
#endif |
473 |
} |
474 |
|
475 |
|
476 |
/******************************************************************/ |
477 |
/*** FORMATTED OUTPUT FUNCTIONS *********************************/ |
478 |
/******************************************************************/ |
479 |
//08/16/01: Visual inspection OK. |
480 |
void GMP_RALG_cfdecomp_emit( |
481 |
FILE *s, |
482 |
char *banner, |
483 |
GMP_RALG_cf_app_struct *decomp, |
484 |
int nf, |
485 |
int dap, |
486 |
const GMP_INTS_mpz_struct *dap_denominator) |
487 |
{ |
488 |
int i; |
489 |
|
490 |
GMP_INTS_mpz_struct arb_temp, arb_quotient, arb_remainder; |
491 |
|
492 |
//Eyeball the input parameters. The banner is allowed to |
493 |
//be null, so can't check that. |
494 |
assert(s != NULL); |
495 |
assert(decomp != NULL); |
496 |
|
497 |
//Allocate our temporary integers. |
498 |
GMP_INTS_mpz_init(&arb_temp); |
499 |
GMP_INTS_mpz_init(&arb_quotient); |
500 |
GMP_INTS_mpz_init(&arb_remainder); |
501 |
|
502 |
//If banner requested and noformat option not used. |
503 |
if (banner && !nf) |
504 |
{ |
505 |
FCMIOF_stream_bannerheading(s, banner, 1); |
506 |
} |
507 |
|
508 |
//Dump the input numerator. |
509 |
if (!nf) |
510 |
{ |
511 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
512 |
&(decomp->num), |
513 |
"Input Numerator"); |
514 |
} |
515 |
else |
516 |
{ |
517 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->num)); |
518 |
fprintf(s, "\n"); |
519 |
} |
520 |
|
521 |
//Separator if not in unformatted mode. |
522 |
if (!nf) |
523 |
FCMIOF_stream_hline(s); |
524 |
|
525 |
//Dump the input denominator. |
526 |
if (!nf) |
527 |
{ |
528 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
529 |
&(decomp->den), |
530 |
"Input Denominator"); |
531 |
} |
532 |
else |
533 |
{ |
534 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &(decomp->den)); |
535 |
fprintf(s, "\n"); |
536 |
} |
537 |
|
538 |
//Separator if not in unformatted mode. |
539 |
if (!nf) |
540 |
FCMIOF_stream_hline(s); |
541 |
|
542 |
for (i=0; i<decomp->n; i++) |
543 |
{ |
544 |
char strbuf[100]; |
545 |
//Buffer to prepare description. |
546 |
|
547 |
//Print out the dividend at each round. |
548 |
if (!nf) |
549 |
{ |
550 |
sprintf(strbuf, "dividend(%d)", i); |
551 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
552 |
decomp->dividend + i, |
553 |
strbuf); |
554 |
} |
555 |
else |
556 |
{ |
557 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->dividend+i); |
558 |
fprintf(s, "\n"); |
559 |
} |
560 |
|
561 |
//Separator if not in unformatted mode. |
562 |
if (!nf) |
563 |
FCMIOF_stream_hline(s); |
564 |
|
565 |
//Print out the divisor at each round. |
566 |
if (!nf) |
567 |
{ |
568 |
sprintf(strbuf, "divisor(%d)", i); |
569 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
570 |
decomp->divisor + i, |
571 |
strbuf); |
572 |
} |
573 |
else |
574 |
{ |
575 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->divisor+i); |
576 |
fprintf(s, "\n"); |
577 |
} |
578 |
|
579 |
//Separator if not in unformatted mode. |
580 |
if (!nf) |
581 |
FCMIOF_stream_hline(s); |
582 |
|
583 |
//Print out partial quotient at each round. |
584 |
if (!nf) |
585 |
{ |
586 |
sprintf(strbuf, "a(%d)", i); |
587 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
588 |
decomp->a + i, |
589 |
strbuf); |
590 |
} |
591 |
else |
592 |
{ |
593 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->a+i); |
594 |
fprintf(s, "\n"); |
595 |
} |
596 |
|
597 |
//Separator if not in unformatted mode. |
598 |
if (!nf) |
599 |
FCMIOF_stream_hline(s); |
600 |
|
601 |
//It doesn't make any sense to print out the |
602 |
//remainder, because this becomes the divisor |
603 |
//for the next round. It is just wasted output |
604 |
//lines. |
605 |
|
606 |
//Print out the convergent numerator at |
607 |
//each round. |
608 |
if (!nf) |
609 |
{ |
610 |
sprintf(strbuf, "p(%d)", i); |
611 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
612 |
decomp->p + i, |
613 |
strbuf); |
614 |
} |
615 |
else |
616 |
{ |
617 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->p+i); |
618 |
fprintf(s, "\n"); |
619 |
} |
620 |
|
621 |
//Separator if not in unformatted mode. |
622 |
if (!nf) |
623 |
FCMIOF_stream_hline(s); |
624 |
|
625 |
//Print out the convergent denominator at |
626 |
//each round. |
627 |
if (!nf) |
628 |
{ |
629 |
sprintf(strbuf, "q(%d)", i); |
630 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
631 |
decomp->q + i, |
632 |
strbuf); |
633 |
} |
634 |
else |
635 |
{ |
636 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, decomp->q+i); |
637 |
fprintf(s, "\n"); |
638 |
} |
639 |
|
640 |
//Separator if not in unformatted mode. |
641 |
if (!nf) |
642 |
FCMIOF_stream_hline(s); |
643 |
|
644 |
if (dap) |
645 |
{ |
646 |
//Calculate the DAP numerator |
647 |
GMP_INTS_mpz_mul(&arb_temp, dap_denominator, decomp->p + i); |
648 |
GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder, |
649 |
&arb_temp, decomp->q + i); |
650 |
|
651 |
//Print DAP numerator. |
652 |
if (!nf) |
653 |
{ |
654 |
sprintf(strbuf, "dap_h(%d)", i); |
655 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
656 |
&arb_quotient, |
657 |
strbuf); |
658 |
} |
659 |
else |
660 |
{ |
661 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, &arb_quotient); |
662 |
fprintf(s, "\n"); |
663 |
} |
664 |
|
665 |
//Separator if not in unformatted mode. |
666 |
if (!nf) |
667 |
FCMIOF_stream_hline(s); |
668 |
|
669 |
//Print DAP denominator. |
670 |
if (!nf) |
671 |
{ |
672 |
sprintf(strbuf, "dap_k(%d)", i); |
673 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
674 |
dap_denominator, |
675 |
strbuf); |
676 |
} |
677 |
else |
678 |
{ |
679 |
GMP_INTS_mpz_arb_int_raw_to_stream(s, dap_denominator); |
680 |
fprintf(s, "\n"); |
681 |
} |
682 |
|
683 |
//Separator if not in unformatted mode. |
684 |
if (!nf) |
685 |
FCMIOF_stream_hline(s); |
686 |
} |
687 |
} |
688 |
|
689 |
//Deallocate our temporary integers. |
690 |
GMP_INTS_mpz_clear(&arb_temp); |
691 |
GMP_INTS_mpz_clear(&arb_quotient); |
692 |
GMP_INTS_mpz_clear(&arb_remainder); |
693 |
} |
694 |
|
695 |
|
696 |
/******************************************************************/ |
697 |
/*** FAREY SERIES PREDECESSOR AND SUCCESSOR FUNCTIONS ***********/ |
698 |
/******************************************************************/ |
699 |
//08/16/01: Visual inspection OK. |
700 |
void GMP_RALG_farey_predecessor( |
701 |
GMP_RATS_mpq_struct *result, |
702 |
const GMP_RATS_mpq_struct *plus_two, |
703 |
const GMP_RATS_mpq_struct *plus_one, |
704 |
const GMP_INTS_mpz_struct *N) |
705 |
{ |
706 |
GMP_RATS_mpq_struct result_copy; |
707 |
//Used to hold return value in case the result |
708 |
//is the same as either of the input arguments. |
709 |
GMP_INTS_mpz_struct temp1, temp2, floor_func; |
710 |
//Temporary integers. |
711 |
|
712 |
assert(result != NULL); |
713 |
assert(plus_two != NULL); |
714 |
assert(plus_one != NULL); |
715 |
assert(N != NULL); |
716 |
|
717 |
//Initialize the variables used. |
718 |
GMP_RATS_mpq_init(&result_copy); |
719 |
GMP_INTS_mpz_init(&temp1); |
720 |
GMP_INTS_mpz_init(&temp2); |
721 |
GMP_INTS_mpz_init(&floor_func); |
722 |
|
723 |
//Numerator of the term in the floor function. |
724 |
GMP_INTS_mpz_add(&temp1, &(plus_two->den), N); |
725 |
|
726 |
//Term in the floor function. This is used to |
727 |
//calculate both numerator and denominator, so we save it. |
728 |
GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(plus_one->den)); |
729 |
|
730 |
//Product of result of floor function and numerator--now |
731 |
//forming the numerator of the output. |
732 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->num)); |
733 |
|
734 |
//Final result assigned to numerator. |
735 |
GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(plus_two->num)); |
736 |
|
737 |
//Product of result of floor function and denominator--now |
738 |
//forming the denominator of the output. |
739 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(plus_one->den)); |
740 |
|
741 |
//Final result assigned to denominator. |
742 |
GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(plus_two->den)); |
743 |
|
744 |
//Copy the result to the object owned by the caller. |
745 |
GMP_RATS_mpq_copy(result, &result_copy); |
746 |
|
747 |
//Deallocate dynamic memory. |
748 |
GMP_RATS_mpq_clear(&result_copy); |
749 |
GMP_INTS_mpz_clear(&temp1); |
750 |
GMP_INTS_mpz_clear(&temp2); |
751 |
GMP_INTS_mpz_clear(&floor_func); |
752 |
} |
753 |
|
754 |
|
755 |
//08/16/01: Visual inspection OK. |
756 |
void GMP_RALG_farey_successor( |
757 |
GMP_RATS_mpq_struct *result, |
758 |
const GMP_RATS_mpq_struct *minus_two, |
759 |
const GMP_RATS_mpq_struct *minus_one, |
760 |
const GMP_INTS_mpz_struct *N) |
761 |
{ |
762 |
GMP_RATS_mpq_struct result_copy; |
763 |
//Used to hold return value in case the result |
764 |
//is the same as either of the input arguments. |
765 |
GMP_INTS_mpz_struct temp1, temp2, floor_func; |
766 |
//Temporary integers. |
767 |
|
768 |
assert(result != NULL); |
769 |
assert(minus_two != NULL); |
770 |
assert(minus_one != NULL); |
771 |
assert(N != NULL); |
772 |
|
773 |
//Initialize the variables used. |
774 |
GMP_RATS_mpq_init(&result_copy); |
775 |
GMP_INTS_mpz_init(&temp1); |
776 |
GMP_INTS_mpz_init(&temp2); |
777 |
GMP_INTS_mpz_init(&floor_func); |
778 |
|
779 |
//Numerator of the term in the floor function. |
780 |
GMP_INTS_mpz_add(&temp1, &(minus_two->den), N); |
781 |
|
782 |
//Term in the floor function. This is used to |
783 |
//calculate both numerator and denominator, so we save it. |
784 |
GMP_INTS_mpz_tdiv_qr(&floor_func, &temp2, &temp1, &(minus_one->den)); |
785 |
|
786 |
//Product of result of floor function and numerator--now |
787 |
//forming the numerator of the output. |
788 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->num)); |
789 |
|
790 |
//Final result assigned to numerator. |
791 |
GMP_INTS_mpz_sub(&(result_copy.num), &temp2, &(minus_two->num)); |
792 |
|
793 |
//Product of result of floor function and denominator--now |
794 |
//forming the denominator of the output. |
795 |
GMP_INTS_mpz_mul(&temp2, &floor_func, &(minus_one->den)); |
796 |
|
797 |
//Final result assigned to denominator. |
798 |
GMP_INTS_mpz_sub(&(result_copy.den), &temp2, &(minus_two->den)); |
799 |
|
800 |
//Copy the result to the object owned by the caller. |
801 |
GMP_RATS_mpq_copy(result, &result_copy); |
802 |
|
803 |
//Deallocate dynamic memory. |
804 |
GMP_RATS_mpq_clear(&result_copy); |
805 |
GMP_INTS_mpz_clear(&temp1); |
806 |
GMP_INTS_mpz_clear(&temp2); |
807 |
GMP_INTS_mpz_clear(&floor_func); |
808 |
} |
809 |
|
810 |
|
811 |
//08/16/01: Visual inspection OK. |
812 |
void GMP_RALG_enclosing_farey_neighbors( |
813 |
const GMP_RATS_mpq_struct *rn_in, |
814 |
const GMP_INTS_mpz_struct *N, |
815 |
const GMP_RALG_cf_app_struct *cf_rep, |
816 |
int *equality, |
817 |
GMP_RATS_mpq_struct *left, |
818 |
GMP_RATS_mpq_struct *right) |
819 |
{ |
820 |
GMP_RATS_mpq_struct rn_abs; |
821 |
//Absolute value of rational number supplied. |
822 |
GMP_RATS_mpq_struct previous_convergent; |
823 |
//Convergent before the one that has the denominator |
824 |
//not exceeding the order of the series. Need to fudge |
825 |
//a little bit because don't have -1-th order convergents |
826 |
//tabulated. |
827 |
GMP_RATS_mpq_struct other_neighbor; |
828 |
//The other neighbor besides the highest-order convergent |
829 |
//without denominator too large. |
830 |
GMP_INTS_mpz_struct temp1, temp2, temp3, temp4; |
831 |
//Temporary integers. |
832 |
int ho_conv; |
833 |
//Index of highest-ordered convergent that does not have |
834 |
//denominator too large. |
835 |
|
836 |
//Eyeball the parameters. |
837 |
assert(rn_in != NULL); |
838 |
assert(N != NULL); |
839 |
assert(cf_rep != NULL); |
840 |
assert(equality != NULL); |
841 |
assert(left != NULL); |
842 |
assert(right != NULL); |
843 |
|
844 |
//Allocate dynamic variables. |
845 |
GMP_RATS_mpq_init(&rn_abs); |
846 |
GMP_RATS_mpq_init(&previous_convergent); |
847 |
GMP_RATS_mpq_init(&other_neighbor); |
848 |
GMP_INTS_mpz_init(&temp1); |
849 |
GMP_INTS_mpz_init(&temp2); |
850 |
GMP_INTS_mpz_init(&temp3); |
851 |
GMP_INTS_mpz_init(&temp4); |
852 |
|
853 |
//Zero is a troublesome case, because it requires us to |
854 |
//cross signs. Split this case out explicitly. |
855 |
if (GMP_INTS_mpz_is_zero(&(rn_in->num))) |
856 |
{ |
857 |
*equality = 1; //0/1 a member of Farey series of any order. |
858 |
GMP_INTS_mpz_set_si(&(left->num), -1); |
859 |
GMP_INTS_mpz_copy(&(left->den), N); |
860 |
GMP_INTS_mpz_set_si(&(right->num), 1); |
861 |
GMP_INTS_mpz_copy(&(right->den), N); |
862 |
} |
863 |
else |
864 |
{ |
865 |
//Make a copy of the rational number in. As a condition of |
866 |
//using this function, it must be normalized, but it still |
867 |
//may be negative. Our strategy is to treat the number as |
868 |
//positive, find the neighbors, then if it was negative |
869 |
//complement and re-order the neighbors. In other words, |
870 |
//find neighbors to a negative number by symmetry, not |
871 |
//by forming the CF representation of a negative number. |
872 |
//Also, we can't touch the input parameter. |
873 |
GMP_RATS_mpq_copy(&rn_abs, rn_in); |
874 |
GMP_INTS_mpz_abs(&(rn_abs.num)); |
875 |
|
876 |
//Find the index of the highest-ordered convergent |
877 |
//with a denominator not exceeding the denominator of |
878 |
//the rational number supplied. The zero'th order |
879 |
//convergent has a denominator of 1, so that one |
880 |
//at least is safe. |
881 |
|
882 |
//Assign either the "left" or right |
883 |
//neighbor to be the highest-ordered |
884 |
//convergent with a denominator not exceeding the |
885 |
//denominator of the rational number input. I say |
886 |
//"either" because the properties of convergents let |
887 |
//us know based on the oddness or evenness of the order |
888 |
//which side it is on. |
889 |
ho_conv = 0; |
890 |
while (((ho_conv + 1) < cf_rep->n) && (GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, N) <= 0)) |
891 |
{ |
892 |
#if 0 |
893 |
//Some questions about this loop--debugging output. |
894 |
printf("ho_conv : %d\n", ho_conv); |
895 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
896 |
cf_rep->q + ho_conv + 1, |
897 |
"decomp_den"); |
898 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
899 |
&(rn_abs.den), |
900 |
"rn_in_den"); |
901 |
printf("Compare result: %d\n\n", GMP_INTS_mpz_cmp(cf_rep->q + ho_conv + 1, &(rn_abs.den))); |
902 |
#endif |
903 |
|
904 |
ho_conv++; |
905 |
} |
906 |
|
907 |
if (INTFUNC_is_even(ho_conv)) |
908 |
{ |
909 |
GMP_INTS_mpz_copy(&(left->num), cf_rep->p + ho_conv); |
910 |
GMP_INTS_mpz_copy(&(left->den), cf_rep->q + ho_conv); |
911 |
} |
912 |
else |
913 |
{ |
914 |
GMP_INTS_mpz_copy(&(right->num), cf_rep->p + ho_conv); |
915 |
GMP_INTS_mpz_copy(&(right->den), cf_rep->q + ho_conv); |
916 |
} |
917 |
|
918 |
//Now, we need to calculate the other neighbor based |
919 |
//on the standard formula. This is a little tricky |
920 |
//because we don't have the -1-th order convergents |
921 |
//tabulated so we have to fudge a little bit. |
922 |
if (ho_conv == 0) |
923 |
{ |
924 |
GMP_RATS_mpq_set_si(&previous_convergent, 1, 0); |
925 |
} |
926 |
else |
927 |
{ |
928 |
GMP_INTS_mpz_copy(&(previous_convergent.num), cf_rep->p + ho_conv - 1); |
929 |
GMP_INTS_mpz_copy(&(previous_convergent.den), cf_rep->q + ho_conv - 1); |
930 |
} |
931 |
|
932 |
//Calculate the other neighbor according to the standard |
933 |
//formula. |
934 |
GMP_INTS_mpz_sub(&temp1, N, &(previous_convergent.den)); |
935 |
GMP_INTS_mpz_tdiv_qr(&temp2, &temp3, &temp1, cf_rep->q + ho_conv); |
936 |
//temp2 now contains term from floor() function in formula. |
937 |
GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->p + ho_conv); |
938 |
GMP_INTS_mpz_add(&(other_neighbor.num), &temp1, &(previous_convergent.num)); |
939 |
GMP_INTS_mpz_mul(&temp1, &temp2, cf_rep->q + ho_conv); |
940 |
GMP_INTS_mpz_add(&(other_neighbor.den), &temp1, &(previous_convergent.den)); |
941 |
|
942 |
//Copy the other neighbor into the right slot. |
943 |
if (INTFUNC_is_even(ho_conv)) |
944 |
{ |
945 |
GMP_RATS_mpq_copy(right, &other_neighbor); |
946 |
} |
947 |
else |
948 |
{ |
949 |
GMP_RATS_mpq_copy(left, &other_neighbor); |
950 |
} |
951 |
|
952 |
//Set the equality flag. We have equality if and only |
953 |
//if the denominator of the rational number is less than |
954 |
//or equal to N. |
955 |
if (GMP_INTS_mpz_cmp(&(rn_abs.den), N) <= 0) |
956 |
{ |
957 |
*equality = 1; |
958 |
} |
959 |
else |
960 |
{ |
961 |
*equality = 0; |
962 |
} |
963 |
|
964 |
//In the event of equality, we don't really have the true |
965 |
//neighbors. If the final convergent is even-ordered, |
966 |
//the left needs to be replaced. If the final convergent |
967 |
//is odd-ordered, the right needs to be replaced. |
968 |
if (*equality) |
969 |
{ |
970 |
if (INTFUNC_is_even(ho_conv)) |
971 |
{ |
972 |
//Left needs to be replaced. |
973 |
GMP_RALG_farey_predecessor( |
974 |
left, |
975 |
right, |
976 |
&rn_abs, |
977 |
N); |
978 |
} |
979 |
else |
980 |
{ |
981 |
//Right needs to be replaced. |
982 |
GMP_RALG_farey_successor( |
983 |
right, |
984 |
left, |
985 |
&rn_abs, |
986 |
N); |
987 |
} |
988 |
} |
989 |
|
990 |
//OK, we should be all done. The final catch is that if |
991 |
//the number supplied was negative, we need to invert |
992 |
//and re-order the neighbors. |
993 |
if (GMP_INTS_mpz_is_neg(&(rn_in->num))) |
994 |
{ |
995 |
GMP_RATS_mpq_swap(left, right); |
996 |
GMP_INTS_mpz_negate(&(left->num)); |
997 |
GMP_INTS_mpz_negate(&(right->num)); |
998 |
} |
999 |
} //End if (rn==0) else clause |
1000 |
|
1001 |
//Deallocate dynamic variables. |
1002 |
GMP_RATS_mpq_clear(&rn_abs); |
1003 |
GMP_RATS_mpq_clear(&previous_convergent); |
1004 |
GMP_RATS_mpq_clear(&other_neighbor); |
1005 |
GMP_INTS_mpz_clear(&temp1); |
1006 |
GMP_INTS_mpz_clear(&temp2); |
1007 |
GMP_INTS_mpz_clear(&temp3); |
1008 |
GMP_INTS_mpz_clear(&temp4); |
1009 |
} |
1010 |
|
1011 |
|
1012 |
|
1013 |
//08/16/01: Visual inspection OK. Did not fully inspect the |
1014 |
//iterative part of this function. Unit testing will be |
1015 |
//careful, expect that to catch any anomalies. |
1016 |
void GMP_RALG_consecutive_fab_terms( |
1017 |
const GMP_RATS_mpq_struct *rn_in, |
1018 |
const GMP_INTS_mpz_struct *kmax, |
1019 |
const GMP_INTS_mpz_struct *hmax, |
1020 |
int n_left_in, |
1021 |
int n_right_in, |
1022 |
GMP_RALG_fab_neighbor_collection_struct *result |
1023 |
) |
1024 |
{ |
1025 |
int error_flag, equality_flag; |
1026 |
char *estring_kmax_neg = "KMAX is zero, negative, or NAN."; |
1027 |
char *estring_hmax_neg = "HMAX is negative or NAN."; |
1028 |
char *estring_general = "Unspecified general error in GMP_RALG_consecutive_fab_terms()."; |
1029 |
|
1030 |
GMP_RATS_mpq_struct q_temp1, q_temp2, q_temp3, q_temp4, |
1031 |
left_neighbor, right_neighbor, |
1032 |
left_neighbor_abs, right_neighbor_abs, |
1033 |
hmax_over_one_neg, corner_point_neg, |
1034 |
abs_norm_recip_rn; |
1035 |
|
1036 |
//Eyeball input parameters. |
1037 |
assert(rn_in != NULL); |
1038 |
assert(kmax != NULL); |
1039 |
assert(n_left_in >= 0); |
1040 |
assert(n_left_in <= 0x00FFFFFF); |
1041 |
assert(n_right_in >= 0); |
1042 |
assert(n_right_in <= 0x00FFFFFF); |
1043 |
assert(result != NULL); |
1044 |
|
1045 |
//Allocate all of the dynamic memory we'll need for this function. It will be |
1046 |
//released at the end. |
1047 |
GMP_RATS_mpq_init(&q_temp1); |
1048 |
GMP_RATS_mpq_init(&q_temp2); |
1049 |
GMP_RATS_mpq_init(&q_temp3); |
1050 |
GMP_RATS_mpq_init(&q_temp4); |
1051 |
GMP_RATS_mpq_init(&left_neighbor); |
1052 |
GMP_RATS_mpq_init(&right_neighbor); |
1053 |
GMP_RATS_mpq_init(&left_neighbor_abs); |
1054 |
GMP_RATS_mpq_init(&right_neighbor_abs); |
1055 |
GMP_RATS_mpq_init(&hmax_over_one_neg); |
1056 |
GMP_RATS_mpq_init(&corner_point_neg); |
1057 |
GMP_RATS_mpq_init(&abs_norm_recip_rn); |
1058 |
|
1059 |
//Zero out the result block. This is the easiest way to give many variables |
1060 |
//default values of 0, FALSE, and NULL. |
1061 |
memset(result, 0, sizeof(GMP_RALG_fab_neighbor_collection_struct)); |
1062 |
|
1063 |
//Allocate all integer and rational number structures in the result block. |
1064 |
GMP_RATS_mpq_init(&(result->rn_in)); |
1065 |
GMP_INTS_mpz_init(&(result->kmax_in)); |
1066 |
GMP_INTS_mpz_init(&(result->hmax_in)); |
1067 |
GMP_RATS_mpq_init(&(result->hmax_over_one)); |
1068 |
GMP_RATS_mpq_init(&(result->corner_point)); |
1069 |
GMP_RATS_mpq_init(&(result->corner_point_minus_one)); |
1070 |
GMP_RATS_mpq_init(&(result->corner_point_plus_one)); |
1071 |
GMP_RATS_mpq_init(&(result->norm_rn)); |
1072 |
GMP_RATS_mpq_init(&(result->abs_norm_rn)); |
1073 |
|
1074 |
//Fill in the rational number, exactly as passed. |
1075 |
GMP_RATS_mpq_copy(&(result->rn_in), rn_in); |
1076 |
|
1077 |
//Fill in the number of left and right neighbors that the caller wants. |
1078 |
//However, let's of course say nothing less than zero and nothing more |
1079 |
//than 10000 neighbors on either side. |
1080 |
result->n_left_in = INTFUNC_min(INTFUNC_max(0, n_left_in), 10000); |
1081 |
result->n_right_in = INTFUNC_min(INTFUNC_max(0, n_right_in), 10000); |
1082 |
|
1083 |
//Fill in the value of KMAX, exactly as passed. If it is not at least |
1084 |
//the value of 1 or if error flags, croak. |
1085 |
GMP_INTS_mpz_copy(&(result->kmax_in), kmax); |
1086 |
if (GMP_INTS_mpz_get_flags(kmax) || GMP_INTS_mpz_is_zero(kmax) || GMP_INTS_mpz_is_neg(kmax)) |
1087 |
{ |
1088 |
result->error = |
1089 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1090 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1)); |
1091 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1092 |
TclpAlloc(sizeof(char) * (strlen(estring_kmax_neg) + 1)); |
1093 |
#else |
1094 |
malloc(sizeof(char) * (strlen(estring_kmax_neg) + 1)); |
1095 |
#endif |
1096 |
strcpy(result->error, estring_kmax_neg); |
1097 |
goto return_point; |
1098 |
} |
1099 |
|
1100 |
//Decide whether the caller intends to use HMAX. Neg is error, but zero |
1101 |
//is a signal that don't intend to use. |
1102 |
if (hmax) |
1103 |
{ |
1104 |
GMP_INTS_mpz_copy(&(result->hmax_in), hmax); |
1105 |
if (GMP_INTS_mpz_get_flags(hmax) || GMP_INTS_mpz_is_neg(hmax)) |
1106 |
{ |
1107 |
result->error = |
1108 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1109 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1)); |
1110 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1111 |
TclpAlloc(sizeof(char) * (strlen(estring_hmax_neg) + 1)); |
1112 |
#else |
1113 |
malloc(sizeof(char) * (strlen(estring_hmax_neg) + 1)); |
1114 |
#endif |
1115 |
strcpy(result->error, estring_hmax_neg); |
1116 |
goto return_point; |
1117 |
} |
1118 |
else if (GMP_INTS_mpz_is_pos(hmax)) |
1119 |
{ |
1120 |
result->hmax_supplied = 1; |
1121 |
} |
1122 |
} |
1123 |
|
1124 |
//If HMAX has been supplied, assign and normalize the |
1125 |
//corner point. |
1126 |
if (result->hmax_supplied) |
1127 |
{ |
1128 |
GMP_INTS_mpz_copy(&(result->corner_point.num), &(result->hmax_in)); |
1129 |
GMP_INTS_mpz_copy(&(result->corner_point.den), &(result->kmax_in)); |
1130 |
GMP_RATS_mpq_normalize(&(result->corner_point)); |
1131 |
} |
1132 |
|
1133 |
//If HMAX has been supplied, we want to get the continued |
1134 |
//fraction representation of both the corner point and its |
1135 |
//reciprocal. This is because we're going to need to |
1136 |
//find its adjacent points so we can easily crawl |
1137 |
//around a rectangular region of the integer lattice. |
1138 |
if (result->hmax_supplied) |
1139 |
{ |
1140 |
//CF representation of corner point. |
1141 |
GMP_RALG_cfdecomp_init(&(result->corner_point_cf_rep), |
1142 |
&error_flag, |
1143 |
&(result->corner_point.num), |
1144 |
&(result->corner_point.den)); |
1145 |
result->corner_point_cf_rep_formed = 1; |
1146 |
|
1147 |
//If there was an error forming the CF representation |
1148 |
//of the corner point, bail out. |
1149 |
if (error_flag) |
1150 |
{ |
1151 |
result->error = |
1152 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1153 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1154 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1155 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); |
1156 |
#else |
1157 |
malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1158 |
#endif |
1159 |
strcpy(result->error, estring_general); |
1160 |
goto return_point; |
1161 |
} |
1162 |
|
1163 |
//CF representation of reciprocal of corner point. |
1164 |
GMP_RALG_cfdecomp_init(&(result->corner_point_recip_cf_rep), |
1165 |
&error_flag, |
1166 |
&(result->corner_point.den), |
1167 |
&(result->corner_point.num)); |
1168 |
result->corner_point_recip_cf_rep_formed = 1; |
1169 |
|
1170 |
//If there was an error forming the CF representation |
1171 |
//of the reciprocal of the corner point, bail out. |
1172 |
if (error_flag) |
1173 |
{ |
1174 |
result->error = |
1175 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1176 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1177 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1178 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); |
1179 |
#else |
1180 |
malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1181 |
#endif |
1182 |
strcpy(result->error, estring_general); |
1183 |
goto return_point; |
1184 |
} |
1185 |
} |
1186 |
|
1187 |
//Normalize the rational number supplied. |
1188 |
GMP_RATS_mpq_copy(&(result->norm_rn), rn_in); |
1189 |
GMP_RATS_mpq_normalize(&(result->norm_rn)); |
1190 |
|
1191 |
//Form the absolute value of the normalized |
1192 |
//version, and set the neg flag. |
1193 |
GMP_RATS_mpq_copy(&(result->abs_norm_rn),&(result->norm_rn)); |
1194 |
if (GMP_INTS_mpz_is_neg(&(result->abs_norm_rn.num))) |
1195 |
{ |
1196 |
GMP_INTS_mpz_negate(&(result->abs_norm_rn.num)); |
1197 |
result->rn_is_neg = 1; |
1198 |
} |
1199 |
|
1200 |
//Form the continued fraction representation of the |
1201 |
//absolute value of the rational number supplied. |
1202 |
//This is always required, because we cannot get any |
1203 |
//neighbors without it. |
1204 |
GMP_RALG_cfdecomp_init(&(result->rn_abs_cf_rep), |
1205 |
&error_flag, |
1206 |
&(result->abs_norm_rn.num), |
1207 |
&(result->abs_norm_rn.den)); |
1208 |
result->rn_abs_cf_rep_formed = 1; |
1209 |
|
1210 |
//If there was an error forming the CF representation |
1211 |
//of the absolute value of rational number supplied, bail out. |
1212 |
if (error_flag) |
1213 |
{ |
1214 |
result->error = |
1215 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1216 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1217 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1218 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); |
1219 |
#else |
1220 |
malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1221 |
#endif |
1222 |
strcpy(result->error, estring_general); |
1223 |
goto return_point; |
1224 |
} |
1225 |
|
1226 |
//Set the equality flag. The rational number supplied is |
1227 |
//in the series of interest if and only if, in its normalized |
1228 |
//form, K <= KMAX, and if HMAX was supplied, H <= HMAX. |
1229 |
if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.den), kmax) <= 0) |
1230 |
{ |
1231 |
if (result->hmax_supplied) |
1232 |
{ |
1233 |
if (GMP_INTS_mpz_cmp(&(result->abs_norm_rn.num), hmax) <= 0) |
1234 |
{ |
1235 |
result->equality = 1; |
1236 |
} |
1237 |
else |
1238 |
{ |
1239 |
result->equality = 0; |
1240 |
} |
1241 |
} |
1242 |
else |
1243 |
{ |
1244 |
result->equality = 1; |
1245 |
} |
1246 |
} |
1247 |
else |
1248 |
{ |
1249 |
result->equality = 0; |
1250 |
} |
1251 |
|
1252 |
//The final cause of error is if the rational number |
1253 |
//supplied is outside the interval [-HMAX/1, HMAX/1]. |
1254 |
//In such cases, simply refuse to calculate |
1255 |
//any approximations. This error can only occur |
1256 |
//if HMAX is specified. If only KMAX is specified, |
1257 |
//this error cannot occur. |
1258 |
if (result->hmax_supplied) |
1259 |
{ |
1260 |
//Form the rational number HMAX/1. We will use it for |
1261 |
//a comparison. |
1262 |
GMP_INTS_mpz_copy(&(result->hmax_over_one.num), hmax); |
1263 |
GMP_INTS_mpz_set_ui(&(result->hmax_over_one.den), 1); |
1264 |
|
1265 |
//If the comparison shows that the absolute value of |
1266 |
//the rational number in is larger than HMAX over 1, |
1267 |
//then declare an error. |
1268 |
if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->hmax_over_one),NULL) > 0) |
1269 |
{ |
1270 |
result->error = |
1271 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1272 |
CCMALLOC_malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1273 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1274 |
TclpAlloc(sizeof(char) * (strlen(estring_general) + 1)); |
1275 |
#else |
1276 |
malloc(sizeof(char) * (strlen(estring_general) + 1)); |
1277 |
#endif |
1278 |
strcpy(result->error, estring_general); |
1279 |
goto return_point; |
1280 |
} |
1281 |
} |
1282 |
|
1283 |
//If we're here, we're very much clean. The only thing |
1284 |
//that could go wrong is an overflow. |
1285 |
|
1286 |
//Allocate space for the left and right arrays of |
1287 |
//neighbors. |
1288 |
if (result->n_left_in) |
1289 |
{ |
1290 |
result->lefts = |
1291 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1292 |
CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in); |
1293 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1294 |
(GMP_RALG_fab_neighbor_struct *) |
1295 |
TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in); |
1296 |
#else |
1297 |
malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_left_in); |
1298 |
#endif |
1299 |
} |
1300 |
|
1301 |
if (result->n_right_in) |
1302 |
{ |
1303 |
result->rights = |
1304 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
1305 |
CCMALLOC_malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in); |
1306 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
1307 |
(GMP_RALG_fab_neighbor_struct *) |
1308 |
TclpAlloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in); |
1309 |
#else |
1310 |
malloc(sizeof(GMP_RALG_fab_neighbor_struct) * result->n_right_in); |
1311 |
#endif |
1312 |
} |
1313 |
|
1314 |
//If the rational number supplied is above the corner |
1315 |
//point, we want to form the continued fraction representation |
1316 |
//of its reciprocal. |
1317 |
if (result->hmax_supplied) |
1318 |
{ |
1319 |
if (GMP_RATS_mpq_cmp(&(result->abs_norm_rn),&(result->corner_point),NULL) > 0) |
1320 |
{ |
1321 |
GMP_RALG_cfdecomp_init(&(result->rn_abs_recip_cf_rep), |
1322 |
&error_flag, |
1323 |
&(result->abs_norm_rn.den), |
1324 |
&(result->abs_norm_rn.num)); |
1325 |
result->rn_abs_recip_cf_rep_formed = 1; |
1326 |
} |
1327 |
} |
1328 |
|
1329 |
//If HMAX has been supplied, we want to calculate the points just below and above |
1330 |
//the corner point. The reason we want to do this is because we need to gracefully |
1331 |
//"round the corner" in either direction. |
1332 |
// |
1333 |
//Calculate the point just to the left of the corner point. |
1334 |
if (result->hmax_supplied) |
1335 |
{ |
1336 |
GMP_RALG_enclosing_farey_neighbors( |
1337 |
&(result->corner_point), |
1338 |
&(result->kmax_in), |
1339 |
&(result->corner_point_cf_rep), |
1340 |
&equality_flag, |
1341 |
&(result->corner_point_minus_one), |
1342 |
&(q_temp1) |
1343 |
); |
1344 |
} |
1345 |
|
1346 |
//Calculate the point just to the right of the corner point. This is |
1347 |
//where HMAX is the dominant constraint. We need to find the left |
1348 |
//Farey neighbor to the reciprocal of the corner point in the Farey |
1349 |
//series of order HMAX, then take its reciprocal. There is the possibility |
1350 |
//if KMAX=1 that this point will have a denominator of zero, but we |
1351 |
//will accept that as a number here, since we should never hit it, |
1352 |
//as it will be beyond HMAX/1. |
1353 |
if (result->hmax_supplied) |
1354 |
{ |
1355 |
GMP_RATS_mpq_copy(&q_temp1, &(result->corner_point)); |
1356 |
GMP_INTS_mpz_swap(&(q_temp1.num), &(q_temp1.den)); |
1357 |
GMP_RALG_enclosing_farey_neighbors( |
1358 |
&q_temp1, |
1359 |
&(result->hmax_in), |
1360 |
&(result->corner_point_recip_cf_rep), |
1361 |
&equality_flag, |
1362 |
&(result->corner_point_plus_one), |
1363 |
&(q_temp2) |
1364 |
); |
1365 |
GMP_INTS_mpz_swap(&(result->corner_point_plus_one.num), &(result->corner_point_plus_one.den)); |
1366 |
} |
1367 |
|
1368 |
//Calculate the complement of HMAX/1. Nothing that we generate can go beyond |
1369 |
//this to the south. |
1370 |
if (result->hmax_supplied) |
1371 |
{ |
1372 |
GMP_RATS_mpq_copy(&(hmax_over_one_neg), &(result->hmax_over_one)); |
1373 |
GMP_INTS_mpz_negate(&(hmax_over_one_neg.num)); |
1374 |
} |
1375 |
|
1376 |
//Also calculate the complement of HMAX/KMAX. |
1377 |
if (result->hmax_supplied) |
1378 |
{ |
1379 |
GMP_RATS_mpq_copy(&(corner_point_neg), &(result->corner_point)); |
1380 |
GMP_INTS_mpz_negate(&(corner_point_neg.num)); |
1381 |
} |
1382 |
|
1383 |
//Form the reciprocal of the absolute value of the normalized value of |
1384 |
//the rational number in. |
1385 |
GMP_RATS_mpq_copy(&abs_norm_recip_rn, &(result->abs_norm_rn)); |
1386 |
GMP_RATS_mpq_swap_components(&abs_norm_recip_rn); |
1387 |
|
1388 |
//OK, now we get down to brass tacks. Iterate first to get the |
1389 |
//left neighbors. The ordinary complexity of this is also compounded |
1390 |
//by the fact that we must handle negative numbers as well--everything |
1391 |
//from -HMAX/1 to HMAX/1. |
1392 |
// |
1393 |
//PSEUDO-CODE: |
1394 |
// a)If the rational number to approximate is <= -HMAX/1 or there are no |
1395 |
// left neighbors requested, terminate with no neighbors on the left. |
1396 |
// |
1397 |
// b)Find the right neighbor of the rational number supplied. |
1398 |
// |
1399 |
// c)Find the left neighbor of the rational number supplied. |
1400 |
// |
1401 |
// d)While (queued_count < count) |
1402 |
// |
1403 |
// e)Queue the left neighbor, queued_count++ |
1404 |
// |
1405 |
// f)If (queued_count >= count), break. |
1406 |
// |
1407 |
// g)If (left_neighbor <= -HMAX/1), break |
1408 |
// |
1409 |
// h)Advance the frame one to the left. |
1410 |
// |
1411 |
//************************************************************************** |
1412 |
// a)If the rational number to approximate is <= -HMAX/1 or there are no |
1413 |
// left neighbors requested, terminate with no neighbors on the left. |
1414 |
//************************************************************************** |
1415 |
if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &hmax_over_one_neg, NULL) <= 0) |
1416 |
|| (n_left_in <= 0)) |
1417 |
goto done_with_left_neighbors; |
1418 |
|
1419 |
//************************************************************************** |
1420 |
// b)Find the right neighbor of the rational number supplied. |
1421 |
//************************************************************************** |
1422 |
// c)Find the left neighbor of the rational number supplied. |
1423 |
//************************************************************************** |
1424 |
if (!result->hmax_supplied) |
1425 |
{ |
1426 |
//In this case, the notion of corner point is meaningless, because |
1427 |
//there is no constraint on H. We can just go on our merry way. Get |
1428 |
//the two neighbors. |
1429 |
GMP_RALG_enclosing_farey_neighbors( |
1430 |
&(result->norm_rn), |
1431 |
&(result->kmax_in), |
1432 |
&(result->rn_abs_cf_rep), |
1433 |
&equality_flag, |
1434 |
&left_neighbor, |
1435 |
&right_neighbor |
1436 |
); |
1437 |
//The enclosing Farey neighbor function is prohibited from identifying the |
1438 |
//rational number itself as a Farey term. If the number is in the Farey |
1439 |
//series, we must replace the right neighbor, otherwise we cannot apply |
1440 |
//the standard recursive formulas. |
1441 |
if (equality_flag) |
1442 |
{ |
1443 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn)); |
1444 |
} |
1445 |
} |
1446 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0) |
1447 |
{ |
1448 |
//The rational number specified is negative and below the negative corner point. |
1449 |
//This means that HMAX is the dominant constraint. We need to find the |
1450 |
//neighbors in the Farey series of order HMAX, then reorder and invert, etc. |
1451 |
GMP_RALG_enclosing_farey_neighbors( |
1452 |
&abs_norm_recip_rn, |
1453 |
&(result->hmax_in), |
1454 |
&(result->rn_abs_recip_cf_rep), |
1455 |
&equality_flag, |
1456 |
&left_neighbor, |
1457 |
&right_neighbor |
1458 |
); |
1459 |
|
1460 |
//Again, if the number specified was already in the series of interest, |
1461 |
//we need to swap in the right neighbor. |
1462 |
if (equality_flag) |
1463 |
{ |
1464 |
GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn); |
1465 |
} |
1466 |
|
1467 |
//Take the reciprocal of both neighbors, which will put them out of order, |
1468 |
//then negate them, which will put them back in order. |
1469 |
GMP_RATS_mpq_swap_components(&left_neighbor); |
1470 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1471 |
GMP_RATS_mpq_swap_components(&right_neighbor); |
1472 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
1473 |
} |
1474 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0) |
1475 |
{ |
1476 |
//The rational number specified is the negative corner point. In this case |
1477 |
//Because we can never return the corner point itself as a left neighbor, |
1478 |
//we need to set the left value to be the negative of one past, and the right |
1479 |
//to be the negative of the corner point. |
1480 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one)); |
1481 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1482 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point)); |
1483 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
1484 |
} |
1485 |
else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0) |
1486 |
&& |
1487 |
(GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0)) |
1488 |
{ |
1489 |
//The rational number specified is in the area dominated by the KMAX constraint |
1490 |
//between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will |
1491 |
//handle this correctly. Again, we need to adjust the output if the number |
1492 |
//is already formable, because the Farey neighbor function is prohibited from |
1493 |
//returning the number itself as a neighbor. |
1494 |
GMP_RALG_enclosing_farey_neighbors( |
1495 |
&(result->norm_rn), |
1496 |
&(result->kmax_in), |
1497 |
&(result->rn_abs_cf_rep), |
1498 |
&equality_flag, |
1499 |
&left_neighbor, |
1500 |
&right_neighbor |
1501 |
); |
1502 |
//The enclosing Farey neighbor function is prohibited from identifying the |
1503 |
//rational number itself as a Farey term. If the number is in the Farey |
1504 |
//series, we must replace the right neighbor, otherwise we cannot apply |
1505 |
//the standard recursive formulas. |
1506 |
if (equality_flag) |
1507 |
{ |
1508 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->norm_rn)); |
1509 |
} |
1510 |
} |
1511 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0) |
1512 |
{ |
1513 |
//The rational number specified is the corner point. In this case |
1514 |
//because we can never return the corner point itself as a left neighbor, |
1515 |
//we need to set the left value to be one before, and the right |
1516 |
//to be the corner point. |
1517 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one)); |
1518 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point)); |
1519 |
} |
1520 |
else |
1521 |
{ |
1522 |
//The only possibility left is that the number is positive and above the |
1523 |
//corner point where HMAX is the dominant constraint. |
1524 |
GMP_RALG_enclosing_farey_neighbors( |
1525 |
&abs_norm_recip_rn, |
1526 |
&(result->hmax_in), |
1527 |
&(result->rn_abs_recip_cf_rep), |
1528 |
&equality_flag, |
1529 |
&left_neighbor, |
1530 |
&right_neighbor |
1531 |
); |
1532 |
|
1533 |
//Again, if the number specified was already in the series of interest, |
1534 |
//we need to swap in the neighbor. This time, however, it must be the |
1535 |
//left neighbor because taking the reciprocals will reverse the order. |
1536 |
if (equality_flag) |
1537 |
{ |
1538 |
GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn); |
1539 |
} |
1540 |
|
1541 |
//Take the reciprocal of both neighbors, which will put them out of order, |
1542 |
//then swap them, which will put them back in order. |
1543 |
GMP_RATS_mpq_swap_components(&left_neighbor); |
1544 |
GMP_RATS_mpq_swap_components(&right_neighbor); |
1545 |
GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor); |
1546 |
} |
1547 |
|
1548 |
#if 0 |
1549 |
//Print out the left neighbor and right neighbor determined, for debugging. |
1550 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1551 |
&(left_neighbor.num), |
1552 |
"left_neigh_num"); |
1553 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1554 |
&(left_neighbor.den), |
1555 |
"left_neigh_den"); |
1556 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1557 |
&(right_neighbor.num), |
1558 |
"right_neigh_num"); |
1559 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1560 |
&(right_neighbor.den), |
1561 |
"right_neigh_den"); |
1562 |
#endif |
1563 |
|
1564 |
|
1565 |
//************************************************************************** |
1566 |
// d)While (queued_count < count) |
1567 |
//************************************************************************** |
1568 |
while (result->n_left_out < result->n_left_in) |
1569 |
{ |
1570 |
//************************************************************************** |
1571 |
// e)Queue the left neighbor, queued_count++ |
1572 |
//************************************************************************** |
1573 |
(result->lefts + result->n_left_out)->index = -(result->n_left_out + 1); |
1574 |
GMP_RATS_mpq_init(&((result->lefts + result->n_left_out)->neighbor)); |
1575 |
GMP_RATS_mpq_copy(&((result->lefts + result->n_left_out)->neighbor), &left_neighbor); |
1576 |
(result->n_left_out)++; |
1577 |
|
1578 |
//************************************************************************** |
1579 |
// f)If (queued_count >= count), break. |
1580 |
//************************************************************************** |
1581 |
//By the way, this step is to save unnecessary contortions once we've met |
1582 |
//the quota. |
1583 |
if (result->n_left_out >= result->n_left_in) |
1584 |
break; |
1585 |
|
1586 |
//************************************************************************** |
1587 |
// g)If (left_neighbor <= -HMAX/1), break |
1588 |
//************************************************************************** |
1589 |
//This breaks us when we've queued the most negative number we can--can't go |
1590 |
//further. This only applies for cases where KMAX is also specified. |
1591 |
if (result->hmax_supplied |
1592 |
&& |
1593 |
GMP_RATS_mpq_cmp(&left_neighbor, &hmax_over_one_neg, NULL) <= 0) |
1594 |
break; |
1595 |
|
1596 |
//************************************************************************** |
1597 |
// h)Advance the frame one to the left. |
1598 |
//************************************************************************** |
1599 |
//Advancing one frame to the left is a complicated affair, requiring several |
1600 |
//subcases. We break it up into regions which are best visualized using |
1601 |
//a graph of the integer lattice with dots for each rational number. |
1602 |
if (!(result->hmax_supplied)) |
1603 |
{ |
1604 |
//This is the case where we're are looking only in the |
1605 |
//Farey series. |
1606 |
if (GMP_INTS_mpz_is_pos(&left_neighbor.num)) |
1607 |
{ |
1608 |
//In this case, the left neighbor and right neighbor |
1609 |
//are both positive, and we can apply the standard |
1610 |
//formulas. |
1611 |
GMP_RALG_farey_predecessor(&q_temp1, |
1612 |
&right_neighbor, |
1613 |
&left_neighbor, |
1614 |
&(result->kmax_in)); |
1615 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1616 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp1); |
1617 |
} |
1618 |
else if (GMP_INTS_mpz_is_zero(&left_neighbor.num)) |
1619 |
{ |
1620 |
//In this case, we are making the transition from positive |
1621 |
//to negative. |
1622 |
GMP_INTS_mpz_set_si(&(left_neighbor.num), -1); |
1623 |
GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in)); |
1624 |
GMP_RATS_mpq_set_si(&right_neighbor, 0, 1); |
1625 |
} |
1626 |
else |
1627 |
{ |
1628 |
//Here, we are purely negative and decreasing. Need to negate |
1629 |
//the numbers, find successor, then negate. |
1630 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1631 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1632 |
GMP_INTS_mpz_abs(&(q_temp1.num)); |
1633 |
GMP_INTS_mpz_abs(&(q_temp2.num)); |
1634 |
GMP_RALG_farey_successor(&q_temp3, |
1635 |
&q_temp2, |
1636 |
&q_temp1, |
1637 |
&(result->kmax_in)); |
1638 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1639 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); |
1640 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1641 |
} |
1642 |
} |
1643 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) > 0) |
1644 |
{ |
1645 |
//We are above the top corner point. In this case HMAX is the dominant |
1646 |
//constraint, and we find our food by taking reciprocals and applying |
1647 |
//the standard relationships in the Farey series of order HMAX. |
1648 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1649 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1650 |
GMP_RATS_mpq_swap_components(&q_temp1); |
1651 |
GMP_RATS_mpq_swap_components(&q_temp2); |
1652 |
GMP_RALG_farey_successor(&q_temp3, |
1653 |
&q_temp2, |
1654 |
&q_temp1, |
1655 |
&(result->hmax_in)); |
1656 |
GMP_RATS_mpq_swap_components(&q_temp3); |
1657 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1658 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); |
1659 |
} |
1660 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &(result->corner_point), NULL) == 0) |
1661 |
{ |
1662 |
//We are precisely at the corner point. This is where we round the corner. |
1663 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1664 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_minus_one)); |
1665 |
} |
1666 |
else if (GMP_INTS_mpz_is_pos(&left_neighbor.num)) |
1667 |
{ |
1668 |
//In this region we are going straight down the Farey series. |
1669 |
GMP_RALG_farey_predecessor(&q_temp1, |
1670 |
&right_neighbor, |
1671 |
&left_neighbor, |
1672 |
&(result->kmax_in)); |
1673 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1674 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp1); |
1675 |
} |
1676 |
else if (GMP_INTS_mpz_is_zero(&left_neighbor.num)) |
1677 |
{ |
1678 |
//In this case, we are making the transition from positive |
1679 |
//to negative. |
1680 |
GMP_INTS_mpz_set_si(&(left_neighbor.num), -1); |
1681 |
GMP_INTS_mpz_copy(&(left_neighbor.den), &(result->kmax_in)); |
1682 |
GMP_RATS_mpq_set_si(&right_neighbor, 0, 1); |
1683 |
} |
1684 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) > 0) |
1685 |
{ |
1686 |
//Here, we are purely negative and decreasing. Need to negate |
1687 |
//the numbers, find successor, then negate. |
1688 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1689 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1690 |
GMP_INTS_mpz_abs(&(q_temp1.num)); |
1691 |
GMP_INTS_mpz_abs(&(q_temp2.num)); |
1692 |
GMP_RALG_farey_successor(&q_temp3, |
1693 |
&q_temp2, |
1694 |
&q_temp1, |
1695 |
&(result->kmax_in)); |
1696 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1697 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); |
1698 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1699 |
} |
1700 |
else if (GMP_RATS_mpq_cmp(&left_neighbor, &corner_point_neg, NULL) == 0) |
1701 |
{ |
1702 |
//This is where we are rounding the negative corner. |
1703 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1704 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point_plus_one)); |
1705 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1706 |
} |
1707 |
else |
1708 |
{ |
1709 |
//Here we're going in the negative direction along the "bottom" of the |
1710 |
//rectangle. |
1711 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1712 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1713 |
GMP_INTS_mpz_abs(&(q_temp1.num)); |
1714 |
GMP_INTS_mpz_abs(&(q_temp2.num)); |
1715 |
GMP_RATS_mpq_swap_components(&q_temp1); |
1716 |
GMP_RATS_mpq_swap_components(&q_temp2); |
1717 |
GMP_RALG_farey_predecessor(&q_temp3, |
1718 |
&q_temp2, |
1719 |
&q_temp1, |
1720 |
&(result->hmax_in)); |
1721 |
GMP_RATS_mpq_swap_components(&q_temp3); |
1722 |
GMP_INTS_mpz_negate(&(q_temp3.num)); |
1723 |
GMP_RATS_mpq_copy(&right_neighbor, &left_neighbor); |
1724 |
GMP_RATS_mpq_copy(&left_neighbor, &q_temp3); |
1725 |
} |
1726 |
} |
1727 |
|
1728 |
|
1729 |
done_with_left_neighbors: ; |
1730 |
|
1731 |
//************************************************************************** |
1732 |
// a)If the rational number to approximate is >= HMAX/1 or there are no |
1733 |
// right neighbors requested, terminate with no neighbors on the right. |
1734 |
//************************************************************************** |
1735 |
if ((result->hmax_supplied && GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->hmax_over_one), NULL) >= 0) |
1736 |
|| (n_right_in <= 0)) |
1737 |
goto done_with_right_neighbors; |
1738 |
|
1739 |
//************************************************************************** |
1740 |
// b)Find the right neighbor of the rational number supplied. |
1741 |
//************************************************************************** |
1742 |
// c)Find the left neighbor of the rational number supplied. |
1743 |
//************************************************************************** |
1744 |
if (!result->hmax_supplied) |
1745 |
{ |
1746 |
//In this case, the notion of corner point is meaningless, because |
1747 |
//there is no constraint on H. We can just go on our merry way. Get |
1748 |
//the two neighbors. |
1749 |
GMP_RALG_enclosing_farey_neighbors( |
1750 |
&(result->norm_rn), |
1751 |
&(result->kmax_in), |
1752 |
&(result->rn_abs_cf_rep), |
1753 |
&equality_flag, |
1754 |
&left_neighbor, |
1755 |
&right_neighbor |
1756 |
); |
1757 |
//The enclosing Farey neighbor function is prohibited from identifying the |
1758 |
//rational number itself as a Farey term. If the number is in the Farey |
1759 |
//series, we must replace the left neighbor, otherwise we cannot apply |
1760 |
//the standard recursive formulas. |
1761 |
if (equality_flag) |
1762 |
{ |
1763 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn)); |
1764 |
} |
1765 |
} |
1766 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) < 0) |
1767 |
{ |
1768 |
//The rational number specified is negative and below the negative corner point. |
1769 |
//This means that HMAX is the dominant constraint. We need to find the |
1770 |
//neighbors in the Farey series of order HMAX, then reorder and invert, etc. |
1771 |
GMP_RALG_enclosing_farey_neighbors( |
1772 |
&abs_norm_recip_rn, |
1773 |
&(result->hmax_in), |
1774 |
&(result->rn_abs_recip_cf_rep), |
1775 |
&equality_flag, |
1776 |
&left_neighbor, |
1777 |
&right_neighbor |
1778 |
); |
1779 |
|
1780 |
//Again, if the number specified was already in the series of interest, |
1781 |
//we need to swap in the left neighbor. |
1782 |
if (equality_flag) |
1783 |
{ |
1784 |
GMP_RATS_mpq_copy(&left_neighbor, &abs_norm_recip_rn); |
1785 |
} |
1786 |
|
1787 |
//Take the reciprocal of both neighbors, which will put them out of order, |
1788 |
//then negate them, which will put them back in order. |
1789 |
GMP_RATS_mpq_swap_components(&left_neighbor); |
1790 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1791 |
GMP_RATS_mpq_swap_components(&right_neighbor); |
1792 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
1793 |
} |
1794 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) == 0) |
1795 |
{ |
1796 |
//The rational number specified is the negative corner point. In this case |
1797 |
//Because we can never return the corner point itself as a left neighbor, |
1798 |
//we need to set the right value to be the negative of one before, and the left |
1799 |
//to be the negative of the corner point. |
1800 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point)); |
1801 |
GMP_INTS_mpz_negate(&(left_neighbor.num)); |
1802 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one)); |
1803 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
1804 |
} |
1805 |
else if ((GMP_RATS_mpq_cmp(&(result->norm_rn), &corner_point_neg, NULL) > 0) |
1806 |
&& |
1807 |
(GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) < 0)) |
1808 |
{ |
1809 |
//The rational number specified is in the area dominated by the KMAX constraint |
1810 |
//between -HMAX/KMAX and HMAX/KMAX. The ordinary Farey neighbor function will |
1811 |
//handle this correctly. Again, we need to adjust the output if the number |
1812 |
//is already formable, because the Farey neighbor function is prohibited from |
1813 |
//returning the number itself as a neighbor. |
1814 |
GMP_RALG_enclosing_farey_neighbors( |
1815 |
&(result->norm_rn), |
1816 |
&(result->kmax_in), |
1817 |
&(result->rn_abs_cf_rep), |
1818 |
&equality_flag, |
1819 |
&left_neighbor, |
1820 |
&right_neighbor |
1821 |
); |
1822 |
//The enclosing Farey neighbor function is prohibited from identifying the |
1823 |
//rational number itself as a Farey term. If the number is in the Farey |
1824 |
//series, we must replace the left neighbor, otherwise we cannot apply |
1825 |
//the standard recursive formulas. |
1826 |
if (equality_flag) |
1827 |
{ |
1828 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->norm_rn)); |
1829 |
} |
1830 |
} |
1831 |
else if (GMP_RATS_mpq_cmp(&(result->norm_rn), &(result->corner_point), NULL) == 0) |
1832 |
{ |
1833 |
//The rational number specified is the positive corner point. In this case. |
1834 |
//because we can never return the corner point itself as a right neighbor, |
1835 |
//we need to set the right value to be one after, and the left |
1836 |
//to be the corner point. |
1837 |
GMP_RATS_mpq_copy(&left_neighbor, &(result->corner_point)); |
1838 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one)); |
1839 |
} |
1840 |
else |
1841 |
{ |
1842 |
//The only possibility left is that the number is positive and at or above the |
1843 |
//corner point where HMAX is the dominant constraint. |
1844 |
GMP_RALG_enclosing_farey_neighbors( |
1845 |
&abs_norm_recip_rn, |
1846 |
&(result->hmax_in), |
1847 |
&(result->rn_abs_recip_cf_rep), |
1848 |
&equality_flag, |
1849 |
&left_neighbor, |
1850 |
&right_neighbor |
1851 |
); |
1852 |
|
1853 |
//Again, if the number specified was already in the series of interest, |
1854 |
//we need to swap in the neighbor. This time, however, it must be the |
1855 |
//right neighbor because taking the reciprocals will reverse the order. |
1856 |
if (equality_flag) |
1857 |
{ |
1858 |
GMP_RATS_mpq_copy(&right_neighbor, &abs_norm_recip_rn); |
1859 |
} |
1860 |
|
1861 |
//Take the reciprocal of both neighbors, which will put them out of order, |
1862 |
//then swap them, which will put them back in order. |
1863 |
GMP_RATS_mpq_swap_components(&left_neighbor); |
1864 |
GMP_RATS_mpq_swap_components(&right_neighbor); |
1865 |
GMP_RATS_mpq_swap(&left_neighbor, &right_neighbor); |
1866 |
} |
1867 |
|
1868 |
#if 0 |
1869 |
//Print out the left neighbor and right neighbor determined, for debugging. |
1870 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1871 |
&(left_neighbor.num), |
1872 |
"left_neigh_num"); |
1873 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1874 |
&(left_neighbor.den), |
1875 |
"left_neigh_den"); |
1876 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1877 |
&(right_neighbor.num), |
1878 |
"right_neigh_num"); |
1879 |
GMP_INTS_mpz_long_int_format_to_stream(stdout, |
1880 |
&(right_neighbor.den), |
1881 |
"right_neigh_den"); |
1882 |
#endif |
1883 |
|
1884 |
|
1885 |
//************************************************************************** |
1886 |
// d)While (queued_count < count) |
1887 |
//************************************************************************** |
1888 |
while (result->n_right_out < result->n_right_in) |
1889 |
{ |
1890 |
//************************************************************************** |
1891 |
// e)Queue the right neighbor, queued_count++ |
1892 |
//************************************************************************** |
1893 |
(result->rights + result->n_right_out)->index = (result->n_right_out + 1); |
1894 |
GMP_RATS_mpq_init(&((result->rights + result->n_right_out)->neighbor)); |
1895 |
GMP_RATS_mpq_copy(&((result->rights + result->n_right_out)->neighbor), &right_neighbor); |
1896 |
(result->n_right_out)++; |
1897 |
|
1898 |
//************************************************************************** |
1899 |
// f)If (queued_count >= count), break. |
1900 |
//************************************************************************** |
1901 |
//By the way, this step is to save unnecessary contortions once we've met |
1902 |
//the quota. |
1903 |
if (result->n_right_out >= result->n_right_in) |
1904 |
break; |
1905 |
|
1906 |
//************************************************************************** |
1907 |
// g)If (right_neighbor >= HMAX/1), break |
1908 |
//************************************************************************** |
1909 |
//This breaks us when we've queued the most positive number we can--can't go |
1910 |
//further. This only applies for cases where KMAX is also specified. |
1911 |
if (result->hmax_supplied |
1912 |
&& |
1913 |
GMP_RATS_mpq_cmp(&right_neighbor, &(result->hmax_over_one), NULL) >= 0) |
1914 |
break; |
1915 |
|
1916 |
//************************************************************************** |
1917 |
// h)Advance the frame one to the right. |
1918 |
//************************************************************************** |
1919 |
//Advancing one frame to the right is a complicated affair, requiring several |
1920 |
//subcases. We break it up into regions which are best visualized using |
1921 |
//a graph of the integer lattice with dots for each rational number. |
1922 |
if (!(result->hmax_supplied)) |
1923 |
{ |
1924 |
//This is the case where we're are looking only in the |
1925 |
//Farey series. |
1926 |
if (GMP_INTS_mpz_is_neg(&right_neighbor.num)) |
1927 |
{ |
1928 |
//Neg and increasing towards zero. Can handle by symmetry. |
1929 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1930 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1931 |
GMP_INTS_mpz_abs(&(q_temp1.num)); |
1932 |
GMP_INTS_mpz_abs(&(q_temp2.num)); |
1933 |
GMP_RALG_farey_predecessor(&q_temp3, |
1934 |
&q_temp1, |
1935 |
&q_temp2, |
1936 |
&(result->kmax_in)); |
1937 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
1938 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); |
1939 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
1940 |
} |
1941 |
else if (GMP_INTS_mpz_is_zero(&right_neighbor.num)) |
1942 |
{ |
1943 |
//Right term just hit zero and are increasing. |
1944 |
//Left will become 0/1, right becomes 1/KMAX. |
1945 |
GMP_RATS_mpq_set_si(&left_neighbor, 0, 1); |
1946 |
GMP_INTS_mpz_set_si(&(right_neighbor.num), 1); |
1947 |
GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in)); |
1948 |
} |
1949 |
else |
1950 |
{ |
1951 |
//Are above zero and increasing. Can use standard Farey |
1952 |
//successor formula. |
1953 |
GMP_RALG_farey_successor(&q_temp1, |
1954 |
&left_neighbor, |
1955 |
&right_neighbor, |
1956 |
&(result->kmax_in)); |
1957 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
1958 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp1); |
1959 |
} |
1960 |
} |
1961 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) < 0) |
1962 |
{ |
1963 |
//We are below the negative corner point and moving towards |
1964 |
//zero, with HMAX the dominant constraint. We can proceed by |
1965 |
//symmetry, producing a Farey successor and negating and inverting. |
1966 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1967 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1968 |
GMP_INTS_mpz_abs(&(q_temp1.num)); |
1969 |
GMP_INTS_mpz_abs(&(q_temp2.num)); |
1970 |
GMP_RATS_mpq_swap_components(&q_temp1); |
1971 |
GMP_RATS_mpq_swap_components(&q_temp2); |
1972 |
GMP_RALG_farey_successor(&q_temp3, |
1973 |
&q_temp1, |
1974 |
&q_temp2, |
1975 |
&(result->hmax_in)); |
1976 |
GMP_RATS_mpq_swap_components(&q_temp3); |
1977 |
GMP_INTS_mpz_negate(&(q_temp3.num)); |
1978 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
1979 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); |
1980 |
} |
1981 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &corner_point_neg, NULL) == 0) |
1982 |
{ |
1983 |
//We are at the bottom negative corner point and need to "round the corner". |
1984 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
1985 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_minus_one)); |
1986 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
1987 |
} |
1988 |
else if (GMP_INTS_mpz_is_neg(&right_neighbor.num)) |
1989 |
{ |
1990 |
//In this region we are going straight up the Farey series approaching |
1991 |
//zero. Need to negate to use standard relationships. |
1992 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
1993 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
1994 |
GMP_INTS_mpz_abs(&(q_temp1.num)); |
1995 |
GMP_INTS_mpz_abs(&(q_temp2.num)); |
1996 |
GMP_RALG_farey_predecessor(&q_temp3, |
1997 |
&q_temp1, |
1998 |
&q_temp2, |
1999 |
&(result->kmax_in)); |
2000 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
2001 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); |
2002 |
GMP_INTS_mpz_negate(&(right_neighbor.num)); |
2003 |
} |
2004 |
else if (GMP_INTS_mpz_is_zero(&right_neighbor.num)) |
2005 |
{ |
2006 |
//Zero crossover. |
2007 |
GMP_RATS_mpq_set_si(&left_neighbor, 0, 1); |
2008 |
GMP_INTS_mpz_set_si(&(right_neighbor.num), 1); |
2009 |
GMP_INTS_mpz_copy(&(right_neighbor.den), &(result->kmax_in)); |
2010 |
} |
2011 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) < 0) |
2012 |
{ |
2013 |
//Below corner point. Standard relationship applies. |
2014 |
GMP_RALG_farey_successor(&q_temp1, |
2015 |
&left_neighbor, |
2016 |
&right_neighbor, |
2017 |
&(result->kmax_in)); |
2018 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
2019 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp1); |
2020 |
} |
2021 |
else if (GMP_RATS_mpq_cmp(&right_neighbor, &(result->corner_point), NULL) == 0) |
2022 |
{ |
2023 |
//At the positive corner point. |
2024 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
2025 |
GMP_RATS_mpq_copy(&right_neighbor, &(result->corner_point_plus_one)); |
2026 |
} |
2027 |
else |
2028 |
{ |
2029 |
//Above the positive corner point and heading for HMAX/1. |
2030 |
GMP_RATS_mpq_copy(&q_temp1, &left_neighbor); |
2031 |
GMP_RATS_mpq_copy(&q_temp2, &right_neighbor); |
2032 |
GMP_RATS_mpq_swap_components(&q_temp1); |
2033 |
GMP_RATS_mpq_swap_components(&q_temp2); |
2034 |
GMP_RALG_farey_predecessor(&q_temp3, |
2035 |
&q_temp1, |
2036 |
&q_temp2, |
2037 |
&(result->hmax_in)); |
2038 |
GMP_RATS_mpq_swap_components(&q_temp3); |
2039 |
GMP_RATS_mpq_copy(&left_neighbor, &right_neighbor); |
2040 |
GMP_RATS_mpq_copy(&right_neighbor, &q_temp3); |
2041 |
} |
2042 |
} |
2043 |
|
2044 |
done_with_right_neighbors: ; |
2045 |
|
2046 |
//This is a single return point so we catch all the dynamic memory |
2047 |
//deallocation. |
2048 |
return_point: |
2049 |
GMP_RATS_mpq_clear(&q_temp1); |
2050 |
GMP_RATS_mpq_clear(&q_temp2); |
2051 |
GMP_RATS_mpq_clear(&q_temp3); |
2052 |
GMP_RATS_mpq_clear(&q_temp4); |
2053 |
GMP_RATS_mpq_clear(&left_neighbor); |
2054 |
GMP_RATS_mpq_clear(&right_neighbor); |
2055 |
GMP_RATS_mpq_clear(&left_neighbor_abs); |
2056 |
GMP_RATS_mpq_clear(&right_neighbor_abs); |
2057 |
GMP_RATS_mpq_clear(&hmax_over_one_neg); |
2058 |
GMP_RATS_mpq_clear(&corner_point_neg); |
2059 |
GMP_RATS_mpq_clear(&abs_norm_recip_rn); |
2060 |
} |
2061 |
|
2062 |
|
2063 |
//08/16/01: Visual inspection OK. |
2064 |
void GMP_RALG_consecutive_fab_terms_result_free( |
2065 |
GMP_RALG_fab_neighbor_collection_struct *arg |
2066 |
) |
2067 |
{ |
2068 |
int i; |
2069 |
|
2070 |
//Eyeball the input. |
2071 |
assert(arg != NULL); |
2072 |
|
2073 |
//Deallocate all rational numbers and integers that MUST be allocated, i.e. they are |
2074 |
//never conditional. |
2075 |
GMP_RATS_mpq_clear(&(arg->rn_in)); |
2076 |
GMP_INTS_mpz_clear(&(arg->kmax_in)); |
2077 |
GMP_INTS_mpz_clear(&(arg->hmax_in)); |
2078 |
GMP_RATS_mpq_clear(&(arg->hmax_over_one)); |
2079 |
GMP_RATS_mpq_clear(&(arg->corner_point)); |
2080 |
GMP_RATS_mpq_clear(&(arg->corner_point_minus_one)); |
2081 |
GMP_RATS_mpq_clear(&(arg->corner_point_plus_one)); |
2082 |
GMP_RATS_mpq_clear(&(arg->norm_rn)); |
2083 |
GMP_RATS_mpq_clear(&(arg->abs_norm_rn)); |
2084 |
|
2085 |
//Destroy any continued fraction representations that were |
2086 |
//formed. |
2087 |
if (arg->rn_abs_cf_rep_formed) |
2088 |
{ |
2089 |
GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_cf_rep)); |
2090 |
} |
2091 |
if (arg->rn_abs_recip_cf_rep_formed) |
2092 |
{ |
2093 |
GMP_RALG_cfdecomp_destroy(&(arg->rn_abs_recip_cf_rep)); |
2094 |
} |
2095 |
if(arg->corner_point_cf_rep_formed) |
2096 |
{ |
2097 |
GMP_RALG_cfdecomp_destroy(&(arg->corner_point_cf_rep)); |
2098 |
} |
2099 |
if(arg->corner_point_recip_cf_rep_formed) |
2100 |
{ |
2101 |
GMP_RALG_cfdecomp_destroy(&(arg->corner_point_recip_cf_rep)); |
2102 |
} |
2103 |
|
2104 |
//Walk through the lefts, freeing up any allocated rational numbers. |
2105 |
for (i=0; i < arg->n_left_out; i++) |
2106 |
{ |
2107 |
GMP_RATS_mpq_clear(&(arg->lefts[i].neighbor)); |
2108 |
} |
2109 |
|
2110 |
//Walk through the rights, freeing up any allocated rational numbers. |
2111 |
for (i=0; i < arg->n_right_out; i++) |
2112 |
{ |
2113 |
GMP_RATS_mpq_clear(&(arg->rights[i].neighbor)); |
2114 |
} |
2115 |
|
2116 |
//Deallocate any area assigned for lefts. |
2117 |
if (arg->lefts) |
2118 |
{ |
2119 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
2120 |
CCMALLOC_free(arg->lefts); |
2121 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
2122 |
TclpFree((char *)arg->lefts); |
2123 |
#else |
2124 |
free(arg->lefts); |
2125 |
#endif |
2126 |
|
2127 |
arg->lefts = NULL; |
2128 |
} |
2129 |
|
2130 |
//Deallocate any area assigned for rights. |
2131 |
if (arg->rights) |
2132 |
{ |
2133 |
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE) |
2134 |
CCMALLOC_free(arg->rights); |
2135 |
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE) |
2136 |
TclpFree((char *)arg->rights); |
2137 |
#else |
2138 |
free(arg->rights); |
2139 |
#endif |
2140 |
|
2141 |
arg->rights = NULL; |
2142 |
} |
2143 |
} |
2144 |
|
2145 |
|
2146 |
//08/16/01: Visual inspection OK. |
2147 |
void GMP_RALG_consecutive_fab_terms_result_dump( |
2148 |
FILE *s, |
2149 |
GMP_RALG_fab_neighbor_collection_struct *arg |
2150 |
) |
2151 |
{ |
2152 |
int i; |
2153 |
char buf[250]; |
2154 |
|
2155 |
//Eyeball the input parameters. |
2156 |
assert(s != NULL); |
2157 |
assert(arg != NULL); |
2158 |
|
2159 |
//Announce intent. |
2160 |
FCMIOF_stream_bannerheading(s, |
2161 |
"Emitting Neighbor Decomp For Analysis", |
2162 |
1); |
2163 |
|
2164 |
//Dump the fields, in order. |
2165 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2166 |
&(arg->rn_in.num), |
2167 |
"rn_in_num"); |
2168 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2169 |
&(arg->rn_in.den), |
2170 |
"rn_in_den"); |
2171 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2172 |
&(arg->kmax_in), |
2173 |
"kmax_in"); |
2174 |
fprintf(s, " hmax_supplied: %12d\n", arg->hmax_supplied); |
2175 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2176 |
&(arg->hmax_in), |
2177 |
"hmax_in"); |
2178 |
if (arg->error) |
2179 |
{ |
2180 |
fprintf(s, " error: %s\n", arg->error); |
2181 |
} |
2182 |
else |
2183 |
{ |
2184 |
fprintf(s, " error: NULL\n"); |
2185 |
} |
2186 |
|
2187 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2188 |
&(arg->corner_point.num), |
2189 |
"corner_point_num"); |
2190 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2191 |
&(arg->corner_point.den), |
2192 |
"corner_point_den"); |
2193 |
|
2194 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2195 |
&(arg->corner_point_minus_one.num), |
2196 |
"cor_pt_minus_one_num"); |
2197 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2198 |
&(arg->corner_point_minus_one.den), |
2199 |
"cor_pt_minus_one_den"); |
2200 |
|
2201 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2202 |
&(arg->corner_point_plus_one.num), |
2203 |
"cor_pt_plus_one_num"); |
2204 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2205 |
&(arg->corner_point_plus_one.den), |
2206 |
"cor_pt_plus_one_den"); |
2207 |
|
2208 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2209 |
&(arg->hmax_over_one.num), |
2210 |
"hmax/1_num"); |
2211 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2212 |
&(arg->hmax_over_one.den), |
2213 |
"hmax/1_den"); |
2214 |
|
2215 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2216 |
&(arg->norm_rn.num), |
2217 |
"norm_rn_num"); |
2218 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2219 |
&(arg->norm_rn.den), |
2220 |
"norm_rn_den"); |
2221 |
|
2222 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2223 |
&(arg->abs_norm_rn.num), |
2224 |
"abs_norm_rn_num"); |
2225 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2226 |
&(arg->abs_norm_rn.den), |
2227 |
"abs_norm_rn_den"); |
2228 |
|
2229 |
fprintf(s, " rn_is_neg: %12d\n", arg->rn_is_neg); |
2230 |
|
2231 |
fprintf(s, " n_left_in: %12d\n", arg->n_left_in); |
2232 |
|
2233 |
fprintf(s, " n_right_in: %12d\n", arg->n_right_in); |
2234 |
|
2235 |
fprintf(s, "rn_abs_cf_rep_formed: %12d\n", arg->rn_abs_cf_rep_formed); |
2236 |
|
2237 |
if (arg->rn_abs_cf_rep_formed) |
2238 |
{ |
2239 |
GMP_RALG_cfdecomp_emit(s, "Abs Of RN In CF Decomp", &(arg->rn_abs_cf_rep), 0, 0, NULL); |
2240 |
} |
2241 |
|
2242 |
fprintf(s, "rn_abs_recip_cf_rep_formed: %12d\n", arg->rn_abs_recip_cf_rep_formed); |
2243 |
|
2244 |
if (arg->rn_abs_recip_cf_rep_formed) |
2245 |
{ |
2246 |
GMP_RALG_cfdecomp_emit(s, "Abs Of Recip Of RN In CF Decomp", &(arg->rn_abs_recip_cf_rep), 0, 0, NULL); |
2247 |
} |
2248 |
|
2249 |
fprintf(s, "corner_point_cf_rep_formed: %12d\n", arg->corner_point_cf_rep_formed); |
2250 |
|
2251 |
if (arg->corner_point_cf_rep_formed) |
2252 |
{ |
2253 |
GMP_RALG_cfdecomp_emit(s, "Corner Point CF Decomp", &(arg->corner_point_cf_rep), 0, 0, NULL); |
2254 |
} |
2255 |
|
2256 |
fprintf(s, "cor_pt_recip_cf_rep_formed: %12d\n", arg->corner_point_recip_cf_rep_formed); |
2257 |
|
2258 |
if (arg->corner_point_recip_cf_rep_formed) |
2259 |
{ |
2260 |
GMP_RALG_cfdecomp_emit(s, "Corner Point Recip CF Decomp", &(arg->corner_point_recip_cf_rep), 0, 0, NULL); |
2261 |
} |
2262 |
|
2263 |
fprintf(s, " equality: %12d\n", arg->equality); |
2264 |
|
2265 |
fprintf(s, " n_left_out: %12d\n", arg->n_left_out); |
2266 |
|
2267 |
fprintf(s, " n_right_out: %12d\n", arg->n_right_out); |
2268 |
|
2269 |
for (i=0; i < arg->n_left_out; i++) |
2270 |
{ |
2271 |
sprintf(buf, "Contents Of Left Neighbor Array [%d]", i); |
2272 |
FCMIOF_stream_bannerheading(s, |
2273 |
buf, |
2274 |
0); |
2275 |
fprintf(s, " index: %12d\n", arg->lefts[i].index); |
2276 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2277 |
&(arg->lefts[i].neighbor.num), |
2278 |
"neighbor_num"); |
2279 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2280 |
&(arg->lefts[i].neighbor.den), |
2281 |
"neighbor_den"); |
2282 |
} |
2283 |
|
2284 |
for (i=0; i < arg->n_right_out; i++) |
2285 |
{ |
2286 |
sprintf(buf, "Contents Of Right Neighbor Array [%d]", i); |
2287 |
FCMIOF_stream_bannerheading(s, |
2288 |
buf, |
2289 |
0); |
2290 |
fprintf(s, " index: %12d\n", arg->rights[i].index); |
2291 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2292 |
&(arg->rights[i].neighbor.num), |
2293 |
"neighbor_num"); |
2294 |
GMP_INTS_mpz_long_int_format_to_stream(s, |
2295 |
&(arg->rights[i].neighbor.den), |
2296 |
"neighbor_den"); |
2297 |
} |
2298 |
|
2299 |
FCMIOF_stream_hline(s); |
2300 |
} |
2301 |
|
2302 |
|
2303 |
/******************************************************************/ |
2304 |
/*** VERSION CONTROL REPORTING FUNCTIONS ************************/ |
2305 |
/******************************************************************/ |
2306 |
|
2307 |
//08/16/01: Visual inspection OK. |
2308 |
const char *GMP_RALG_cvcinfo(void) |
2309 |
{ |
2310 |
return("$Header$"); |
2311 |
} |
2312 |
|
2313 |
|
2314 |
//08/16/01: Visual inspection OK. |
2315 |
const char *GMP_RALG_hvcinfo(void) |
2316 |
{ |
2317 |
return(GMP_RALG_H_VERSION); |
2318 |
} |
2319 |
|
2320 |
//End of gmp_ralg.c. |