1 |
dashley |
56 |
//$Header$
|
2 |
dashley |
25 |
//-------------------------------------------------------------------------------------------------
|
3 |
dashley |
56 |
//This file is part of "David T. Ashley's Shared Source Code", a set of shared components
|
4 |
|
|
//integrated into many of David T. Ashley's projects.
|
5 |
dashley |
25 |
//-------------------------------------------------------------------------------------------------
|
6 |
dashley |
56 |
//This source code and any program in which it is compiled/used is provided under the MIT License,
|
7 |
|
|
//reproduced below.
|
8 |
|
|
//-------------------------------------------------------------------------------------------------
|
9 |
|
|
//Permission is hereby granted, free of charge, to any person obtaining a copy of
|
10 |
|
|
//this software and associated documentation files(the "Software"), to deal in the
|
11 |
|
|
//Software without restriction, including without limitation the rights to use,
|
12 |
|
|
//copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the
|
13 |
|
|
//Software, and to permit persons to whom the Software is furnished to do so,
|
14 |
|
|
//subject to the following conditions :
|
15 |
dashley |
25 |
//
|
16 |
dashley |
56 |
//The above copyright notice and this permission notice shall be included in all
|
17 |
|
|
//copies or substantial portions of the Software.
|
18 |
dashley |
25 |
//
|
19 |
dashley |
56 |
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
20 |
|
|
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
21 |
|
|
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
22 |
|
|
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
23 |
|
|
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
24 |
|
|
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
25 |
|
|
//SOFTWARE.
|
26 |
dashley |
25 |
//-------------------------------------------------------------------------------------------------
|
27 |
|
|
#define MODULE_GMP_RATS
|
28 |
|
|
|
29 |
|
|
#include <assert.h>
|
30 |
|
|
#include <stdio.h>
|
31 |
|
|
#include <string.h>
|
32 |
|
|
|
33 |
|
|
#include "bstrfunc.h"
|
34 |
|
|
#include "charfunc.h"
|
35 |
|
|
#include "gmp_ints.h"
|
36 |
|
|
#include "gmp_rats.h"
|
37 |
|
|
|
38 |
|
|
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
39 |
|
|
#include "ccmalloc.h"
|
40 |
|
|
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
41 |
|
|
#include "tclalloc.h"
|
42 |
|
|
#else
|
43 |
|
|
#include <malloc.h>
|
44 |
|
|
#endif
|
45 |
|
|
|
46 |
|
|
|
47 |
|
|
/******************************************************************/
|
48 |
|
|
/*** STATUS FUNCTIONS *******************************************/
|
49 |
|
|
/******************************************************************/
|
50 |
|
|
//Functions in this category provide information about rational
|
51 |
|
|
//numbers.
|
52 |
|
|
//08/08/01: Visual inspection OK.
|
53 |
|
|
int GMP_RATS_mpq_is_nan(const GMP_RATS_mpq_struct *rn)
|
54 |
|
|
{
|
55 |
|
|
assert(rn != NULL);
|
56 |
|
|
|
57 |
|
|
//A rational number is NAN in one of two
|
58 |
|
|
//circumstances. If either of the integer components
|
59 |
|
|
//is NAN, or else if there is a zero denominator.
|
60 |
|
|
if (GMP_INTS_mpz_get_flags(&(rn->num)) || GMP_INTS_mpz_get_flags(&(rn->den)))
|
61 |
|
|
{
|
62 |
|
|
return(1);
|
63 |
|
|
}
|
64 |
|
|
if (GMP_INTS_mpz_is_zero(&(rn->den)))
|
65 |
|
|
{
|
66 |
|
|
return(1);
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
//We're clean ...
|
70 |
|
|
return(0);
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
/******************************************************************/
|
75 |
|
|
/*** INITIALIZATION, CLEARING, AND SETTING FUNCTIONS ************/
|
76 |
|
|
/******************************************************************/
|
77 |
|
|
//08/07/01: Visual inspection OK.
|
78 |
|
|
void GMP_RATS_mpq_init(GMP_RATS_mpq_struct *arg)
|
79 |
|
|
{
|
80 |
|
|
//Eyeball the input parameter.
|
81 |
|
|
assert(arg != NULL);
|
82 |
|
|
|
83 |
|
|
//Initialize the numerator and denominator.
|
84 |
|
|
GMP_INTS_mpz_init(&(arg->num));
|
85 |
|
|
GMP_INTS_mpz_init(&(arg->den));
|
86 |
|
|
|
87 |
|
|
//Canonically, we must start off as 0/1--canonical zero.
|
88 |
|
|
GMP_INTS_mpz_set_ui(&(arg->num), 0);
|
89 |
|
|
GMP_INTS_mpz_set_ui(&(arg->den), 1);
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
//08/07/01: Visual inspection OK.
|
94 |
|
|
void GMP_RATS_mpq_clear(GMP_RATS_mpq_struct *arg)
|
95 |
|
|
{
|
96 |
|
|
//Eyeball the input parameter.
|
97 |
|
|
assert(arg != NULL);
|
98 |
|
|
|
99 |
|
|
//Clear the numerator and denominator. The called functions
|
100 |
|
|
//will check for NULL pointers and so forth.
|
101 |
|
|
GMP_INTS_mpz_clear(&(arg->num));
|
102 |
|
|
GMP_INTS_mpz_clear(&(arg->den));
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
//08/07/01: Visual inspection OK.
|
107 |
|
|
void GMP_RATS_mpq_set_si(GMP_RATS_mpq_struct *arg,
|
108 |
|
|
int num,
|
109 |
|
|
int den)
|
110 |
|
|
{
|
111 |
|
|
//Eyeball the input parameters.
|
112 |
|
|
assert(arg != NULL);
|
113 |
|
|
|
114 |
|
|
//Set the numerator and denominator.
|
115 |
|
|
GMP_INTS_mpz_set_si(&(arg->num), num);
|
116 |
|
|
GMP_INTS_mpz_set_si(&(arg->den), den);
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
//08/08/01: Visual inspection OK.
|
121 |
|
|
void GMP_RATS_mpq_copy( GMP_RATS_mpq_struct *dst,
|
122 |
|
|
const GMP_RATS_mpq_struct *src)
|
123 |
|
|
{
|
124 |
|
|
assert(dst != NULL);
|
125 |
|
|
assert(src != NULL);
|
126 |
|
|
|
127 |
|
|
GMP_INTS_mpz_copy(&(dst->num), &(src->num));
|
128 |
|
|
GMP_INTS_mpz_copy(&(dst->den), &(src->den));
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
//08/13/01: Visual inspection OK.
|
133 |
|
|
void GMP_RATS_mpq_swap( GMP_RATS_mpq_struct *a,
|
134 |
|
|
GMP_RATS_mpq_struct *b)
|
135 |
|
|
{
|
136 |
|
|
assert(a != NULL);
|
137 |
|
|
assert(b != NULL);
|
138 |
|
|
|
139 |
|
|
//Handle the swap by swapping integer components.
|
140 |
|
|
GMP_INTS_mpz_swap(&(a->num), &(b->num));
|
141 |
|
|
GMP_INTS_mpz_swap(&(a->den), &(b->den));
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
//08/13/01: Visual inspection OK.
|
146 |
|
|
void GMP_RATS_mpq_swap_components(GMP_RATS_mpq_struct *arg)
|
147 |
|
|
{
|
148 |
|
|
assert(arg != NULL);
|
149 |
|
|
|
150 |
|
|
GMP_INTS_mpz_swap(&(arg->num), &(arg->den));
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
//08/07/01: Visual inspection OK.
|
155 |
|
|
void GMP_RATS_mpq_set_complex_slash_sepd_rat_num(const char *s,
|
156 |
|
|
int *failure,
|
157 |
|
|
GMP_RATS_mpq_struct *rn)
|
158 |
|
|
{
|
159 |
|
|
char *slash_posn, *numerator, *denominator;
|
160 |
|
|
int s_len, numerator_len, denominator_len;
|
161 |
|
|
int i;
|
162 |
|
|
|
163 |
|
|
//Eyeball the input parameters.
|
164 |
|
|
assert(s != NULL);
|
165 |
|
|
assert(failure != NULL);
|
166 |
|
|
assert(rn != NULL);
|
167 |
|
|
|
168 |
|
|
//Start off believing there is no failure.
|
169 |
|
|
*failure = 0;
|
170 |
|
|
|
171 |
|
|
//Figure out if there is one and only one slash in the
|
172 |
|
|
//string. If this condition isn't met, we cannot
|
173 |
|
|
//go further.
|
174 |
|
|
slash_posn = strchr(s, '/');
|
175 |
|
|
if (!slash_posn)
|
176 |
|
|
{
|
177 |
|
|
*failure = 1;
|
178 |
|
|
return;
|
179 |
|
|
}
|
180 |
|
|
if (strchr(slash_posn + 1, '/')) //There is a second occurence.
|
181 |
|
|
{
|
182 |
|
|
*failure = 1;
|
183 |
|
|
return;
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
//At this point we have one and only one slash.
|
187 |
|
|
//Crack the string in two. We must do this because the
|
188 |
|
|
//input is a constant string. We are not allowed to touch it
|
189 |
|
|
//in the logical domain because of the "const" keyword. We can't
|
190 |
|
|
//do this in the physical domain because the debugger will nail
|
191 |
|
|
//us for it.
|
192 |
|
|
s_len = strlen(s);
|
193 |
|
|
numerator_len = slash_posn - s;
|
194 |
|
|
denominator_len = strlen(slash_posn + 1);
|
195 |
|
|
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
196 |
|
|
numerator = CCMALLOC_malloc(sizeof(char) * (numerator_len + 1));
|
197 |
|
|
denominator = CCMALLOC_malloc(sizeof(char) * (denominator_len + 1));
|
198 |
|
|
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
199 |
|
|
numerator = TclpAlloc(sizeof(char) * (numerator_len + 1));
|
200 |
|
|
denominator = TclpAlloc(sizeof(char) * (denominator_len + 1));
|
201 |
|
|
#else
|
202 |
|
|
numerator = malloc(sizeof(char) * (numerator_len + 1));
|
203 |
|
|
denominator = malloc(sizeof(char) * (denominator_len + 1));
|
204 |
|
|
#endif
|
205 |
|
|
|
206 |
|
|
assert(numerator != NULL);
|
207 |
|
|
assert(denominator != NULL);
|
208 |
|
|
|
209 |
|
|
for (i=0; i<numerator_len; i++)
|
210 |
|
|
{
|
211 |
|
|
numerator[i] = s[i];
|
212 |
|
|
}
|
213 |
|
|
numerator[numerator_len] = 0;
|
214 |
|
|
|
215 |
|
|
for (i=0; i<denominator_len; i++)
|
216 |
|
|
{
|
217 |
|
|
denominator[i] = s[slash_posn - s + 1 + i];
|
218 |
|
|
}
|
219 |
|
|
denominator[denominator_len] = 0;
|
220 |
|
|
|
221 |
|
|
//Try to parse out the numerator as an arbitrary integer.
|
222 |
|
|
//If this can't be done, it is an immediate failure.
|
223 |
|
|
GMP_INTS_mpz_set_general_int(&(rn->num),
|
224 |
|
|
failure,
|
225 |
|
|
numerator);
|
226 |
|
|
if (*failure)
|
227 |
|
|
{
|
228 |
|
|
*failure = 1; //Clamp to 1, don't know what non-zero value
|
229 |
|
|
//was there.
|
230 |
|
|
goto ret_pt;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
//Try to parse out the denominator.
|
234 |
|
|
GMP_INTS_mpz_set_general_int(&(rn->den),
|
235 |
|
|
failure,
|
236 |
|
|
denominator);
|
237 |
|
|
if (*failure)
|
238 |
|
|
{
|
239 |
|
|
*failure = 1; //Clamp to 1, don't know what non-zero value
|
240 |
|
|
//was there.
|
241 |
|
|
goto ret_pt;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
//At this point, we have both a numerator and denominator.
|
245 |
|
|
//Clean up and return.
|
246 |
|
|
ret_pt:
|
247 |
|
|
#if defined(APP_TYPE_SIMPLE_DOS_CONSOLE)
|
248 |
|
|
CCMALLOC_free(numerator);
|
249 |
|
|
CCMALLOC_free(denominator);
|
250 |
|
|
#elif defined(APP_TYPE_IJUSCRIPTER_IJUCONSOLE)
|
251 |
|
|
TclpFree(numerator);
|
252 |
|
|
TclpFree(denominator);
|
253 |
|
|
#else
|
254 |
|
|
free(numerator);
|
255 |
|
|
free(denominator);
|
256 |
|
|
#endif
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
//08/07/01: Visual inspection OK.
|
261 |
|
|
void GMP_RATS_mpq_set_sci_not_rat_num(const char *s,
|
262 |
|
|
int *failure,
|
263 |
|
|
GMP_RATS_mpq_struct *rn)
|
264 |
|
|
{
|
265 |
|
|
int parse_failure;
|
266 |
|
|
//Return code from the floating point parsing
|
267 |
|
|
//function.
|
268 |
|
|
char mant_sign;
|
269 |
|
|
//Sign character, if any, from the mantissa,
|
270 |
|
|
//or N otherwise.
|
271 |
|
|
size_t mant_bdp;
|
272 |
|
|
//The index to the start of the mantissa before
|
273 |
|
|
//the decimal point.
|
274 |
|
|
size_t mant_bdp_len;
|
275 |
|
|
//The length of the mantissa before the decimal
|
276 |
|
|
//point. Zero means not defined, i.e. that
|
277 |
|
|
//no characters were parsed and interpreted as
|
278 |
|
|
//that part of a floating point number.
|
279 |
|
|
size_t mant_adp;
|
280 |
|
|
size_t mant_adp_len;
|
281 |
|
|
//Similar fields for after the decimal point.
|
282 |
|
|
char exp_sign;
|
283 |
|
|
//Sign of the exponent, if any, or N otherwise.
|
284 |
|
|
size_t exp;
|
285 |
|
|
size_t exp_len;
|
286 |
|
|
//Similar fields as to the mantissa, but for the
|
287 |
|
|
//exponent.
|
288 |
|
|
size_t si;
|
289 |
|
|
//Iteration variable.
|
290 |
|
|
int exponent_val;
|
291 |
|
|
//The value of the exponent. We can't accept
|
292 |
|
|
//an exponent outside the range of a 24-bit
|
293 |
|
|
//signed integer. The 24-bit limit is arbitrary.
|
294 |
|
|
//For one thing, it gives room to detect overflow
|
295 |
|
|
//as are adding and multiplying by 10.
|
296 |
|
|
|
297 |
|
|
//Eyeball the input parameters.
|
298 |
|
|
assert(s != NULL);
|
299 |
|
|
assert(failure != NULL);
|
300 |
|
|
assert(rn != NULL);
|
301 |
|
|
//Subcomponents of the rational number will be checked as
|
302 |
|
|
//we make integer calls, if we're in debug mode.
|
303 |
|
|
|
304 |
|
|
//Start off believing no failure.
|
305 |
|
|
*failure = 0;
|
306 |
|
|
|
307 |
|
|
//Set the output to 0/1. This is the default case for some
|
308 |
|
|
//steps below.
|
309 |
|
|
GMP_RATS_mpq_set_si(rn, 0, 1);
|
310 |
|
|
|
311 |
|
|
//Attempt to parse the number as a general number
|
312 |
|
|
//in scientific notation.
|
313 |
|
|
BSTRFUNC_parse_gen_sci_not_num(s,
|
314 |
|
|
&parse_failure,
|
315 |
|
|
&mant_sign,
|
316 |
|
|
&mant_bdp,
|
317 |
|
|
&mant_bdp_len,
|
318 |
|
|
&mant_adp,
|
319 |
|
|
&mant_adp_len,
|
320 |
|
|
&exp_sign,
|
321 |
|
|
&exp,
|
322 |
|
|
&exp_len);
|
323 |
|
|
|
324 |
|
|
//If it wouldn't parse as a general number, can't go further.
|
325 |
|
|
if (parse_failure)
|
326 |
|
|
{
|
327 |
|
|
*failure = 1;
|
328 |
|
|
return;
|
329 |
|
|
}
|
330 |
|
|
else
|
331 |
|
|
{
|
332 |
|
|
//The number parsed out. The general strategy is to form a rational number
|
333 |
|
|
//consisting of the mantissa, with the decimal point shifted fully right, over
|
334 |
|
|
//a denominator of 1. From there, we process the exponent and combine it with
|
335 |
|
|
//the number of characters after the decimal point to form a virtual exponent.
|
336 |
|
|
//If the exponent is positive, we multiply the numerator by the power of 10.
|
337 |
|
|
//If the exponent is negative, we multiply the denominator by that power of 10.
|
338 |
|
|
|
339 |
|
|
//We want to trim the trailing zeros off of the portion of the mantissa after the
|
340 |
|
|
//decimal point. We only need to back up indices, no need to make copies, etc.
|
341 |
|
|
//Note that it is possible that there are only zeros, in which case we'll end
|
342 |
|
|
//up with a length of zero.
|
343 |
|
|
while ((mant_adp_len > 0) && (s[mant_adp + mant_adp_len - 1]=='0'))
|
344 |
|
|
mant_adp_len--;
|
345 |
|
|
|
346 |
|
|
//Trim the leading zeros off of the portion of the mantissa before the
|
347 |
|
|
//decimal point. Note that it is possible that there is only a zero,
|
348 |
|
|
//so we may trim it down to nothing.
|
349 |
|
|
while ((mant_bdp_len > 0) && (s[mant_bdp]=='0'))
|
350 |
|
|
{
|
351 |
|
|
mant_bdp++;
|
352 |
|
|
mant_bdp_len--;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
//If we have only zeros in the mantissa, both before the
|
356 |
|
|
//decimal point and after, then we return 0.
|
357 |
|
|
if ((mant_bdp_len + mant_adp_len) == 0)
|
358 |
|
|
{
|
359 |
|
|
*failure = 0;
|
360 |
|
|
return;
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
//Convert the numerator to an integer which represents the
|
364 |
|
|
//part before the mantissa and the part after the mantissa
|
365 |
|
|
//concatenated as an integer. We could call a function to do
|
366 |
|
|
//this, but the function is not really any better in algorithm.
|
367 |
|
|
//We can do it ourselves.
|
368 |
|
|
GMP_INTS_mpz_set_ui(&(rn->num), 0);
|
369 |
|
|
for (si = 0; si < mant_bdp_len; si++)
|
370 |
|
|
{
|
371 |
|
|
int val;
|
372 |
|
|
|
373 |
|
|
GMP_INTS_mpz_mul_si(&(rn->num), &(rn->num), 10);
|
374 |
|
|
val = CHARFUNC_digit_to_val(s[mant_bdp + si]);
|
375 |
|
|
if (val >= 0)
|
376 |
|
|
GMP_INTS_mpz_add_ui(&(rn->num), &(rn->num), val);
|
377 |
|
|
}
|
378 |
|
|
for (si = 0; si < mant_adp_len; si++)
|
379 |
|
|
{
|
380 |
|
|
int val;
|
381 |
|
|
|
382 |
|
|
GMP_INTS_mpz_mul_si(&(rn->num), &(rn->num), 10);
|
383 |
|
|
val = CHARFUNC_digit_to_val(s[mant_adp + si]);
|
384 |
|
|
if (val >= 0)
|
385 |
|
|
GMP_INTS_mpz_add_ui(&(rn->num), &(rn->num), val);
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
//The numerator should now have an integer which is
|
389 |
|
|
//The absolute value of the mantissa. Process the possible
|
390 |
|
|
//sign.
|
391 |
|
|
if (mant_sign == '-')
|
392 |
|
|
GMP_INTS_mpz_negate(&(rn->num));
|
393 |
|
|
|
394 |
|
|
//We now need to form a value from the exponent, if any.
|
395 |
|
|
//First, tackle the exponent. Process the
|
396 |
|
|
//exponent into a signed integer. We have to
|
397 |
|
|
//balk at anything outside of 24 bits. The
|
398 |
|
|
//procedure used automatically handles
|
399 |
|
|
//leading zeros correctly.
|
400 |
|
|
exponent_val = 0;
|
401 |
|
|
for (si=exp; si<(exp+exp_len); si++)
|
402 |
|
|
{
|
403 |
|
|
int val;
|
404 |
|
|
|
405 |
|
|
val = CHARFUNC_digit_to_val(s[si]);
|
406 |
|
|
|
407 |
|
|
assert(val >= 0 && val <= 9);
|
408 |
|
|
|
409 |
|
|
exponent_val *= 10;
|
410 |
|
|
exponent_val += val;
|
411 |
|
|
|
412 |
|
|
if (((exp_sign=='-') && (exponent_val>8388608))
|
413 |
|
|
||
|
414 |
|
|
((exp_sign != '-') && (exponent_val>8388607)))
|
415 |
|
|
{
|
416 |
|
|
*failure = 1;
|
417 |
|
|
return;
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
//If we're here, the exponent has been computed and
|
422 |
|
|
//is within 24 bits. However, we need to adjust for
|
423 |
|
|
//the sign.
|
424 |
|
|
if (exp_sign == '-')
|
425 |
|
|
exponent_val = -exponent_val;
|
426 |
|
|
|
427 |
|
|
//We need to adjust the exponent for the number of digits
|
428 |
|
|
//after the decimal point.
|
429 |
|
|
exponent_val -= mant_adp_len;
|
430 |
|
|
|
431 |
|
|
//Again, clip for size.
|
432 |
|
|
if ((exponent_val < -8388608) || (exponent_val > 8388607))
|
433 |
|
|
{
|
434 |
|
|
*failure = 1;
|
435 |
|
|
return;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
//There are two cases to consider. If the exponent
|
439 |
|
|
//is positive, we need to multiply the numerator
|
440 |
|
|
//by 10 exponentiated to the power of the exponent.
|
441 |
|
|
//If the exponent is negative, we need to do the
|
442 |
|
|
//same thing to the denominator. If the exponent
|
443 |
|
|
//is negative, we don't need to do anything.
|
444 |
|
|
if (exponent_val > 0)
|
445 |
|
|
{
|
446 |
|
|
GMP_INTS_mpz_struct k10, k10_exponentiated;
|
447 |
|
|
|
448 |
|
|
GMP_INTS_mpz_init(&k10);
|
449 |
|
|
GMP_INTS_mpz_init(&k10_exponentiated);
|
450 |
|
|
|
451 |
|
|
GMP_INTS_mpz_set_ui(&k10, 10);
|
452 |
|
|
|
453 |
|
|
GMP_INTS_mpz_pow_ui(&k10_exponentiated, &k10, exponent_val);
|
454 |
|
|
|
455 |
|
|
GMP_INTS_mpz_mul(&(rn->num), &(rn->num), &k10_exponentiated);
|
456 |
|
|
|
457 |
|
|
GMP_INTS_mpz_clear(&k10);
|
458 |
|
|
GMP_INTS_mpz_clear(&k10_exponentiated);
|
459 |
|
|
|
460 |
|
|
*failure = 0;
|
461 |
|
|
|
462 |
|
|
if (GMP_INTS_mpz_get_flags(&(rn->num)) || GMP_INTS_mpz_get_flags(&(rn->den)))
|
463 |
|
|
*failure = 1;
|
464 |
|
|
|
465 |
|
|
return;
|
466 |
|
|
}
|
467 |
|
|
else if (exponent_val < 0)
|
468 |
|
|
{
|
469 |
|
|
GMP_INTS_mpz_struct k10, k10_exponentiated;
|
470 |
|
|
|
471 |
|
|
GMP_INTS_mpz_init(&k10);
|
472 |
|
|
GMP_INTS_mpz_init(&k10_exponentiated);
|
473 |
|
|
|
474 |
|
|
GMP_INTS_mpz_set_ui(&k10, 10);
|
475 |
|
|
|
476 |
|
|
GMP_INTS_mpz_pow_ui(&k10_exponentiated, &k10, -exponent_val);
|
477 |
|
|
|
478 |
|
|
GMP_INTS_mpz_mul(&(rn->den), &(rn->den), &k10_exponentiated);
|
479 |
|
|
|
480 |
|
|
GMP_INTS_mpz_clear(&k10);
|
481 |
|
|
GMP_INTS_mpz_clear(&k10_exponentiated);
|
482 |
|
|
|
483 |
|
|
*failure = 0;
|
484 |
|
|
|
485 |
|
|
if (GMP_INTS_mpz_get_flags(&(rn->num)) || GMP_INTS_mpz_get_flags(&(rn->den)))
|
486 |
|
|
*failure = 1;
|
487 |
|
|
|
488 |
|
|
return;
|
489 |
|
|
}
|
490 |
|
|
}
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
|
494 |
|
|
//08/07/01: Visual inspection OK.
|
495 |
|
|
void GMP_RATS_mpq_set_all_format_rat_num(const char *s,
|
496 |
|
|
int *failure,
|
497 |
|
|
GMP_RATS_mpq_struct *rn)
|
498 |
|
|
{
|
499 |
|
|
//Eyeball the input parameters.
|
500 |
|
|
assert(s != NULL);
|
501 |
|
|
assert(failure != NULL);
|
502 |
|
|
assert(rn != NULL);
|
503 |
|
|
|
504 |
|
|
//Assume no failure.
|
505 |
|
|
*failure = 0;
|
506 |
|
|
|
507 |
|
|
//Try in order to parse as integers with slash then
|
508 |
|
|
//as number in scientific notation.
|
509 |
|
|
GMP_RATS_mpq_set_complex_slash_sepd_rat_num(s,
|
510 |
|
|
failure,
|
511 |
|
|
rn);
|
512 |
|
|
if (!*failure)
|
513 |
|
|
return;
|
514 |
|
|
|
515 |
|
|
GMP_RATS_mpq_set_sci_not_rat_num(s,
|
516 |
|
|
failure,
|
517 |
|
|
rn);
|
518 |
|
|
|
519 |
|
|
if (*failure)
|
520 |
|
|
*failure = 1; //Clamp output.
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
|
524 |
|
|
/******************************************************************/
|
525 |
|
|
/*** NORMALIZATION FUNCTIONS ************************************/
|
526 |
|
|
/******************************************************************/
|
527 |
|
|
//08/07/01: Visual inspection OK.
|
528 |
|
|
void GMP_RATS_mpq_normalize_sign(GMP_RATS_mpq_struct *rn)
|
529 |
|
|
{
|
530 |
|
|
//Eyeball the input.
|
531 |
|
|
assert(rn != NULL);
|
532 |
|
|
|
533 |
|
|
if (GMP_INTS_mpz_is_neg(&rn->num) && GMP_INTS_mpz_is_neg(&rn->den))
|
534 |
|
|
{
|
535 |
|
|
//Both negative, can negate both, this leaves both positive,
|
536 |
|
|
//which is the normalized form for a positive rational
|
537 |
|
|
//number.
|
538 |
|
|
GMP_INTS_mpz_negate(&rn->num);
|
539 |
|
|
GMP_INTS_mpz_negate(&rn->den);
|
540 |
|
|
}
|
541 |
|
|
else if (!GMP_INTS_mpz_is_neg(&rn->num) && GMP_INTS_mpz_is_neg(&rn->den))
|
542 |
|
|
{
|
543 |
|
|
//Denominator neg, numerator non-neg, can negate both. This
|
544 |
|
|
//will leave numerator neg, denominator pos, which is
|
545 |
|
|
//normalized form for negative rational number.
|
546 |
|
|
GMP_INTS_mpz_negate(&rn->num);
|
547 |
|
|
GMP_INTS_mpz_negate(&rn->den);
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
|
552 |
|
|
//08/07/01: Visual inspection OK.
|
553 |
|
|
void GMP_RATS_mpq_normalize(GMP_RATS_mpq_struct *rn)
|
554 |
|
|
{
|
555 |
|
|
//Eyeball the input.
|
556 |
|
|
assert(rn != NULL);
|
557 |
|
|
|
558 |
|
|
//Cover some special cases. If either component has flags
|
559 |
|
|
//set, don't even touch it.
|
560 |
|
|
if (GMP_INTS_mpz_get_flags(&(rn->num)) || GMP_INTS_mpz_get_flags(&(rn->den)))
|
561 |
|
|
{
|
562 |
|
|
return;
|
563 |
|
|
}
|
564 |
|
|
//If the denominator is zero, normalize it to 1/0, the canonical
|
565 |
|
|
//for for an illegal rational number.
|
566 |
|
|
else if (GMP_INTS_mpz_is_zero(&(rn->den)))
|
567 |
|
|
{
|
568 |
|
|
GMP_RATS_mpq_set_si(rn, 1, 0);
|
569 |
|
|
return;
|
570 |
|
|
}
|
571 |
|
|
//If the numerator is zero, convert the number to the canonical
|
572 |
|
|
//form for zero of 0/1.
|
573 |
|
|
else if (GMP_INTS_mpz_is_zero(&(rn->num)))
|
574 |
|
|
{
|
575 |
|
|
GMP_RATS_mpq_set_si(rn, 0, 1);
|
576 |
|
|
return;
|
577 |
|
|
}
|
578 |
|
|
else
|
579 |
|
|
{
|
580 |
|
|
int num_is_neg;
|
581 |
|
|
int den_is_neg;
|
582 |
|
|
GMP_INTS_mpz_struct gcd, quotient, remainder;
|
583 |
|
|
|
584 |
|
|
//Allocate space for the integers used.
|
585 |
|
|
GMP_INTS_mpz_init(&gcd);
|
586 |
|
|
GMP_INTS_mpz_init("ient);
|
587 |
|
|
GMP_INTS_mpz_init(&remainder);
|
588 |
|
|
|
589 |
|
|
//This is the most normal case, where we need to
|
590 |
|
|
//look at reducing the numerator and denominator.
|
591 |
|
|
//One way to do it would be to obtain the g.c.d.
|
592 |
|
|
//and divide this out, and this is the route
|
593 |
|
|
//we'll take. However, must grab out the sign.
|
594 |
|
|
if (GMP_INTS_mpz_is_neg(&(rn->num)))
|
595 |
|
|
{
|
596 |
|
|
num_is_neg = 1;
|
597 |
|
|
GMP_INTS_mpz_negate(&(rn->num));
|
598 |
|
|
}
|
599 |
|
|
else
|
600 |
|
|
{
|
601 |
|
|
num_is_neg = 0;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
if (GMP_INTS_mpz_is_neg(&(rn->den)))
|
605 |
|
|
{
|
606 |
|
|
den_is_neg = 1;
|
607 |
|
|
GMP_INTS_mpz_negate(&(rn->den));
|
608 |
|
|
}
|
609 |
|
|
else
|
610 |
|
|
{
|
611 |
|
|
den_is_neg = 0;
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
//Calculate the GCD.
|
615 |
|
|
GMP_INTS_mpz_gcd(&gcd, &(rn->num), &(rn->den));
|
616 |
|
|
|
617 |
|
|
//Divide the numerator by the GCD and store it
|
618 |
|
|
//back.
|
619 |
|
|
GMP_INTS_mpz_tdiv_qr("ient, &remainder,
|
620 |
|
|
&(rn->num), &gcd);
|
621 |
|
|
GMP_INTS_mpz_copy(&(rn->num), "ient);
|
622 |
|
|
|
623 |
|
|
//Divide the denominator by the GCD and store it
|
624 |
|
|
//back.
|
625 |
|
|
GMP_INTS_mpz_tdiv_qr("ient, &remainder,
|
626 |
|
|
&(rn->den), &gcd);
|
627 |
|
|
GMP_INTS_mpz_copy(&(rn->den), "ient);
|
628 |
|
|
|
629 |
|
|
//We now need to adjust the sign. Both the
|
630 |
|
|
//numerator and denominator are definitely
|
631 |
|
|
//positive. Need to make the numerator
|
632 |
|
|
//negative if either but not both of the
|
633 |
|
|
//original signs were negative.
|
634 |
|
|
if ((num_is_neg && !den_is_neg) || (!num_is_neg && den_is_neg))
|
635 |
|
|
{
|
636 |
|
|
GMP_INTS_mpz_negate(&(rn->num));
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
//Deallocate space for the integers used.
|
640 |
|
|
GMP_INTS_mpz_clear(&gcd);
|
641 |
|
|
GMP_INTS_mpz_clear("ient);
|
642 |
|
|
GMP_INTS_mpz_clear(&remainder);
|
643 |
|
|
|
644 |
|
|
return;
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
|
649 |
|
|
/******************************************************************/
|
650 |
|
|
/*** ARITHMETIC FUNCTIONS ***************************************/
|
651 |
|
|
/******************************************************************/
|
652 |
|
|
//08/08/01: Visual inspection OK.
|
653 |
|
|
void GMP_RATS_mpq_add( GMP_RATS_mpq_struct *result,
|
654 |
|
|
const GMP_RATS_mpq_struct *arg1,
|
655 |
|
|
const GMP_RATS_mpq_struct *arg2)
|
656 |
|
|
{
|
657 |
|
|
GMP_RATS_mpq_struct rv;
|
658 |
|
|
GMP_INTS_mpz_struct temp;
|
659 |
|
|
|
660 |
|
|
//Eyeball the input parameters.
|
661 |
|
|
assert(result != NULL);
|
662 |
|
|
assert(arg1 != NULL);
|
663 |
|
|
assert(arg2 != NULL);
|
664 |
|
|
|
665 |
|
|
//Generally speaking, we do not want to require that
|
666 |
|
|
//the arguments and the result be distinct, as this is
|
667 |
|
|
//too much of a restriction on the caller. The approach
|
668 |
|
|
//taken, somewhat wasteful, is to allocate a place for
|
669 |
|
|
//the return value.
|
670 |
|
|
//
|
671 |
|
|
//For addition, if we are adding a/b and c/d, the
|
672 |
|
|
//result is necessarily algebraically
|
673 |
|
|
//(ad + cb)/bd.
|
674 |
|
|
//
|
675 |
|
|
//If either rational number in the input is invalid,
|
676 |
|
|
//flag the result as invalid.
|
677 |
|
|
if (GMP_RATS_mpq_is_nan(arg1) || GMP_RATS_mpq_is_nan(arg2))
|
678 |
|
|
{
|
679 |
|
|
GMP_RATS_mpq_set_si(result, 1, 0);
|
680 |
|
|
}
|
681 |
|
|
else
|
682 |
|
|
{
|
683 |
|
|
//Both rational numbers are OK. Can simply stage the
|
684 |
|
|
//result by the algebraic identity and then
|
685 |
|
|
//normalize it. Only need one temporary variable.
|
686 |
|
|
//
|
687 |
|
|
//Initialize the rational number that we will use to
|
688 |
|
|
//hold return value in case it is the same as one
|
689 |
|
|
//or both of the arguments.
|
690 |
|
|
GMP_RATS_mpq_init(&rv);
|
691 |
|
|
|
692 |
|
|
//Initialize the temporary integer.
|
693 |
|
|
GMP_INTS_mpz_init(&temp);
|
694 |
|
|
|
695 |
|
|
//numerator = a * d
|
696 |
|
|
GMP_INTS_mpz_mul(&(rv.num), &(arg1->num), &(arg2->den));
|
697 |
|
|
|
698 |
|
|
//temp = c * b
|
699 |
|
|
GMP_INTS_mpz_mul(&temp, &(arg2->num), &(arg1->den));
|
700 |
|
|
|
701 |
|
|
//numerator = a * d + c * b
|
702 |
|
|
GMP_INTS_mpz_add(&(rv.num), &(rv.num), &temp);
|
703 |
|
|
|
704 |
|
|
//denominator = b * d
|
705 |
|
|
GMP_INTS_mpz_mul(&(rv.den), &(arg1->den), &(arg2->den));
|
706 |
|
|
|
707 |
|
|
//Copy the temporary result to the actual return value.
|
708 |
|
|
//Had to wait until now in case result was the same
|
709 |
|
|
//as either or both args.
|
710 |
|
|
GMP_RATS_mpq_copy(result, &rv);
|
711 |
|
|
|
712 |
|
|
//Normalize the result.
|
713 |
|
|
GMP_RATS_mpq_normalize(result);
|
714 |
|
|
|
715 |
|
|
//Free dynamic memory.
|
716 |
|
|
GMP_RATS_mpq_clear(&rv);
|
717 |
|
|
GMP_INTS_mpz_clear(&temp);
|
718 |
|
|
}
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
|
722 |
|
|
//08/08/01: Visual inspection OK.
|
723 |
|
|
void GMP_RATS_mpq_sub( GMP_RATS_mpq_struct *result,
|
724 |
|
|
const GMP_RATS_mpq_struct *arg1,
|
725 |
|
|
const GMP_RATS_mpq_struct *arg2)
|
726 |
|
|
{
|
727 |
|
|
GMP_RATS_mpq_struct negated_arg_2;
|
728 |
|
|
|
729 |
|
|
//Eyeball the input parameters.
|
730 |
|
|
assert(result != NULL);
|
731 |
|
|
assert(arg1 != NULL);
|
732 |
|
|
assert(arg2 != NULL);
|
733 |
|
|
|
734 |
|
|
//For the subtract function, we could do it directly,
|
735 |
|
|
//but might as well just define it recursively
|
736 |
|
|
//in terms of add. We can't modify the inputs,
|
737 |
|
|
//so copy the second off and negate it. All error
|
738 |
|
|
//flags and so forth will propagate automatically.
|
739 |
|
|
//
|
740 |
|
|
//Allocate space for the negated arg 2.
|
741 |
|
|
GMP_RATS_mpq_init(&negated_arg_2);
|
742 |
|
|
|
743 |
|
|
//Copy from the original.
|
744 |
|
|
GMP_RATS_mpq_copy(&negated_arg_2, arg2);
|
745 |
|
|
|
746 |
|
|
//Negate the copy. Negating the numerator will
|
747 |
|
|
//do it.
|
748 |
|
|
GMP_INTS_mpz_negate(&(negated_arg_2.num));
|
749 |
|
|
|
750 |
|
|
//Make the add, which now is really a subtract.
|
751 |
|
|
GMP_RATS_mpq_add(result, arg1, &negated_arg_2);
|
752 |
|
|
|
753 |
|
|
//Destroy the temporary variable.
|
754 |
|
|
GMP_RATS_mpq_clear(&negated_arg_2);
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
|
758 |
|
|
//08/16/01: Visual inspection OK.
|
759 |
|
|
void GMP_RATS_mpq_mul( GMP_RATS_mpq_struct *result,
|
760 |
|
|
const GMP_RATS_mpq_struct *arg1,
|
761 |
|
|
const GMP_RATS_mpq_struct *arg2)
|
762 |
|
|
{
|
763 |
|
|
//Eyeball the input parameters.
|
764 |
|
|
assert(result != NULL);
|
765 |
|
|
assert(arg1 != NULL);
|
766 |
|
|
assert(arg2 != NULL);
|
767 |
|
|
|
768 |
|
|
//If either rational number in the input is invalid,
|
769 |
|
|
//flag the result as invalid.
|
770 |
|
|
if (GMP_RATS_mpq_is_nan(arg1) || GMP_RATS_mpq_is_nan(arg2))
|
771 |
|
|
{
|
772 |
|
|
GMP_RATS_mpq_set_si(result, 1, 0);
|
773 |
|
|
}
|
774 |
|
|
else
|
775 |
|
|
{
|
776 |
|
|
//Rational number multiplication is a simple matter.
|
777 |
|
|
//Just multiply components. Don't need to worry
|
778 |
|
|
//about rational numbers overlapping, as numerator
|
779 |
|
|
//operations and denominator operations are separate.
|
780 |
|
|
GMP_INTS_mpz_mul(&(result->num),
|
781 |
|
|
&(arg1->num),
|
782 |
|
|
&(arg2->num));
|
783 |
|
|
GMP_INTS_mpz_mul(&(result->den),
|
784 |
|
|
&(arg1->den),
|
785 |
|
|
&(arg2->den));
|
786 |
|
|
|
787 |
|
|
//Normalize it.
|
788 |
|
|
GMP_RATS_mpq_normalize(result);
|
789 |
|
|
}
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
|
793 |
|
|
//08/16/01: Visual inspection OK.
|
794 |
|
|
void GMP_RATS_mpq_div( GMP_RATS_mpq_struct *result,
|
795 |
|
|
const GMP_RATS_mpq_struct *arg1,
|
796 |
|
|
const GMP_RATS_mpq_struct *arg2)
|
797 |
|
|
{
|
798 |
|
|
GMP_RATS_mpq_struct rv;
|
799 |
|
|
|
800 |
|
|
//Eyeball the input parameters.
|
801 |
|
|
assert(result != NULL);
|
802 |
|
|
assert(arg1 != NULL);
|
803 |
|
|
assert(arg2 != NULL);
|
804 |
|
|
|
805 |
|
|
//If either rational number in the input is invalid,
|
806 |
|
|
//flag the result as invalid.
|
807 |
|
|
if (GMP_RATS_mpq_is_nan(arg1) || GMP_RATS_mpq_is_nan(arg2))
|
808 |
|
|
{
|
809 |
|
|
GMP_RATS_mpq_set_si(result, 1, 0);
|
810 |
|
|
}
|
811 |
|
|
else
|
812 |
|
|
{
|
813 |
|
|
//Rational number division is a simple matter.
|
814 |
|
|
//Just multiply components. We do need to worry
|
815 |
|
|
//about rational numbers overlapping, so must
|
816 |
|
|
//make a copy of the return value. If denominator
|
817 |
|
|
//of return value is zero, it is NAN, but caller
|
818 |
|
|
//should detect this.
|
819 |
|
|
//
|
820 |
|
|
//Allocate return value.
|
821 |
|
|
GMP_RATS_mpq_init(&rv);
|
822 |
|
|
|
823 |
|
|
//Calculate quotient.
|
824 |
|
|
GMP_INTS_mpz_mul(&(rv.num),
|
825 |
|
|
&(arg1->num),
|
826 |
|
|
&(arg2->den));
|
827 |
|
|
GMP_INTS_mpz_mul(&(rv.den),
|
828 |
|
|
&(arg1->den),
|
829 |
|
|
&(arg2->num));
|
830 |
|
|
|
831 |
|
|
//Normalize quotient.
|
832 |
|
|
GMP_RATS_mpq_normalize(&rv);
|
833 |
|
|
|
834 |
|
|
//Copy to its destination.
|
835 |
|
|
GMP_RATS_mpq_copy(result, &rv);
|
836 |
|
|
|
837 |
|
|
//Deallocate temporary return value.
|
838 |
|
|
GMP_RATS_mpq_clear(&rv);
|
839 |
|
|
}
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
|
843 |
|
|
/******************************************************************/
|
844 |
|
|
/*** COMPARISON FUNCTIONS ***************************************/
|
845 |
|
|
/******************************************************************/
|
846 |
|
|
//08/16/01: Visual inspection OK.
|
847 |
|
|
int GMP_RATS_mpq_cmp(const GMP_RATS_mpq_struct *arg1,
|
848 |
|
|
const GMP_RATS_mpq_struct *arg2,
|
849 |
|
|
int *failure)
|
850 |
|
|
{
|
851 |
|
|
int arg1_sgn;
|
852 |
|
|
int arg2_sgn;
|
853 |
|
|
int rv, failure_rv;
|
854 |
|
|
GMP_INTS_mpz_struct prod1, prod2;
|
855 |
|
|
|
856 |
|
|
//Eyeball the input parameters. Note that the third
|
857 |
|
|
//parameter may be NULL.
|
858 |
|
|
assert(arg1 != NULL);
|
859 |
|
|
assert(arg2 != NULL);
|
860 |
|
|
|
861 |
|
|
//If either of the input arguments are NAN, we
|
862 |
|
|
//cannot compare arguments. We return 0, and it
|
863 |
|
|
//depends on the caller whether it is important
|
864 |
|
|
//that the comparison is bogus.
|
865 |
|
|
if (GMP_RATS_mpq_is_nan(arg1) || GMP_RATS_mpq_is_nan(arg2))
|
866 |
|
|
{
|
867 |
|
|
if (failure != NULL)
|
868 |
|
|
*failure = 1;
|
869 |
|
|
return(0);
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
//Calculate the sign of the left argument. The encoding
|
873 |
|
|
//we'll use is -1 means negative, 0 means zero, and
|
874 |
|
|
//1 means positive.
|
875 |
|
|
if (GMP_INTS_mpz_is_zero(&(arg1->num)))
|
876 |
|
|
{
|
877 |
|
|
arg1_sgn = 0;
|
878 |
|
|
}
|
879 |
|
|
else if (GMP_INTS_mpz_is_neg(&(arg1->num)) && GMP_INTS_mpz_is_neg(&(arg1->den)))
|
880 |
|
|
{
|
881 |
|
|
arg1_sgn = 1;
|
882 |
|
|
}
|
883 |
|
|
else if (GMP_INTS_mpz_is_neg(&(arg1->num)) && GMP_INTS_mpz_is_pos(&(arg1->den)))
|
884 |
|
|
{
|
885 |
|
|
arg1_sgn = -1;
|
886 |
|
|
}
|
887 |
|
|
else if (GMP_INTS_mpz_is_pos(&(arg1->num)) && GMP_INTS_mpz_is_neg(&(arg1->den)))
|
888 |
|
|
{
|
889 |
|
|
arg1_sgn = -1;
|
890 |
|
|
}
|
891 |
|
|
else if (GMP_INTS_mpz_is_pos(&(arg1->num)) && GMP_INTS_mpz_is_pos(&(arg1->den)))
|
892 |
|
|
{
|
893 |
|
|
arg1_sgn = 1;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
//Calculate the sign of the right argument. The encoding
|
897 |
|
|
//we'll use is -1 means negative, 0 means zero, and
|
898 |
|
|
//1 means positive.
|
899 |
|
|
if (GMP_INTS_mpz_is_zero(&(arg2->num)))
|
900 |
|
|
{
|
901 |
|
|
arg2_sgn = 0;
|
902 |
|
|
}
|
903 |
|
|
else if (GMP_INTS_mpz_is_neg(&(arg2->num)) && GMP_INTS_mpz_is_neg(&(arg2->den)))
|
904 |
|
|
{
|
905 |
|
|
arg2_sgn = 1;
|
906 |
|
|
}
|
907 |
|
|
else if (GMP_INTS_mpz_is_neg(&(arg2->num)) && GMP_INTS_mpz_is_pos(&(arg2->den)))
|
908 |
|
|
{
|
909 |
|
|
arg2_sgn = -1;
|
910 |
|
|
}
|
911 |
|
|
else if (GMP_INTS_mpz_is_pos(&(arg2->num)) && GMP_INTS_mpz_is_neg(&(arg2->den)))
|
912 |
|
|
{
|
913 |
|
|
arg2_sgn = -1;
|
914 |
|
|
}
|
915 |
|
|
else if (GMP_INTS_mpz_is_pos(&(arg2->num)) && GMP_INTS_mpz_is_pos(&(arg2->den)))
|
916 |
|
|
{
|
917 |
|
|
arg2_sgn = 1;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
//OK, can handle some simple cases where the signs of the
|
921 |
|
|
//operands are different or both are zero.
|
922 |
|
|
if ((arg1_sgn == 0) && (arg2_sgn == 0))
|
923 |
|
|
{
|
924 |
|
|
if (failure != NULL)
|
925 |
|
|
*failure = 0;
|
926 |
|
|
return(0);
|
927 |
|
|
}
|
928 |
|
|
else if ((arg1_sgn == -1) && (arg2_sgn > -1))
|
929 |
|
|
{
|
930 |
|
|
if (failure != NULL)
|
931 |
|
|
*failure = 0;
|
932 |
|
|
return(-1);
|
933 |
|
|
}
|
934 |
|
|
else if ((arg1_sgn == 0) && (arg2_sgn < 0))
|
935 |
|
|
{
|
936 |
|
|
if (failure != NULL)
|
937 |
|
|
*failure = 0;
|
938 |
|
|
return(1);
|
939 |
|
|
}
|
940 |
|
|
else if ((arg1_sgn == 0) && (arg2_sgn > 0))
|
941 |
|
|
{
|
942 |
|
|
if (failure != NULL)
|
943 |
|
|
*failure = 0;
|
944 |
|
|
return(-1);
|
945 |
|
|
}
|
946 |
|
|
else if ((arg1_sgn == 1) && (arg2_sgn < 1))
|
947 |
|
|
{
|
948 |
|
|
if (failure != NULL)
|
949 |
|
|
*failure = 0;
|
950 |
|
|
return(1);
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
//OK at this point, we cannot make a simple determination
|
954 |
|
|
//as to the relative ordering. The signs of arg1 and
|
955 |
|
|
//arg2 are both the same, either both positive or both
|
956 |
|
|
//negative. We have to do a multiplication to sort
|
957 |
|
|
//it out.
|
958 |
|
|
//
|
959 |
|
|
//Allocate the two integers to hold multiplication
|
960 |
|
|
//results.
|
961 |
|
|
GMP_INTS_mpz_init(&prod1);
|
962 |
|
|
GMP_INTS_mpz_init(&prod2);
|
963 |
|
|
|
964 |
|
|
//Cross-multiply to get relative magnitudes.
|
965 |
|
|
GMP_INTS_mpz_mul(&prod1, &(arg1->num), &(arg2->den));
|
966 |
|
|
GMP_INTS_mpz_mul(&prod2, &(arg1->den), &(arg2->num));
|
967 |
|
|
|
968 |
|
|
//Take absolute values.
|
969 |
|
|
GMP_INTS_mpz_abs(&prod1);
|
970 |
|
|
GMP_INTS_mpz_abs(&prod2);
|
971 |
|
|
|
972 |
|
|
//If we overflowed either multiplication and generated
|
973 |
|
|
//a NAN, we cannot complete the compare.
|
974 |
|
|
if (GMP_INTS_mpz_get_flags(&prod1) || GMP_INTS_mpz_get_flags(&prod2))
|
975 |
|
|
{
|
976 |
|
|
failure_rv = 1;
|
977 |
|
|
rv = 0;
|
978 |
|
|
}
|
979 |
|
|
//If both rational numbers were effectively positive, we can
|
980 |
|
|
//use the relative ordering of the products as the relative
|
981 |
|
|
//ordering of the rational numbers.
|
982 |
|
|
else if (arg1_sgn == 1)
|
983 |
|
|
{
|
984 |
|
|
//Compare the integers.
|
985 |
|
|
rv = GMP_INTS_mpz_cmp(&prod1, &prod2);
|
986 |
|
|
|
987 |
|
|
//Clamp the return value.
|
988 |
|
|
if (rv < 0)
|
989 |
|
|
rv = -1;
|
990 |
|
|
else if (rv == 0)
|
991 |
|
|
rv = 0;
|
992 |
|
|
else if (rv > 0)
|
993 |
|
|
rv = 1;
|
994 |
|
|
|
995 |
|
|
//There was no error.
|
996 |
|
|
failure_rv = 0;
|
997 |
|
|
}
|
998 |
|
|
else
|
999 |
|
|
{
|
1000 |
|
|
//The only case that *should* allow us to be here is
|
1001 |
|
|
//if the sign of both numbers is neg.
|
1002 |
|
|
assert(arg1_sgn == -1);
|
1003 |
|
|
|
1004 |
|
|
//Compare the integers.
|
1005 |
|
|
rv = GMP_INTS_mpz_cmp(&prod1, &prod2);
|
1006 |
|
|
|
1007 |
|
|
//Invert and clamp the return value.
|
1008 |
|
|
if (rv < 0)
|
1009 |
|
|
rv = 1;
|
1010 |
|
|
else if (rv == 0)
|
1011 |
|
|
rv = 0;
|
1012 |
|
|
else if (rv > 0)
|
1013 |
|
|
rv = -1;
|
1014 |
|
|
|
1015 |
|
|
//There was no error.
|
1016 |
|
|
failure_rv = 0;
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
//Deallocate the two integers.
|
1020 |
|
|
GMP_INTS_mpz_clear(&prod1);
|
1021 |
|
|
GMP_INTS_mpz_clear(&prod2);
|
1022 |
|
|
|
1023 |
|
|
//Return the return values.
|
1024 |
|
|
if (failure != NULL)
|
1025 |
|
|
*failure = failure_rv;
|
1026 |
|
|
return(rv);
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
|
1030 |
|
|
/******************************************************************/
|
1031 |
|
|
/*** VERSION CONTROL REPORTING FUNCTIONS ************************/
|
1032 |
|
|
/******************************************************************/
|
1033 |
|
|
//08/07/01: Visual inspection OK.
|
1034 |
|
|
const char *GMP_RATS_cvcinfo(void)
|
1035 |
|
|
{
|
1036 |
dashley |
56 |
return("$Header$");
|
1037 |
dashley |
25 |
}
|
1038 |
|
|
|
1039 |
|
|
|
1040 |
|
|
//08/07/01: Visual inspection OK.
|
1041 |
|
|
const char *GMP_RATS_hvcinfo(void)
|
1042 |
|
|
{
|
1043 |
|
|
return(GMP_RATS_H_VERSION);
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
dashley |
56 |
//End of gmp_rats.c.
|