/[dtapublic]/projs/trunk/shared_source/c_tcl_base_7_5_w_mods/regcomp.c
ViewVC logotype

Contents of /projs/trunk/shared_source/c_tcl_base_7_5_w_mods/regcomp.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 71 - (show annotations) (download)
Sat Nov 5 11:07:06 2016 UTC (8 years, 1 month ago) by dashley
File MIME type: text/plain
File size: 59531 byte(s)
Set EOL properties appropriately to facilitate simultaneous Linux and Windows development.
1 /* $Header$ */
2 /*
3 * re_*comp and friends - compile REs
4 * This file #includes several others (see the bottom).
5 *
6 * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
7 *
8 * Development of this software was funded, in part, by Cray Research Inc.,
9 * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
10 * Corporation, none of whom are responsible for the results. The author
11 * thanks all of them.
12 *
13 * Redistribution and use in source and binary forms -- with or without
14 * modification -- are permitted for any purpose, provided that
15 * redistributions in source form retain this entire copyright notice and
16 * indicate the origin and nature of any modifications.
17 *
18 * I'd appreciate being given credit for this package in the documentation
19 * of software which uses it, but that is not a requirement.
20 *
21 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
23 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
24 * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
27 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
30 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 */
33
34 #include "regguts.h"
35
36 /*
37 * forward declarations, up here so forward datatypes etc. are defined early
38 */
39 /* =====^!^===== begin forwards =====^!^===== */
40 /* automatically gathered by fwd; do not hand-edit */
41 /* === regcomp.c === */
42 int compile _ANSI_ARGS_((regex_t *, CONST chr *, size_t, int));
43 static VOID moresubs _ANSI_ARGS_((struct vars *, int));
44 static int freev _ANSI_ARGS_((struct vars *, int));
45 static VOID makesearch _ANSI_ARGS_((struct vars *, struct nfa *));
46 static struct subre *parse _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
47 static struct subre *parsebranch _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, int));
48 static VOID parseqatom _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, struct subre *));
49 static VOID nonword _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
50 static VOID word _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
51 static int scannum _ANSI_ARGS_((struct vars *));
52 static VOID repeat _ANSI_ARGS_((struct vars *, struct state *, struct state *, int, int));
53 static VOID bracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
54 static VOID cbracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
55 static VOID brackpart _ANSI_ARGS_((struct vars *, struct state *, struct state *));
56 static chr *scanplain _ANSI_ARGS_((struct vars *));
57 static VOID leaders _ANSI_ARGS_((struct vars *, struct cvec *));
58 static VOID onechr _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
59 static VOID dovec _ANSI_ARGS_((struct vars *, struct cvec *, struct state *, struct state *));
60 static celt nextleader _ANSI_ARGS_((struct vars *, pchr, pchr));
61 static VOID wordchrs _ANSI_ARGS_((struct vars *));
62 static struct subre *subre _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
63 static VOID freesubre _ANSI_ARGS_((struct vars *, struct subre *));
64 static VOID freesrnode _ANSI_ARGS_((struct vars *, struct subre *));
65 static VOID optst _ANSI_ARGS_((struct vars *, struct subre *));
66 static int numst _ANSI_ARGS_((struct subre *, int));
67 static VOID markst _ANSI_ARGS_((struct subre *));
68 static VOID cleanst _ANSI_ARGS_((struct vars *));
69 static long nfatree _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
70 static long nfanode _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
71 static int newlacon _ANSI_ARGS_((struct vars *, struct state *, struct state *, int));
72 static VOID freelacons _ANSI_ARGS_((struct subre *, int));
73 static VOID rfree _ANSI_ARGS_((regex_t *));
74 static VOID dump _ANSI_ARGS_((regex_t *, FILE *));
75 static VOID dumpst _ANSI_ARGS_((struct subre *, FILE *, int));
76 static VOID stdump _ANSI_ARGS_((struct subre *, FILE *, int));
77 static char *stid _ANSI_ARGS_((struct subre *, char *, size_t));
78 /* === regc_lex.c === */
79 static VOID lexstart _ANSI_ARGS_((struct vars *));
80 static VOID prefixes _ANSI_ARGS_((struct vars *));
81 static VOID lexnest _ANSI_ARGS_((struct vars *, chr *, chr *));
82 static VOID lexword _ANSI_ARGS_((struct vars *));
83 static int next _ANSI_ARGS_((struct vars *));
84 static int lexescape _ANSI_ARGS_((struct vars *));
85 static chr lexdigits _ANSI_ARGS_((struct vars *, int, int, int));
86 static int brenext _ANSI_ARGS_((struct vars *, pchr));
87 static VOID skip _ANSI_ARGS_((struct vars *));
88 static chr newline _ANSI_ARGS_((NOPARMS));
89 #ifdef REG_DEBUG
90 static chr *ch _ANSI_ARGS_((NOPARMS));
91 #endif
92 static chr chrnamed _ANSI_ARGS_((struct vars *, chr *, chr *, pchr));
93 /* === regc_color.c === */
94 static VOID initcm _ANSI_ARGS_((struct vars *, struct colormap *));
95 static VOID freecm _ANSI_ARGS_((struct colormap *));
96 static VOID cmtreefree _ANSI_ARGS_((struct colormap *, union tree *, int));
97 static color setcolor _ANSI_ARGS_((struct colormap *, pchr, pcolor));
98 static color maxcolor _ANSI_ARGS_((struct colormap *));
99 static color newcolor _ANSI_ARGS_((struct colormap *));
100 static VOID freecolor _ANSI_ARGS_((struct colormap *, pcolor));
101 static color pseudocolor _ANSI_ARGS_((struct colormap *));
102 static color subcolor _ANSI_ARGS_((struct colormap *, pchr c));
103 static color newsub _ANSI_ARGS_((struct colormap *, pcolor));
104 static VOID subrange _ANSI_ARGS_((struct vars *, pchr, pchr, struct state *, struct state *));
105 static VOID subblock _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
106 static VOID okcolors _ANSI_ARGS_((struct nfa *, struct colormap *));
107 static VOID colorchain _ANSI_ARGS_((struct colormap *, struct arc *));
108 static VOID uncolorchain _ANSI_ARGS_((struct colormap *, struct arc *));
109 static int singleton _ANSI_ARGS_((struct colormap *, pchr c));
110 static VOID rainbow _ANSI_ARGS_((struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *));
111 static VOID colorcomplement _ANSI_ARGS_((struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *));
112 #ifdef REG_DEBUG
113 static VOID dumpcolors _ANSI_ARGS_((struct colormap *, FILE *));
114 static VOID fillcheck _ANSI_ARGS_((struct colormap *, union tree *, int, FILE *));
115 static VOID dumpchr _ANSI_ARGS_((pchr, FILE *));
116 #endif
117 /* === regc_nfa.c === */
118 static struct nfa *newnfa _ANSI_ARGS_((struct vars *, struct colormap *, struct nfa *));
119 static VOID freenfa _ANSI_ARGS_((struct nfa *));
120 static struct state *newstate _ANSI_ARGS_((struct nfa *));
121 static struct state *newfstate _ANSI_ARGS_((struct nfa *, int flag));
122 static VOID dropstate _ANSI_ARGS_((struct nfa *, struct state *));
123 static VOID freestate _ANSI_ARGS_((struct nfa *, struct state *));
124 static VOID destroystate _ANSI_ARGS_((struct nfa *, struct state *));
125 static VOID newarc _ANSI_ARGS_((struct nfa *, int, pcolor, struct state *, struct state *));
126 static struct arc *allocarc _ANSI_ARGS_((struct nfa *, struct state *));
127 static VOID freearc _ANSI_ARGS_((struct nfa *, struct arc *));
128 static struct arc *findarc _ANSI_ARGS_((struct state *, int, pcolor));
129 static VOID cparc _ANSI_ARGS_((struct nfa *, struct arc *, struct state *, struct state *));
130 static VOID moveins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
131 static VOID copyins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
132 static VOID moveouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
133 static VOID copyouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
134 static VOID cloneouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, int));
135 static VOID delsub _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
136 static VOID deltraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
137 static VOID dupnfa _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, struct state *));
138 static VOID duptraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
139 static VOID cleartraverse _ANSI_ARGS_((struct nfa *, struct state *));
140 static VOID specialcolors _ANSI_ARGS_((struct nfa *));
141 static long optimize _ANSI_ARGS_((struct nfa *, FILE *));
142 static VOID pullback _ANSI_ARGS_((struct nfa *, FILE *));
143 static int pull _ANSI_ARGS_((struct nfa *, struct arc *));
144 static VOID pushfwd _ANSI_ARGS_((struct nfa *, FILE *));
145 static int push _ANSI_ARGS_((struct nfa *, struct arc *));
146 #define INCOMPATIBLE 1 /* destroys arc */
147 #define SATISFIED 2 /* constraint satisfied */
148 #define COMPATIBLE 3 /* compatible but not satisfied yet */
149 static int combine _ANSI_ARGS_((struct arc *, struct arc *));
150 static VOID fixempties _ANSI_ARGS_((struct nfa *, FILE *));
151 static int unempty _ANSI_ARGS_((struct nfa *, struct arc *));
152 static VOID cleanup _ANSI_ARGS_((struct nfa *));
153 static VOID markreachable _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
154 static VOID markcanreach _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
155 static long analyze _ANSI_ARGS_((struct nfa *));
156 static VOID compact _ANSI_ARGS_((struct nfa *, struct cnfa *));
157 static VOID carcsort _ANSI_ARGS_((struct carc *, struct carc *));
158 static VOID freecnfa _ANSI_ARGS_((struct cnfa *));
159 static VOID dumpnfa _ANSI_ARGS_((struct nfa *, FILE *));
160 #ifdef REG_DEBUG
161 static VOID dumpstate _ANSI_ARGS_((struct state *, FILE *));
162 static VOID dumparcs _ANSI_ARGS_((struct state *, FILE *));
163 static int dumprarcs _ANSI_ARGS_((struct arc *, struct state *, FILE *, int));
164 static VOID dumparc _ANSI_ARGS_((struct arc *, struct state *, FILE *));
165 #endif
166 static VOID dumpcnfa _ANSI_ARGS_((struct cnfa *, FILE *));
167 #ifdef REG_DEBUG
168 static VOID dumpcstate _ANSI_ARGS_((int, struct carc *, struct cnfa *, FILE *));
169 #endif
170 /* === regc_cvec.c === */
171 static struct cvec *newcvec _ANSI_ARGS_((int, int, int));
172 static struct cvec *clearcvec _ANSI_ARGS_((struct cvec *));
173 static VOID addchr _ANSI_ARGS_((struct cvec *, pchr));
174 static VOID addrange _ANSI_ARGS_((struct cvec *, pchr, pchr));
175 static VOID addmcce _ANSI_ARGS_((struct cvec *, chr *, chr *));
176 static int haschr _ANSI_ARGS_((struct cvec *, pchr));
177 static struct cvec *getcvec _ANSI_ARGS_((struct vars *, int, int, int));
178 static VOID freecvec _ANSI_ARGS_((struct cvec *));
179 /* === regc_locale.c === */
180 static int nmcces _ANSI_ARGS_((struct vars *));
181 static int nleaders _ANSI_ARGS_((struct vars *));
182 static struct cvec *allmcces _ANSI_ARGS_((struct vars *, struct cvec *));
183 static celt element _ANSI_ARGS_((struct vars *, chr *, chr *));
184 static struct cvec *range _ANSI_ARGS_((struct vars *, celt, celt, int));
185 static int before _ANSI_ARGS_((celt, celt));
186 static struct cvec *eclass _ANSI_ARGS_((struct vars *, celt, int));
187 static struct cvec *cclass _ANSI_ARGS_((struct vars *, chr *, chr *, int));
188 static struct cvec *allcases _ANSI_ARGS_((struct vars *, pchr));
189 static int cmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
190 static int casecmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
191 /* automatically gathered by fwd; do not hand-edit */
192 /* =====^!^===== end forwards =====^!^===== */
193
194
195
196 /* internal variables, bundled for easy passing around */
197 struct vars {
198 regex_t *re;
199 chr *now; /* scan pointer into string */
200 chr *stop; /* end of string */
201 chr *savenow; /* saved now and stop for "subroutine call" */
202 chr *savestop;
203 int err; /* error code (0 if none) */
204 int cflags; /* copy of compile flags */
205 int lasttype; /* type of previous token */
206 int nexttype; /* type of next token */
207 chr nextvalue; /* value (if any) of next token */
208 int lexcon; /* lexical context type (see lex.c) */
209 int nsubexp; /* subexpression count */
210 struct subre **subs; /* subRE pointer vector */
211 size_t nsubs; /* length of vector */
212 struct subre *sub10[10]; /* initial vector, enough for most */
213 struct nfa *nfa; /* the NFA */
214 struct colormap *cm; /* character color map */
215 color nlcolor; /* color of newline */
216 struct state *wordchrs; /* state in nfa holding word-char outarcs */
217 struct subre *tree; /* subexpression tree */
218 struct subre *treechain; /* all tree nodes allocated */
219 struct subre *treefree; /* any free tree nodes */
220 int ntree; /* number of tree nodes */
221 struct cvec *cv; /* interface cvec */
222 struct cvec *cv2; /* utility cvec */
223 struct cvec *mcces; /* collating-element information */
224 # define ISCELEADER(v,c) (v->mcces != NULL && haschr(v->mcces, (c)))
225 struct state *mccepbegin; /* in nfa, start of MCCE prototypes */
226 struct state *mccepend; /* in nfa, end of MCCE prototypes */
227 struct subre *lacons; /* lookahead-constraint vector */
228 int nlacons; /* size of lacons */
229 };
230
231 /* parsing macros; most know that `v' is the struct vars pointer */
232 #define NEXT() (next(v)) /* advance by one token */
233 #define SEE(t) (v->nexttype == (t)) /* is next token this? */
234 #define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */
235 #define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */
236 #define ISERR() VISERR(v)
237 #define VERR(vv,e) ((vv)->nexttype = EOS, ((vv)->err) ? (vv)->err :\
238 ((vv)->err = (e)))
239 #define ERR(e) VERR(v, e) /* record an error */
240 #define NOERR() {if (ISERR()) return;} /* if error seen, return */
241 #define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */
242 #define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */
243 #define INSIST(c, e) ((c) ? 0 : ERR(e)) /* if condition false, error */
244 #define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */
245 #define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y)
246
247 /* token type codes, some also used as NFA arc types */
248 #define EMPTY 'n' /* no token present */
249 #define EOS 'e' /* end of string */
250 #define PLAIN 'p' /* ordinary character */
251 #define DIGIT 'd' /* digit (in bound) */
252 #define BACKREF 'b' /* back reference */
253 #define COLLEL 'I' /* start of [. */
254 #define ECLASS 'E' /* start of [= */
255 #define CCLASS 'C' /* start of [: */
256 #define END 'X' /* end of [. [= [: */
257 #define RANGE 'R' /* - within [] which might be range delim. */
258 #define LACON 'L' /* lookahead constraint subRE */
259 #define AHEAD 'a' /* color-lookahead arc */
260 #define BEHIND 'r' /* color-lookbehind arc */
261 #define WBDRY 'w' /* word boundary constraint */
262 #define NWBDRY 'W' /* non-word-boundary constraint */
263 #define SBEGIN 'A' /* beginning of string (even if not BOL) */
264 #define SEND 'Z' /* end of string (even if not EOL) */
265 #define PREFER 'P' /* length preference */
266
267 /* is an arc colored, and hence on a color chain? */
268 #define COLORED(a) ((a)->type == PLAIN || (a)->type == AHEAD || \
269 (a)->type == BEHIND)
270
271
272
273 /* static function list */
274 static struct fns functions = {
275 rfree, /* regfree insides */
276 };
277
278
279
280 /*
281 - compile - compile regular expression
282 ^ int compile(regex_t *, CONST chr *, size_t, int);
283 */
284 int
285 compile(re, string, len, flags)
286 regex_t *re;
287 CONST chr *string;
288 size_t len;
289 int flags;
290 {
291 struct vars var;
292 struct vars *v = &var;
293 struct guts *g;
294 int i;
295 size_t j;
296 FILE *debug = (flags&REG_PROGRESS) ? stdout : (FILE *)NULL;
297 # define CNOERR() { if (ISERR()) return freev(v, v->err); }
298
299 /* sanity checks */
300
301 if (re == NULL || string == NULL)
302 return REG_INVARG;
303 if ((flags&REG_QUOTE) &&
304 (flags&(REG_ADVANCED|REG_EXPANDED|REG_NEWLINE)))
305 return REG_INVARG;
306 if (!(flags&REG_EXTENDED) && (flags&REG_ADVF))
307 return REG_INVARG;
308
309 /* initial setup (after which freev() is callable) */
310 v->re = re;
311 v->now = (chr *)string;
312 v->stop = v->now + len;
313 v->savenow = v->savestop = NULL;
314 v->err = 0;
315 v->cflags = flags;
316 v->nsubexp = 0;
317 v->subs = v->sub10;
318 v->nsubs = 10;
319 for (j = 0; j < v->nsubs; j++)
320 v->subs[j] = NULL;
321 v->nfa = NULL;
322 v->cm = NULL;
323 v->nlcolor = COLORLESS;
324 v->wordchrs = NULL;
325 v->tree = NULL;
326 v->treechain = NULL;
327 v->treefree = NULL;
328 v->cv = NULL;
329 v->cv2 = NULL;
330 v->mcces = NULL;
331 v->lacons = NULL;
332 v->nlacons = 0;
333 re->re_magic = REMAGIC;
334 re->re_info = 0; /* bits get set during parse */
335 re->re_csize = sizeof(chr);
336 re->re_guts = NULL;
337 re->re_fns = VS(&functions);
338
339 /* more complex setup, malloced things */
340 re->re_guts = VS(MALLOC(sizeof(struct guts)));
341 if (re->re_guts == NULL)
342 return freev(v, REG_ESPACE);
343 g = (struct guts *)re->re_guts;
344 g->tree = NULL;
345 initcm(v, &g->cmap);
346 v->cm = &g->cmap;
347 g->lacons = NULL;
348 g->nlacons = 0;
349 ZAPCNFA(g->search);
350 v->nfa = newnfa(v, v->cm, (struct nfa *)NULL);
351 CNOERR();
352 v->cv = newcvec(100, 20, 10);
353 if (v->cv == NULL)
354 return freev(v, REG_ESPACE);
355 i = nmcces(v);
356 if (i > 0) {
357 v->mcces = newcvec(nleaders(v), 0, i);
358 CNOERR();
359 v->mcces = allmcces(v, v->mcces);
360 leaders(v, v->mcces);
361 addmcce(v->mcces, (chr *)NULL, (chr *)NULL); /* dummy */
362 }
363 CNOERR();
364
365 /* parsing */
366 lexstart(v); /* also handles prefixes */
367 if ((v->cflags&REG_NLSTOP) || (v->cflags&REG_NLANCH)) {
368 /* assign newline a unique color */
369 v->nlcolor = subcolor(v->cm, newline());
370 okcolors(v->nfa, v->cm);
371 }
372 CNOERR();
373 v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final);
374 assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */
375 CNOERR();
376 assert(v->tree != NULL);
377
378 /* finish setup of nfa and its subre tree */
379 specialcolors(v->nfa);
380 CNOERR();
381 if (debug != NULL) {
382 fprintf(debug, "\n\n\n========= RAW ==========\n");
383 dumpnfa(v->nfa, debug);
384 dumpst(v->tree, debug, 1);
385 }
386 optst(v, v->tree);
387 v->ntree = numst(v->tree, 1);
388 markst(v->tree);
389 cleanst(v);
390 if (debug != NULL) {
391 fprintf(debug, "\n\n\n========= TREE FIXED ==========\n");
392 dumpst(v->tree, debug, 1);
393 }
394
395 /* build compacted NFAs for tree and lacons */
396 re->re_info |= nfatree(v, v->tree, debug);
397 CNOERR();
398 assert(v->nlacons == 0 || v->lacons != NULL);
399 for (i = 1; i < v->nlacons; i++) {
400 if (debug != NULL)
401 fprintf(debug, "\n\n\n========= LA%d ==========\n", i);
402 nfanode(v, &v->lacons[i], debug);
403 }
404 CNOERR();
405 if (v->tree->flags&SHORTER)
406 NOTE(REG_USHORTEST);
407
408 /* build compacted NFAs for tree, lacons, fast search */
409 if (debug != NULL)
410 fprintf(debug, "\n\n\n========= SEARCH ==========\n");
411 /* can sacrifice main NFA now, so use it as work area */
412 (DISCARD)optimize(v->nfa, debug);
413 CNOERR();
414 makesearch(v, v->nfa);
415 CNOERR();
416 compact(v->nfa, &g->search);
417 CNOERR();
418
419 /* looks okay, package it up */
420 re->re_nsub = v->nsubexp;
421 v->re = NULL; /* freev no longer frees re */
422 g->magic = GUTSMAGIC;
423 g->cflags = v->cflags;
424 g->info = re->re_info;
425 g->nsub = re->re_nsub;
426 g->tree = v->tree;
427 v->tree = NULL;
428 g->ntree = v->ntree;
429 g->compare = (v->cflags&REG_ICASE) ? casecmp : cmp;
430 g->lacons = v->lacons;
431 v->lacons = NULL;
432 g->nlacons = v->nlacons;
433
434 if (flags&REG_DUMP)
435 dump(re, stdout);
436
437 assert(v->err == 0);
438 return freev(v, 0);
439 }
440
441 /*
442 - moresubs - enlarge subRE vector
443 ^ static VOID moresubs(struct vars *, int);
444 */
445 static VOID
446 moresubs(v, wanted)
447 struct vars *v;
448 int wanted; /* want enough room for this one */
449 {
450 struct subre **p;
451 size_t n;
452
453 assert(wanted > 0 && (size_t)wanted >= v->nsubs);
454 n = (size_t)wanted * 3 / 2 + 1;
455 if (v->subs == v->sub10) {
456 p = (struct subre **)MALLOC(n * sizeof(struct subre *));
457 if (p != NULL)
458 memcpy(VS(p), VS(v->subs),
459 v->nsubs * sizeof(struct subre *));
460 } else
461 p = (struct subre **)REALLOC(v->subs, n*sizeof(struct subre *));
462 if (p == NULL) {
463 ERR(REG_ESPACE);
464 return;
465 }
466 v->subs = p;
467 for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++)
468 *p = NULL;
469 assert(v->nsubs == n);
470 assert((size_t)wanted < v->nsubs);
471 }
472
473 /*
474 - freev - free vars struct's substructures where necessary
475 * Optionally does error-number setting, and always returns error code
476 * (if any), to make error-handling code terser.
477 ^ static int freev(struct vars *, int);
478 */
479 static int
480 freev(v, err)
481 struct vars *v;
482 int err;
483 {
484 if (v->re != NULL)
485 rfree(v->re);
486 if (v->subs != v->sub10)
487 FREE(v->subs);
488 if (v->nfa != NULL)
489 freenfa(v->nfa);
490 if (v->tree != NULL)
491 freesubre(v, v->tree);
492 if (v->treechain != NULL)
493 cleanst(v);
494 if (v->cv != NULL)
495 freecvec(v->cv);
496 if (v->cv2 != NULL)
497 freecvec(v->cv2);
498 if (v->mcces != NULL)
499 freecvec(v->mcces);
500 if (v->lacons != NULL)
501 freelacons(v->lacons, v->nlacons);
502 ERR(err); /* nop if err==0 */
503
504 return v->err;
505 }
506
507 /*
508 - makesearch - turn an NFA into a search NFA (implicit prepend of .*?)
509 * NFA must have been optimize()d already.
510 ^ static VOID makesearch(struct vars *, struct nfa *);
511 */
512 static VOID
513 makesearch(v, nfa)
514 struct vars *v;
515 struct nfa *nfa;
516 {
517 struct arc *a;
518 struct arc *b;
519 struct state *pre = nfa->pre;
520 struct state *s;
521 struct state *s2;
522 struct state *slist;
523
524 /* no loops are needed if it's anchored */
525 for (a = pre->outs; a != NULL; a = a->outchain) {
526 assert(a->type == PLAIN);
527 if (a->co != nfa->bos[0] && a->co != nfa->bos[1])
528 break;
529 }
530 if (a != NULL) {
531 /* add implicit .* in front */
532 rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre);
533
534 /* and ^* and \A* too -- not always necessary, but harmless */
535 newarc(nfa, PLAIN, nfa->bos[0], pre, pre);
536 newarc(nfa, PLAIN, nfa->bos[1], pre, pre);
537 }
538
539 /*
540 * Now here's the subtle part. Because many REs have no lookback
541 * constraints, often knowing when you were in the pre state tells
542 * you little; it's the next state(s) that are informative. But
543 * some of them may have other inarcs, i.e. it may be possible to
544 * make actual progress and then return to one of them. We must
545 * de-optimize such cases, splitting each such state into progress
546 * and no-progress states.
547 */
548
549 /* first, make a list of the states */
550 slist = NULL;
551 for (a = pre->outs; a != NULL; a = a->outchain) {
552 s = a->to;
553 for (b = s->ins; b != NULL; b = b->inchain)
554 if (b->from != pre)
555 break;
556 if (b != NULL) { /* must be split */
557 s->tmp = slist;
558 slist = s;
559 }
560 }
561
562 /* do the splits */
563 for (s = slist; s != NULL; s = s2) {
564 s2 = newstate(nfa);
565 copyouts(nfa, s, s2);
566 for (a = s->ins; a != NULL; a = b) {
567 b = a->inchain;
568 if (a->from != pre) {
569 cparc(nfa, a, a->from, s2);
570 freearc(nfa, a);
571 }
572 }
573 s2 = s->tmp;
574 s->tmp = NULL; /* clean up while we're at it */
575 }
576 }
577
578 /*
579 - parse - parse an RE
580 * This is actually just the top level, which parses a bunch of branches
581 * tied together with '|'. They appear in the tree as the left children
582 * of a chain of '|' subres.
583 ^ static struct subre *parse(struct vars *, int, int, struct state *,
584 ^ struct state *);
585 */
586 static struct subre *
587 parse(v, stopper, type, init, final)
588 struct vars *v;
589 int stopper; /* EOS or ')' */
590 int type; /* LACON (lookahead subRE) or PLAIN */
591 struct state *init; /* initial state */
592 struct state *final; /* final state */
593 {
594 struct state *left; /* scaffolding for branch */
595 struct state *right;
596 struct subre *branches; /* top level */
597 struct subre *branch; /* current branch */
598 struct subre *t; /* temporary */
599 int firstbranch; /* is this the first branch? */
600
601 assert(stopper == ')' || stopper == EOS);
602
603 branches = subre(v, '|', LONGER, init, final);
604 NOERRN();
605 branch = branches;
606 firstbranch = 1;
607 do { /* a branch */
608 if (!firstbranch) {
609 /* need a place to hang it */
610 branch->right = subre(v, '|', LONGER, init, final);
611 NOERRN();
612 branch = branch->right;
613 }
614 firstbranch = 0;
615 left = newstate(v->nfa);
616 right = newstate(v->nfa);
617 NOERRN();
618 EMPTYARC(init, left);
619 EMPTYARC(right, final);
620 NOERRN();
621 branch->left = parsebranch(v, stopper, type, left, right, 0);
622 NOERRN();
623 branch->flags |= UP(branch->flags | branch->left->flags);
624 if ((branch->flags &~ branches->flags) != 0) /* new flags */
625 for (t = branches; t != branch; t = t->right)
626 t->flags |= branch->flags;
627 } while (EAT('|'));
628 assert(SEE(stopper) || SEE(EOS));
629
630 if (!SEE(stopper)) {
631 assert(stopper == ')' && SEE(EOS));
632 ERR(REG_EPAREN);
633 }
634
635 /* optimize out simple cases */
636 if (branch == branches) { /* only one branch */
637 assert(branch->right == NULL);
638 t = branch->left;
639 branch->left = NULL;
640 freesubre(v, branches);
641 branches = t;
642 } else if (!MESSY(branches->flags)) { /* no interesting innards */
643 freesubre(v, branches->left);
644 branches->left = NULL;
645 freesubre(v, branches->right);
646 branches->right = NULL;
647 branches->op = '=';
648 }
649
650 return branches;
651 }
652
653 /*
654 - parsebranch - parse one branch of an RE
655 * This mostly manages concatenation, working closely with parseqatom().
656 * Concatenated things are bundled up as much as possible, with separate
657 * ',' nodes introduced only when necessary due to substructure.
658 ^ static struct subre *parsebranch(struct vars *, int, int, struct state *,
659 ^ struct state *, int);
660 */
661 static struct subre *
662 parsebranch(v, stopper, type, left, right, partial)
663 struct vars *v;
664 int stopper; /* EOS or ')' */
665 int type; /* LACON (lookahead subRE) or PLAIN */
666 struct state *left; /* leftmost state */
667 struct state *right; /* rightmost state */
668 int partial; /* is this only part of a branch? */
669 {
670 struct state *lp; /* left end of current construct */
671 int seencontent; /* is there anything in this branch yet? */
672 struct subre *t;
673
674 lp = left;
675 seencontent = 0;
676 t = subre(v, '=', 0, left, right); /* op '=' is tentative */
677 NOERRN();
678 while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) {
679 if (seencontent) { /* implicit concat operator */
680 lp = newstate(v->nfa);
681 NOERRN();
682 moveins(v->nfa, right, lp);
683 }
684 seencontent = 1;
685
686 /* NB, recursion in parseqatom() may swallow rest of branch */
687 parseqatom(v, stopper, type, lp, right, t);
688 }
689
690 if (!seencontent) { /* empty branch */
691 if (!partial)
692 NOTE(REG_UUNSPEC);
693 assert(lp == left);
694 EMPTYARC(left, right);
695 }
696
697 return t;
698 }
699
700 /*
701 - parseqatom - parse one quantified atom or constraint of an RE
702 * The bookkeeping near the end cooperates very closely with parsebranch();
703 * in particular, it contains a recursion that can involve parsing the rest
704 * of the branch, making this function's name somewhat inaccurate.
705 ^ static VOID parseqatom(struct vars *, int, int, struct state *,
706 ^ struct state *, struct subre *);
707 */
708 static VOID
709 parseqatom(v, stopper, type, lp, rp, top)
710 struct vars *v;
711 int stopper; /* EOS or ')' */
712 int type; /* LACON (lookahead subRE) or PLAIN */
713 struct state *lp; /* left state to hang it on */
714 struct state *rp; /* right state to hang it on */
715 struct subre *top; /* subtree top */
716 {
717 struct state *s; /* temporaries for new states */
718 struct state *s2;
719 # define ARCV(t, val) newarc(v->nfa, t, val, lp, rp)
720 int m, n;
721 struct subre *atom; /* atom's subtree */
722 struct subre *t;
723 int cap; /* capturing parens? */
724 int pos; /* positive lookahead? */
725 int subno; /* capturing-parens or backref number */
726 int atomtype;
727 int qprefer; /* quantifier short/long preference */
728 int f;
729 struct subre **atomp; /* where the pointer to atom is */
730
731 /* initial bookkeeping */
732 atom = NULL;
733 assert(lp->nouts == 0); /* must string new code */
734 assert(rp->nins == 0); /* between lp and rp */
735 subno = 0; /* just to shut lint up */
736
737 /* an atom or constraint... */
738 atomtype = v->nexttype;
739 switch (atomtype) {
740 /* first, constraints, which end by returning */
741 case '^':
742 ARCV('^', 1);
743 if (v->cflags&REG_NLANCH)
744 ARCV(BEHIND, v->nlcolor);
745 NEXT();
746 return;
747 break;
748 case '$':
749 ARCV('$', 1);
750 if (v->cflags&REG_NLANCH)
751 ARCV(AHEAD, v->nlcolor);
752 NEXT();
753 return;
754 break;
755 case SBEGIN:
756 ARCV('^', 1); /* BOL */
757 ARCV('^', 0); /* or BOS */
758 NEXT();
759 return;
760 break;
761 case SEND:
762 ARCV('$', 1); /* EOL */
763 ARCV('$', 0); /* or EOS */
764 NEXT();
765 return;
766 break;
767 case '<':
768 wordchrs(v); /* does NEXT() */
769 s = newstate(v->nfa);
770 NOERR();
771 nonword(v, BEHIND, lp, s);
772 word(v, AHEAD, s, rp);
773 return;
774 break;
775 case '>':
776 wordchrs(v); /* does NEXT() */
777 s = newstate(v->nfa);
778 NOERR();
779 word(v, BEHIND, lp, s);
780 nonword(v, AHEAD, s, rp);
781 return;
782 break;
783 case WBDRY:
784 wordchrs(v); /* does NEXT() */
785 s = newstate(v->nfa);
786 NOERR();
787 nonword(v, BEHIND, lp, s);
788 word(v, AHEAD, s, rp);
789 s = newstate(v->nfa);
790 NOERR();
791 word(v, BEHIND, lp, s);
792 nonword(v, AHEAD, s, rp);
793 return;
794 break;
795 case NWBDRY:
796 wordchrs(v); /* does NEXT() */
797 s = newstate(v->nfa);
798 NOERR();
799 word(v, BEHIND, lp, s);
800 word(v, AHEAD, s, rp);
801 s = newstate(v->nfa);
802 NOERR();
803 nonword(v, BEHIND, lp, s);
804 nonword(v, AHEAD, s, rp);
805 return;
806 break;
807 case LACON: /* lookahead constraint */
808 pos = v->nextvalue;
809 NEXT();
810 s = newstate(v->nfa);
811 s2 = newstate(v->nfa);
812 NOERR();
813 t = parse(v, ')', LACON, s, s2);
814 freesubre(v, t); /* internal structure irrelevant */
815 assert(SEE(')') || ISERR());
816 NEXT();
817 n = newlacon(v, s, s2, pos);
818 NOERR();
819 ARCV(LACON, n);
820 return;
821 break;
822 /* then errors, to get them out of the way */
823 case '*':
824 case '+':
825 case '?':
826 case '{':
827 ERR(REG_BADRPT);
828 return;
829 break;
830 default:
831 ERR(REG_ASSERT);
832 return;
833 break;
834 /* then plain characters, and minor variants on that theme */
835 case ')': /* unbalanced paren */
836 if ((v->cflags&REG_ADVANCED) != REG_EXTENDED) {
837 ERR(REG_EPAREN);
838 return;
839 }
840 /* legal in EREs due to specification botch */
841 NOTE(REG_UPBOTCH);
842 /* fallthrough into case PLAIN */
843 case PLAIN:
844 onechr(v, v->nextvalue, lp, rp);
845 okcolors(v->nfa, v->cm);
846 NOERR();
847 NEXT();
848 break;
849 case '[':
850 if (v->nextvalue == 1)
851 bracket(v, lp, rp);
852 else
853 cbracket(v, lp, rp);
854 assert(SEE(']') || ISERR());
855 NEXT();
856 break;
857 case '.':
858 rainbow(v->nfa, v->cm, PLAIN,
859 (v->cflags&REG_NLSTOP) ? v->nlcolor : COLORLESS,
860 lp, rp);
861 NEXT();
862 break;
863 /* and finally the ugly stuff */
864 case '(': /* value flags as capturing or non */
865 cap = (type == LACON) ? 0 : v->nextvalue;
866 if (cap) {
867 v->nsubexp++;
868 subno = v->nsubexp;
869 if ((size_t)subno >= v->nsubs)
870 moresubs(v, subno);
871 assert((size_t)subno < v->nsubs);
872 } else
873 atomtype = PLAIN; /* something that's not '(' */
874 NEXT();
875 /* need new endpoints because tree will contain pointers */
876 s = newstate(v->nfa);
877 s2 = newstate(v->nfa);
878 NOERR();
879 EMPTYARC(lp, s);
880 EMPTYARC(s2, rp);
881 NOERR();
882 atom = parse(v, ')', PLAIN, s, s2);
883 assert(SEE(')') || ISERR());
884 NEXT();
885 NOERR();
886 if (cap) {
887 v->subs[subno] = atom;
888 t = subre(v, '(', atom->flags|CAP, lp, rp);
889 NOERR();
890 t->subno = subno;
891 t->left = atom;
892 atom = t;
893 }
894 /* postpone everything else pending possible {0} */
895 break;
896 case BACKREF: /* the Feature From The Black Lagoon */
897 INSIST(type != LACON, REG_ESUBREG);
898 INSIST(v->nextvalue < v->nsubs, REG_ESUBREG);
899 INSIST(v->subs[v->nextvalue] != NULL, REG_ESUBREG);
900 NOERR();
901 assert(v->nextvalue > 0);
902 atom = subre(v, 'b', BACKR, lp, rp);
903 subno = v->nextvalue;
904 atom->subno = subno;
905 EMPTYARC(lp, rp); /* temporarily, so there's something */
906 NEXT();
907 break;
908 }
909
910 /* ...and an atom may be followed by a quantifier */
911 switch (v->nexttype) {
912 case '*':
913 m = 0;
914 n = INFINITY;
915 qprefer = (v->nextvalue) ? LONGER : SHORTER;
916 NEXT();
917 break;
918 case '+':
919 m = 1;
920 n = INFINITY;
921 qprefer = (v->nextvalue) ? LONGER : SHORTER;
922 NEXT();
923 break;
924 case '?':
925 m = 0;
926 n = 1;
927 qprefer = (v->nextvalue) ? LONGER : SHORTER;
928 NEXT();
929 break;
930 case '{':
931 NEXT();
932 m = scannum(v);
933 if (EAT(',')) {
934 if (SEE(DIGIT))
935 n = scannum(v);
936 else
937 n = INFINITY;
938 if (m > n) {
939 ERR(REG_BADBR);
940 return;
941 }
942 /* {m,n} exercises preference, even if it's {m,m} */
943 qprefer = (v->nextvalue) ? LONGER : SHORTER;
944 } else {
945 n = m;
946 /* {m} passes operand's preference through */
947 qprefer = 0;
948 }
949 if (!SEE('}')) { /* catches errors too */
950 ERR(REG_BADBR);
951 return;
952 }
953 NEXT();
954 break;
955 default: /* no quantifier */
956 m = n = 1;
957 qprefer = 0;
958 break;
959 }
960
961 /* annoying special case: {0} or {0,0} cancels everything */
962 if (m == 0 && n == 0) {
963 if (atom != NULL)
964 freesubre(v, atom);
965 if (atomtype == '(')
966 v->subs[subno] = NULL;
967 delsub(v->nfa, lp, rp);
968 EMPTYARC(lp, rp);
969 return;
970 }
971
972 /* if not a messy case, avoid hard part */
973 assert(!MESSY(top->flags));
974 f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0);
975 if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) {
976 if (!(m == 1 && n == 1))
977 repeat(v, lp, rp, m, n);
978 if (atom != NULL)
979 freesubre(v, atom);
980 top->flags = f;
981 return;
982 }
983
984 /*
985 * hard part: something messy
986 * That is, capturing parens, back reference, short/long clash, or
987 * an atom with substructure containing one of those.
988 */
989
990 /* now we'll need a subre for the contents even if they're boring */
991 if (atom == NULL) {
992 atom = subre(v, '=', 0, lp, rp);
993 NOERR();
994 }
995
996 /*
997 * prepare a general-purpose state skeleton
998 *
999 * ---> [s] ---prefix---> [begin] ---atom---> [end] ----rest---> [rp]
1000 * / /
1001 * [lp] ----> [s2] ----bypass---------------------
1002 *
1003 * where bypass is an empty, and prefix is some repetitions of atom
1004 */
1005 s = newstate(v->nfa); /* first, new endpoints for the atom */
1006 s2 = newstate(v->nfa);
1007 NOERR();
1008 moveouts(v->nfa, lp, s);
1009 moveins(v->nfa, rp, s2);
1010 NOERR();
1011 atom->begin = s;
1012 atom->end = s2;
1013 s = newstate(v->nfa); /* and spots for prefix and bypass */
1014 s2 = newstate(v->nfa);
1015 NOERR();
1016 EMPTYARC(lp, s);
1017 EMPTYARC(lp, s2);
1018 NOERR();
1019
1020 /* break remaining subRE into x{...} and what follows */
1021 t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp);
1022 t->left = atom;
1023 atomp = &t->left;
1024 /* here we should recurse... but we must postpone that to the end */
1025
1026 /* split top into prefix and remaining */
1027 assert(top->op == '=' && top->left == NULL && top->right == NULL);
1028 top->left = subre(v, '=', top->flags, top->begin, lp);
1029 top->op = '.';
1030 top->right = t;
1031
1032 /* if it's a backref, now is the time to replicate the subNFA */
1033 if (atomtype == BACKREF) {
1034 assert(atom->begin->nouts == 1); /* just the EMPTY */
1035 delsub(v->nfa, atom->begin, atom->end);
1036 assert(v->subs[subno] != NULL);
1037 /* and here's why the recursion got postponed: it must */
1038 /* wait until the skeleton is filled in, because it may */
1039 /* hit a backref that wants to copy the filled-in skeleton */
1040 dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end,
1041 atom->begin, atom->end);
1042 NOERR();
1043 }
1044
1045 /* it's quantifier time; first, turn x{0,...} into x{1,...}|empty */
1046 if (m == 0) {
1047 EMPTYARC(s2, atom->end); /* the bypass */
1048 assert(PREF(qprefer) != 0);
1049 f = COMBINE(qprefer, atom->flags);
1050 t = subre(v, '|', f, lp, atom->end);
1051 NOERR();
1052 t->left = atom;
1053 t->right = subre(v, '|', PREF(f), s2, atom->end);
1054 NOERR();
1055 t->right->left = subre(v, '=', 0, s2, atom->end);
1056 NOERR();
1057 *atomp = t;
1058 atomp = &t->left;
1059 m = 1;
1060 }
1061
1062 /* deal with the rest of the quantifier */
1063 if (atomtype == BACKREF) {
1064 /* special case: backrefs have internal quantifiers */
1065 EMPTYARC(s, atom->begin); /* empty prefix */
1066 /* just stuff everything into atom */
1067 repeat(v, atom->begin, atom->end, m, n);
1068 atom->min = (short)m;
1069 atom->max = (short)n;
1070 atom->flags |= COMBINE(qprefer, atom->flags);
1071 } else if (m == 1 && n == 1) {
1072 /* no/vacuous quantifier: done */
1073 EMPTYARC(s, atom->begin); /* empty prefix */
1074 } else {
1075 /* turn x{m,n} into x{m-1,n-1}x, with capturing */
1076 /* parens in only second x */
1077 dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin);
1078 assert(m >= 1 && m != INFINITY && n >= 1);
1079 repeat(v, s, atom->begin, m-1, (n == INFINITY) ? n : n-1);
1080 f = COMBINE(qprefer, atom->flags);
1081 t = subre(v, '.', f, s, atom->end); /* prefix and atom */
1082 NOERR();
1083 t->left = subre(v, '=', PREF(f), s, atom->begin);
1084 NOERR();
1085 t->right = atom;
1086 *atomp = t;
1087 }
1088
1089 /* and finally, look after that postponed recursion */
1090 t = top->right;
1091 if (!(SEE('|') || SEE(stopper) || SEE(EOS)))
1092 t->right = parsebranch(v, stopper, type, atom->end, rp, 1);
1093 else {
1094 EMPTYARC(atom->end, rp);
1095 t->right = subre(v, '=', 0, atom->end, rp);
1096 }
1097 assert(SEE('|') || SEE(stopper) || SEE(EOS));
1098 t->flags |= COMBINE(t->flags, t->right->flags);
1099 top->flags |= COMBINE(top->flags, t->flags);
1100 }
1101
1102 /*
1103 - nonword - generate arcs for non-word-character ahead or behind
1104 ^ static VOID nonword(struct vars *, int, struct state *, struct state *);
1105 */
1106 static VOID
1107 nonword(v, dir, lp, rp)
1108 struct vars *v;
1109 int dir; /* AHEAD or BEHIND */
1110 struct state *lp;
1111 struct state *rp;
1112 {
1113 int anchor = (dir == AHEAD) ? '$' : '^';
1114
1115 assert(dir == AHEAD || dir == BEHIND);
1116 newarc(v->nfa, anchor, 1, lp, rp);
1117 newarc(v->nfa, anchor, 0, lp, rp);
1118 colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp);
1119 /* (no need for special attention to \n) */
1120 }
1121
1122 /*
1123 - word - generate arcs for word character ahead or behind
1124 ^ static VOID word(struct vars *, int, struct state *, struct state *);
1125 */
1126 static VOID
1127 word(v, dir, lp, rp)
1128 struct vars *v;
1129 int dir; /* AHEAD or BEHIND */
1130 struct state *lp;
1131 struct state *rp;
1132 {
1133 assert(dir == AHEAD || dir == BEHIND);
1134 cloneouts(v->nfa, v->wordchrs, lp, rp, dir);
1135 /* (no need for special attention to \n) */
1136 }
1137
1138 /*
1139 - scannum - scan a number
1140 ^ static int scannum(struct vars *);
1141 */
1142 static int /* value, <= DUPMAX */
1143 scannum(v)
1144 struct vars *v;
1145 {
1146 int n = 0;
1147
1148 while (SEE(DIGIT) && n < DUPMAX) {
1149 n = n*10 + v->nextvalue;
1150 NEXT();
1151 }
1152 if (SEE(DIGIT) || n > DUPMAX) {
1153 ERR(REG_BADBR);
1154 return 0;
1155 }
1156 return n;
1157 }
1158
1159 /*
1160 - repeat - replicate subNFA for quantifiers
1161 * The duplication sequences used here are chosen carefully so that any
1162 * pointers starting out pointing into the subexpression end up pointing into
1163 * the last occurrence. (Note that it may not be strung between the same
1164 * left and right end states, however!) This used to be important for the
1165 * subRE tree, although the important bits are now handled by the in-line
1166 * code in parse(), and when this is called, it doesn't matter any more.
1167 ^ static VOID repeat(struct vars *, struct state *, struct state *, int, int);
1168 */
1169 static VOID
1170 repeat(v, lp, rp, m, n)
1171 struct vars *v;
1172 struct state *lp;
1173 struct state *rp;
1174 int m;
1175 int n;
1176 {
1177 # define SOME 2
1178 # define INF 3
1179 # define PAIR(x, y) ((x)*4 + (y))
1180 # define REDUCE(x) ( ((x) == INFINITY) ? INF : (((x) > 1) ? SOME : (x)) )
1181 CONST int rm = REDUCE(m);
1182 CONST int rn = REDUCE(n);
1183 struct state *s;
1184 struct state *s2;
1185
1186 switch (PAIR(rm, rn)) {
1187 case PAIR(0, 0): /* empty string */
1188 delsub(v->nfa, lp, rp);
1189 EMPTYARC(lp, rp);
1190 break;
1191 case PAIR(0, 1): /* do as x| */
1192 EMPTYARC(lp, rp);
1193 break;
1194 case PAIR(0, SOME): /* do as x{1,n}| */
1195 repeat(v, lp, rp, 1, n);
1196 NOERR();
1197 EMPTYARC(lp, rp);
1198 break;
1199 case PAIR(0, INF): /* loop x around */
1200 s = newstate(v->nfa);
1201 NOERR();
1202 moveouts(v->nfa, lp, s);
1203 moveins(v->nfa, rp, s);
1204 EMPTYARC(lp, s);
1205 EMPTYARC(s, rp);
1206 break;
1207 case PAIR(1, 1): /* no action required */
1208 break;
1209 case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */
1210 s = newstate(v->nfa);
1211 NOERR();
1212 moveouts(v->nfa, lp, s);
1213 dupnfa(v->nfa, s, rp, lp, s);
1214 NOERR();
1215 repeat(v, lp, s, 1, n-1);
1216 NOERR();
1217 EMPTYARC(lp, s);
1218 break;
1219 case PAIR(1, INF): /* add loopback arc */
1220 s = newstate(v->nfa);
1221 s2 = newstate(v->nfa);
1222 NOERR();
1223 moveouts(v->nfa, lp, s);
1224 moveins(v->nfa, rp, s2);
1225 EMPTYARC(lp, s);
1226 EMPTYARC(s2, rp);
1227 EMPTYARC(s2, s);
1228 break;
1229 case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */
1230 s = newstate(v->nfa);
1231 NOERR();
1232 moveouts(v->nfa, lp, s);
1233 dupnfa(v->nfa, s, rp, lp, s);
1234 NOERR();
1235 repeat(v, lp, s, m-1, n-1);
1236 break;
1237 case PAIR(SOME, INF): /* do as x{m-1,}x */
1238 s = newstate(v->nfa);
1239 NOERR();
1240 moveouts(v->nfa, lp, s);
1241 dupnfa(v->nfa, s, rp, lp, s);
1242 NOERR();
1243 repeat(v, lp, s, m-1, n);
1244 break;
1245 default:
1246 ERR(REG_ASSERT);
1247 break;
1248 }
1249 }
1250
1251 /*
1252 - bracket - handle non-complemented bracket expression
1253 * Also called from cbracket for complemented bracket expressions.
1254 ^ static VOID bracket(struct vars *, struct state *, struct state *);
1255 */
1256 static VOID
1257 bracket(v, lp, rp)
1258 struct vars *v;
1259 struct state *lp;
1260 struct state *rp;
1261 {
1262 assert(SEE('['));
1263 NEXT();
1264 while (!SEE(']') && !SEE(EOS))
1265 brackpart(v, lp, rp);
1266 assert(SEE(']') || ISERR());
1267 okcolors(v->nfa, v->cm);
1268 }
1269
1270 /*
1271 - cbracket - handle complemented bracket expression
1272 * We do it by calling bracket() with dummy endpoints, and then complementing
1273 * the result. The alternative would be to invoke rainbow(), and then delete
1274 * arcs as the b.e. is seen... but that gets messy.
1275 ^ static VOID cbracket(struct vars *, struct state *, struct state *);
1276 */
1277 static VOID
1278 cbracket(v, lp, rp)
1279 struct vars *v;
1280 struct state *lp;
1281 struct state *rp;
1282 {
1283 struct state *left = newstate(v->nfa);
1284 struct state *right = newstate(v->nfa);
1285 struct state *s;
1286 struct arc *a; /* arc from lp */
1287 struct arc *ba; /* arc from left, from bracket() */
1288 struct arc *pa; /* MCCE-prototype arc */
1289 color co;
1290 chr *p;
1291 int i;
1292
1293 NOERR();
1294 bracket(v, left, right);
1295 if (v->cflags&REG_NLSTOP)
1296 newarc(v->nfa, PLAIN, v->nlcolor, left, right);
1297 NOERR();
1298
1299 assert(lp->nouts == 0); /* all outarcs will be ours */
1300
1301 /* easy part of complementing */
1302 colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp);
1303 NOERR();
1304 if (v->mcces == NULL) { /* no MCCEs -- we're done */
1305 dropstate(v->nfa, left);
1306 assert(right->nins == 0);
1307 freestate(v->nfa, right);
1308 return;
1309 }
1310
1311 /* but complementing gets messy in the presence of MCCEs... */
1312 NOTE(REG_ULOCALE);
1313 for (p = v->mcces->chrs, i = v->mcces->nchrs; i > 0; p++, i--) {
1314 co = GETCOLOR(v->cm, *p);
1315 a = findarc(lp, PLAIN, co);
1316 ba = findarc(left, PLAIN, co);
1317 if (ba == NULL) {
1318 assert(a != NULL);
1319 freearc(v->nfa, a);
1320 } else {
1321 assert(a == NULL);
1322 }
1323 s = newstate(v->nfa);
1324 NOERR();
1325 newarc(v->nfa, PLAIN, co, lp, s);
1326 NOERR();
1327 pa = findarc(v->mccepbegin, PLAIN, co);
1328 assert(pa != NULL);
1329 if (ba == NULL) { /* easy case, need all of them */
1330 cloneouts(v->nfa, pa->to, s, rp, PLAIN);
1331 newarc(v->nfa, '$', 1, s, rp);
1332 newarc(v->nfa, '$', 0, s, rp);
1333 colorcomplement(v->nfa, v->cm, AHEAD, pa->to, s, rp);
1334 } else { /* must be selective */
1335 if (findarc(ba->to, '$', 1) == NULL) {
1336 newarc(v->nfa, '$', 1, s, rp);
1337 newarc(v->nfa, '$', 0, s, rp);
1338 colorcomplement(v->nfa, v->cm, AHEAD, pa->to,
1339 s, rp);
1340 }
1341 for (pa = pa->to->outs; pa != NULL; pa = pa->outchain)
1342 if (findarc(ba->to, PLAIN, pa->co) == NULL)
1343 newarc(v->nfa, PLAIN, pa->co, s, rp);
1344 if (s->nouts == 0) /* limit of selectivity: none */
1345 dropstate(v->nfa, s); /* frees arc too */
1346 }
1347 NOERR();
1348 }
1349
1350 delsub(v->nfa, left, right);
1351 assert(left->nouts == 0);
1352 freestate(v->nfa, left);
1353 assert(right->nins == 0);
1354 freestate(v->nfa, right);
1355 }
1356
1357 /*
1358 - brackpart - handle one item (or range) within a bracket expression
1359 ^ static VOID brackpart(struct vars *, struct state *, struct state *);
1360 */
1361 static VOID
1362 brackpart(v, lp, rp)
1363 struct vars *v;
1364 struct state *lp;
1365 struct state *rp;
1366 {
1367 celt startc;
1368 celt endc;
1369 struct cvec *cv;
1370 chr *startp;
1371 chr *endp;
1372 chr c[1];
1373
1374 /* parse something, get rid of special cases, take shortcuts */
1375 switch (v->nexttype) {
1376 case RANGE: /* a-b-c or other botch */
1377 ERR(REG_ERANGE);
1378 return;
1379 break;
1380 case PLAIN:
1381 c[0] = v->nextvalue;
1382 NEXT();
1383 /* shortcut for ordinary chr (not range, not MCCE leader) */
1384 if (!SEE(RANGE) && !ISCELEADER(v, c[0])) {
1385 onechr(v, c[0], lp, rp);
1386 return;
1387 }
1388 startc = element(v, c, c+1);
1389 NOERR();
1390 break;
1391 case COLLEL:
1392 startp = v->now;
1393 endp = scanplain(v);
1394 INSIST(startp < endp, REG_ECOLLATE);
1395 NOERR();
1396 startc = element(v, startp, endp);
1397 NOERR();
1398 break;
1399 case ECLASS:
1400 startp = v->now;
1401 endp = scanplain(v);
1402 INSIST(startp < endp, REG_ECOLLATE);
1403 NOERR();
1404 startc = element(v, startp, endp);
1405 NOERR();
1406 cv = eclass(v, startc, (v->cflags&REG_ICASE));
1407 NOERR();
1408 dovec(v, cv, lp, rp);
1409 return;
1410 break;
1411 case CCLASS:
1412 startp = v->now;
1413 endp = scanplain(v);
1414 INSIST(startp < endp, REG_ECTYPE);
1415 NOERR();
1416 cv = cclass(v, startp, endp, (v->cflags&REG_ICASE));
1417 NOERR();
1418 dovec(v, cv, lp, rp);
1419 return;
1420 break;
1421 default:
1422 ERR(REG_ASSERT);
1423 return;
1424 break;
1425 }
1426
1427 if (SEE(RANGE)) {
1428 NEXT();
1429 switch (v->nexttype) {
1430 case PLAIN:
1431 case RANGE:
1432 c[0] = v->nextvalue;
1433 NEXT();
1434 endc = element(v, c, c+1);
1435 NOERR();
1436 break;
1437 case COLLEL:
1438 startp = v->now;
1439 endp = scanplain(v);
1440 INSIST(startp < endp, REG_ECOLLATE);
1441 NOERR();
1442 endc = element(v, startp, endp);
1443 NOERR();
1444 break;
1445 default:
1446 ERR(REG_ERANGE);
1447 return;
1448 break;
1449 }
1450 } else
1451 endc = startc;
1452
1453 /*
1454 * Ranges are unportable. Actually, standard C does
1455 * guarantee that digits are contiguous, but making
1456 * that an exception is just too complicated.
1457 */
1458 if (startc != endc)
1459 NOTE(REG_UUNPORT);
1460 cv = range(v, startc, endc, (v->cflags&REG_ICASE));
1461 NOERR();
1462 dovec(v, cv, lp, rp);
1463 }
1464
1465 /*
1466 - scanplain - scan PLAIN contents of [. etc.
1467 * Certain bits of trickery in lex.c know that this code does not try
1468 * to look past the final bracket of the [. etc.
1469 ^ static chr *scanplain(struct vars *);
1470 */
1471 static chr * /* just after end of sequence */
1472 scanplain(v)
1473 struct vars *v;
1474 {
1475 chr *endp;
1476
1477 assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS));
1478 NEXT();
1479
1480 endp = v->now;
1481 while (SEE(PLAIN)) {
1482 endp = v->now;
1483 NEXT();
1484 }
1485
1486 assert(SEE(END) || ISERR());
1487 NEXT();
1488
1489 return endp;
1490 }
1491
1492 /*
1493 - leaders - process a cvec of collating elements to also include leaders
1494 * Also gives all characters involved their own colors, which is almost
1495 * certainly necessary, and sets up little disconnected subNFA.
1496 ^ static VOID leaders(struct vars *, struct cvec *);
1497 */
1498 static VOID
1499 leaders(v, cv)
1500 struct vars *v;
1501 struct cvec *cv;
1502 {
1503 int mcce;
1504 chr *p;
1505 chr leader;
1506 struct state *s;
1507 struct arc *a;
1508
1509 v->mccepbegin = newstate(v->nfa);
1510 v->mccepend = newstate(v->nfa);
1511 NOERR();
1512
1513 for (mcce = 0; mcce < cv->nmcces; mcce++) {
1514 p = cv->mcces[mcce];
1515 leader = *p;
1516 if (!haschr(cv, leader)) {
1517 addchr(cv, leader);
1518 s = newstate(v->nfa);
1519 newarc(v->nfa, PLAIN, subcolor(v->cm, leader),
1520 v->mccepbegin, s);
1521 okcolors(v->nfa, v->cm);
1522 } else {
1523 a = findarc(v->mccepbegin, PLAIN,
1524 GETCOLOR(v->cm, leader));
1525 assert(a != NULL);
1526 s = a->to;
1527 assert(s != v->mccepend);
1528 }
1529 p++;
1530 assert(*p != 0 && *(p+1) == 0); /* only 2-char MCCEs for now */
1531 newarc(v->nfa, PLAIN, subcolor(v->cm, *p), s, v->mccepend);
1532 okcolors(v->nfa, v->cm);
1533 }
1534 }
1535
1536 /*
1537 - onechr - fill in arcs for a plain character, and possible case complements
1538 * This is mostly a shortcut for efficient handling of the common case.
1539 ^ static VOID onechr(struct vars *, pchr, struct state *, struct state *);
1540 */
1541 static VOID
1542 onechr(v, c, lp, rp)
1543 struct vars *v;
1544 pchr c;
1545 struct state *lp;
1546 struct state *rp;
1547 {
1548 if (!(v->cflags&REG_ICASE)) {
1549 newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp);
1550 return;
1551 }
1552
1553 /* rats, need general case anyway... */
1554 dovec(v, allcases(v, c), lp, rp);
1555 }
1556
1557 /*
1558 - dovec - fill in arcs for each element of a cvec
1559 * This one has to handle the messy cases, like MCCEs and MCCE leaders.
1560 ^ static VOID dovec(struct vars *, struct cvec *, struct state *,
1561 ^ struct state *);
1562 */
1563 static VOID
1564 dovec(v, cv, lp, rp)
1565 struct vars *v;
1566 struct cvec *cv;
1567 struct state *lp;
1568 struct state *rp;
1569 {
1570 chr ch, from, to;
1571 celt ce;
1572 chr *p;
1573 int i;
1574 color co;
1575 struct cvec *leads;
1576 struct arc *a;
1577 struct arc *pa; /* arc in prototype */
1578 struct state *s;
1579 struct state *ps; /* state in prototype */
1580
1581 /* need a place to store leaders, if any */
1582 if (nmcces(v) > 0) {
1583 assert(v->mcces != NULL);
1584 if (v->cv2 == NULL || v->cv2->nchrs < v->mcces->nchrs) {
1585 if (v->cv2 != NULL)
1586 free(v->cv2);
1587 v->cv2 = newcvec(v->mcces->nchrs, 0, v->mcces->nmcces);
1588 NOERR();
1589 leads = v->cv2;
1590 } else
1591 leads = clearcvec(v->cv2);
1592 } else
1593 leads = NULL;
1594
1595 /* first, get the ordinary characters out of the way */
1596 for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) {
1597 ch = *p;
1598 if (!ISCELEADER(v, ch))
1599 newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp);
1600 else {
1601 assert(singleton(v->cm, ch));
1602 assert(leads != NULL);
1603 if (!haschr(leads, ch))
1604 addchr(leads, ch);
1605 }
1606 }
1607
1608 /* and the ranges */
1609 for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) {
1610 from = *p;
1611 to = *(p+1);
1612 while (from <= to && (ce = nextleader(v, from, to)) != NOCELT) {
1613 if (from < ce)
1614 subrange(v, from, ce - 1, lp, rp);
1615 assert(singleton(v->cm, ce));
1616 assert(leads != NULL);
1617 if (!haschr(leads, ce))
1618 addchr(leads, ce);
1619 from = ce + 1;
1620 }
1621 if (from <= to)
1622 subrange(v, from, to, lp, rp);
1623 }
1624
1625 if ((leads == NULL || leads->nchrs == 0) && cv->nmcces == 0)
1626 return;
1627
1628 /* deal with the MCCE leaders */
1629 NOTE(REG_ULOCALE);
1630 for (p = leads->chrs, i = leads->nchrs; i > 0; p++, i--) {
1631 co = GETCOLOR(v->cm, *p);
1632 a = findarc(lp, PLAIN, co);
1633 if (a != NULL)
1634 s = a->to;
1635 else {
1636 s = newstate(v->nfa);
1637 NOERR();
1638 newarc(v->nfa, PLAIN, co, lp, s);
1639 NOERR();
1640 }
1641 pa = findarc(v->mccepbegin, PLAIN, co);
1642 assert(pa != NULL);
1643 ps = pa->to;
1644 newarc(v->nfa, '$', 1, s, rp);
1645 newarc(v->nfa, '$', 0, s, rp);
1646 colorcomplement(v->nfa, v->cm, AHEAD, ps, s, rp);
1647 NOERR();
1648 }
1649
1650 /* and the MCCEs */
1651 for (i = 0; i < cv->nmcces; i++) {
1652 p = cv->mcces[i];
1653 assert(singleton(v->cm, *p));
1654 if (!singleton(v->cm, *p)) {
1655 ERR(REG_ASSERT);
1656 return;
1657 }
1658 ch = *p++;
1659 co = GETCOLOR(v->cm, ch);
1660 a = findarc(lp, PLAIN, co);
1661 if (a != NULL)
1662 s = a->to;
1663 else {
1664 s = newstate(v->nfa);
1665 NOERR();
1666 newarc(v->nfa, PLAIN, co, lp, s);
1667 NOERR();
1668 }
1669 assert(*p != 0); /* at least two chars */
1670 assert(singleton(v->cm, *p));
1671 ch = *p++;
1672 co = GETCOLOR(v->cm, ch);
1673 assert(*p == 0); /* and only two, for now */
1674 newarc(v->nfa, PLAIN, co, s, rp);
1675 NOERR();
1676 }
1677 }
1678
1679 /*
1680 - nextleader - find next MCCE leader within range
1681 ^ static celt nextleader(struct vars *, pchr, pchr);
1682 */
1683 static celt /* NOCELT means none */
1684 nextleader(v, from, to)
1685 struct vars *v;
1686 pchr from;
1687 pchr to;
1688 {
1689 int i;
1690 chr *p;
1691 chr ch;
1692 celt it = NOCELT;
1693
1694 if (v->mcces == NULL)
1695 return it;
1696
1697 for (i = v->mcces->nchrs, p = v->mcces->chrs; i > 0; i--, p++) {
1698 ch = *p;
1699 if (from <= ch && ch <= to)
1700 if (it == NOCELT || ch < it)
1701 it = ch;
1702 }
1703 return it;
1704 }
1705
1706 /*
1707 - wordchrs - set up word-chr list for word-boundary stuff, if needed
1708 * The list is kept as a bunch of arcs between two dummy states; it's
1709 * disposed of by the unreachable-states sweep in NFA optimization.
1710 * Does NEXT(). Must not be called from any unusual lexical context.
1711 * This should be reconciled with the \w etc. handling in lex.c, and
1712 * should be cleaned up to reduce dependencies on input scanning.
1713 ^ static VOID wordchrs(struct vars *);
1714 */
1715 static VOID
1716 wordchrs(v)
1717 struct vars *v;
1718 {
1719 struct state *left;
1720 struct state *right;
1721
1722 if (v->wordchrs != NULL) {
1723 NEXT(); /* for consistency */
1724 return;
1725 }
1726
1727 left = newstate(v->nfa);
1728 right = newstate(v->nfa);
1729 NOERR();
1730 /* fine point: implemented with [::], and lexer will set REG_ULOCALE */
1731 lexword(v);
1732 NEXT();
1733 assert(v->savenow != NULL && SEE('['));
1734 bracket(v, left, right);
1735 assert((v->savenow != NULL && SEE(']')) || ISERR());
1736 NEXT();
1737 NOERR();
1738 v->wordchrs = left;
1739 }
1740
1741 /*
1742 - subre - allocate a subre
1743 ^ static struct subre *subre(struct vars *, int, int, struct state *,
1744 ^ struct state *);
1745 */
1746 static struct subre *
1747 subre(v, op, flags, begin, end)
1748 struct vars *v;
1749 int op;
1750 int flags;
1751 struct state *begin;
1752 struct state *end;
1753 {
1754 struct subre *ret;
1755
1756 ret = v->treefree;
1757 if (ret != NULL)
1758 v->treefree = ret->left;
1759 else {
1760 ret = (struct subre *)MALLOC(sizeof(struct subre));
1761 if (ret == NULL) {
1762 ERR(REG_ESPACE);
1763 return NULL;
1764 }
1765 ret->chain = v->treechain;
1766 v->treechain = ret;
1767 }
1768
1769 assert(strchr("|.b(=", op) != NULL);
1770
1771 ret->op = op;
1772 ret->flags = flags;
1773 ret->retry = 0;
1774 ret->subno = 0;
1775 ret->min = ret->max = 1;
1776 ret->left = NULL;
1777 ret->right = NULL;
1778 ret->begin = begin;
1779 ret->end = end;
1780 ZAPCNFA(ret->cnfa);
1781
1782 return ret;
1783 }
1784
1785 /*
1786 - freesubre - free a subRE subtree
1787 ^ static VOID freesubre(struct vars *, struct subre *);
1788 */
1789 static VOID
1790 freesubre(v, sr)
1791 struct vars *v; /* might be NULL */
1792 struct subre *sr;
1793 {
1794 if (sr == NULL)
1795 return;
1796
1797 if (sr->left != NULL)
1798 freesubre(v, sr->left);
1799 if (sr->right != NULL)
1800 freesubre(v, sr->right);
1801
1802 freesrnode(v, sr);
1803 }
1804
1805 /*
1806 - freesrnode - free one node in a subRE subtree
1807 ^ static VOID freesrnode(struct vars *, struct subre *);
1808 */
1809 static VOID
1810 freesrnode(v, sr)
1811 struct vars *v; /* might be NULL */
1812 struct subre *sr;
1813 {
1814 if (sr == NULL)
1815 return;
1816
1817 if (!NULLCNFA(sr->cnfa))
1818 freecnfa(&sr->cnfa);
1819 sr->flags = 0;
1820
1821 if (v != NULL) {
1822 sr->left = v->treefree;
1823 v->treefree = sr;
1824 } else
1825 FREE(sr);
1826 }
1827
1828 /*
1829 - optst - optimize a subRE subtree
1830 ^ static VOID optst(struct vars *, struct subre *);
1831 */
1832 static VOID
1833 optst(v, t)
1834 struct vars *v;
1835 struct subre *t;
1836 {
1837 if (t == NULL)
1838 return;
1839
1840 /* recurse through children */
1841 if (t->left != NULL)
1842 optst(v, t->left);
1843 if (t->right != NULL)
1844 optst(v, t->right);
1845 }
1846
1847 /*
1848 - numst - number tree nodes (assigning retry indexes)
1849 ^ static int numst(struct subre *, int);
1850 */
1851 static int /* next number */
1852 numst(t, start)
1853 struct subre *t;
1854 int start; /* starting point for subtree numbers */
1855 {
1856 int i;
1857
1858 assert(t != NULL);
1859
1860 i = start;
1861 t->retry = (short)i++;
1862 if (t->left != NULL)
1863 i = numst(t->left, i);
1864 if (t->right != NULL)
1865 i = numst(t->right, i);
1866 return i;
1867 }
1868
1869 /*
1870 - markst - mark tree nodes as INUSE
1871 ^ static VOID markst(struct subre *);
1872 */
1873 static VOID
1874 markst(t)
1875 struct subre *t;
1876 {
1877 assert(t != NULL);
1878
1879 t->flags |= INUSE;
1880 if (t->left != NULL)
1881 markst(t->left);
1882 if (t->right != NULL)
1883 markst(t->right);
1884 }
1885
1886 /*
1887 - cleanst - free any tree nodes not marked INUSE
1888 ^ static VOID cleanst(struct vars *);
1889 */
1890 static VOID
1891 cleanst(v)
1892 struct vars *v;
1893 {
1894 struct subre *t;
1895 struct subre *next;
1896
1897 for (t = v->treechain; t != NULL; t = next) {
1898 next = t->chain;
1899 if (!(t->flags&INUSE))
1900 FREE(t);
1901 }
1902 v->treechain = NULL;
1903 v->treefree = NULL; /* just on general principles */
1904 }
1905
1906 /*
1907 - nfatree - turn a subRE subtree into a tree of compacted NFAs
1908 ^ static long nfatree(struct vars *, struct subre *, FILE *);
1909 */
1910 static long /* optimize results from top node */
1911 nfatree(v, t, f)
1912 struct vars *v;
1913 struct subre *t;
1914 FILE *f; /* for debug output */
1915 {
1916 assert(t != NULL && t->begin != NULL);
1917
1918 if (t->left != NULL)
1919 (DISCARD)nfatree(v, t->left, f);
1920 if (t->right != NULL)
1921 (DISCARD)nfatree(v, t->right, f);
1922
1923 return nfanode(v, t, f);
1924 }
1925
1926 /*
1927 - nfanode - do one NFA for nfatree
1928 ^ static long nfanode(struct vars *, struct subre *, FILE *);
1929 */
1930 static long /* optimize results */
1931 nfanode(v, t, f)
1932 struct vars *v;
1933 struct subre *t;
1934 FILE *f; /* for debug output */
1935 {
1936 struct nfa *nfa;
1937 long ret = 0;
1938 char idbuf[50];
1939
1940 assert(t->begin != NULL);
1941
1942 if (f != NULL)
1943 fprintf(f, "\n\n\n========= TREE NODE %s ==========\n",
1944 stid(t, idbuf, sizeof(idbuf)));
1945 nfa = newnfa(v, v->cm, v->nfa);
1946 NOERRZ();
1947 dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final);
1948 if (!ISERR()) {
1949 specialcolors(nfa);
1950 ret = optimize(nfa, f);
1951 }
1952 if (!ISERR())
1953 compact(nfa, &t->cnfa);
1954
1955 freenfa(nfa);
1956 return ret;
1957 }
1958
1959 /*
1960 - newlacon - allocate a lookahead-constraint subRE
1961 ^ static int newlacon(struct vars *, struct state *, struct state *, int);
1962 */
1963 static int /* lacon number */
1964 newlacon(v, begin, end, pos)
1965 struct vars *v;
1966 struct state *begin;
1967 struct state *end;
1968 int pos;
1969 {
1970 int n;
1971 struct subre *sub;
1972
1973 if (v->nlacons == 0) {
1974 v->lacons = (struct subre *)MALLOC(2 * sizeof(struct subre));
1975 n = 1; /* skip 0th */
1976 v->nlacons = 2;
1977 } else {
1978 v->lacons = (struct subre *)REALLOC(v->lacons,
1979 (v->nlacons+1)*sizeof(struct subre));
1980 n = v->nlacons++;
1981 }
1982 if (v->lacons == NULL) {
1983 ERR(REG_ESPACE);
1984 return 0;
1985 }
1986 sub = &v->lacons[n];
1987 sub->begin = begin;
1988 sub->end = end;
1989 sub->subno = pos;
1990 ZAPCNFA(sub->cnfa);
1991 return n;
1992 }
1993
1994 /*
1995 - freelacons - free lookahead-constraint subRE vector
1996 ^ static VOID freelacons(struct subre *, int);
1997 */
1998 static VOID
1999 freelacons(subs, n)
2000 struct subre *subs;
2001 int n;
2002 {
2003 struct subre *sub;
2004 int i;
2005
2006 assert(n > 0);
2007 for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */
2008 if (!NULLCNFA(sub->cnfa))
2009 freecnfa(&sub->cnfa);
2010 FREE(subs);
2011 }
2012
2013 /*
2014 - rfree - free a whole RE (insides of regfree)
2015 ^ static VOID rfree(regex_t *);
2016 */
2017 static VOID
2018 rfree(re)
2019 regex_t *re;
2020 {
2021 struct guts *g;
2022
2023 if (re == NULL || re->re_magic != REMAGIC)
2024 return;
2025
2026 re->re_magic = 0; /* invalidate RE */
2027 g = (struct guts *)re->re_guts;
2028 re->re_guts = NULL;
2029 re->re_fns = NULL;
2030 g->magic = 0;
2031 freecm(&g->cmap);
2032 if (g->tree != NULL)
2033 freesubre((struct vars *)NULL, g->tree);
2034 if (g->lacons != NULL)
2035 freelacons(g->lacons, g->nlacons);
2036 if (!NULLCNFA(g->search))
2037 freecnfa(&g->search);
2038 FREE(g);
2039 }
2040
2041 /*
2042 - dump - dump an RE in human-readable form
2043 ^ static VOID dump(regex_t *, FILE *);
2044 */
2045 static VOID
2046 dump(re, f)
2047 regex_t *re;
2048 FILE *f;
2049 {
2050 #ifdef REG_DEBUG
2051 struct guts *g;
2052 int i;
2053
2054 if (re->re_magic != REMAGIC)
2055 fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic,
2056 REMAGIC);
2057 if (re->re_guts == NULL) {
2058 fprintf(f, "NULL guts!!!\n");
2059 return;
2060 }
2061 g = (struct guts *)re->re_guts;
2062 if (g->magic != GUTSMAGIC)
2063 fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic,
2064 GUTSMAGIC);
2065
2066 fprintf(f, "\n\n\n========= DUMP ==========\n");
2067 fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n",
2068 re->re_nsub, re->re_info, re->re_csize, g->ntree);
2069
2070 dumpcolors(&g->cmap, f);
2071 if (!NULLCNFA(g->search)) {
2072 printf("\nsearch:\n");
2073 dumpcnfa(&g->search, f);
2074 }
2075 for (i = 1; i < g->nlacons; i++) {
2076 fprintf(f, "\nla%d (%s):\n", i,
2077 (g->lacons[i].subno) ? "positive" : "negative");
2078 dumpcnfa(&g->lacons[i].cnfa, f);
2079 }
2080 fprintf(f, "\n");
2081 dumpst(g->tree, f, 0);
2082 #endif
2083 }
2084
2085 /*
2086 - dumpst - dump a subRE tree
2087 ^ static VOID dumpst(struct subre *, FILE *, int);
2088 */
2089 static VOID
2090 dumpst(t, f, nfapresent)
2091 struct subre *t;
2092 FILE *f;
2093 int nfapresent; /* is the original NFA still around? */
2094 {
2095 if (t == NULL)
2096 fprintf(f, "null tree\n");
2097 else
2098 stdump(t, f, nfapresent);
2099 fflush(f);
2100 }
2101
2102 /*
2103 - stdump - recursive guts of dumpst
2104 ^ static VOID stdump(struct subre *, FILE *, int);
2105 */
2106 static VOID
2107 stdump(t, f, nfapresent)
2108 struct subre *t;
2109 FILE *f;
2110 int nfapresent; /* is the original NFA still around? */
2111 {
2112 char idbuf[50];
2113
2114 fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op);
2115 if (t->flags&LONGER)
2116 fprintf(f, " longest");
2117 if (t->flags&SHORTER)
2118 fprintf(f, " shortest");
2119 if (t->flags&MIXED)
2120 fprintf(f, " hasmixed");
2121 if (t->flags&CAP)
2122 fprintf(f, " hascapture");
2123 if (t->flags&BACKR)
2124 fprintf(f, " hasbackref");
2125 if (!(t->flags&INUSE))
2126 fprintf(f, " UNUSED");
2127 if (t->subno != 0)
2128 fprintf(f, " (#%d)", t->subno);
2129 if (t->min != 1 || t->max != 1) {
2130 fprintf(f, " {%d,", t->min);
2131 if (t->max != INFINITY)
2132 fprintf(f, "%d", t->max);
2133 fprintf(f, "}");
2134 }
2135 if (nfapresent)
2136 fprintf(f, " %ld-%ld", (long)t->begin->no, (long)t->end->no);
2137 if (t->left != NULL)
2138 fprintf(f, " L:%s", stid(t->left, idbuf, sizeof(idbuf)));
2139 if (t->right != NULL)
2140 fprintf(f, " R:%s", stid(t->right, idbuf, sizeof(idbuf)));
2141 if (!NULLCNFA(t->cnfa)) {
2142 fprintf(f, "\n");
2143 dumpcnfa(&t->cnfa, f);
2144 fprintf(f, "\n");
2145 }
2146 if (t->left != NULL)
2147 stdump(t->left, f, nfapresent);
2148 if (t->right != NULL)
2149 stdump(t->right, f, nfapresent);
2150 }
2151
2152 /*
2153 - stid - identify a subtree node for dumping
2154 ^ static char *stid(struct subre *, char *, size_t);
2155 */
2156 static char * /* points to buf or constant string */
2157 stid(t, buf, bufsize)
2158 struct subre *t;
2159 char *buf;
2160 size_t bufsize;
2161 {
2162 /* big enough for hex int or decimal t->retry? */
2163 if (bufsize < sizeof(int)*2 + 3 || bufsize < sizeof(t->retry)*3 + 1)
2164 return "unable";
2165 if (t->retry != 0)
2166 sprintf(buf, "%d", t->retry);
2167 else
2168 sprintf(buf, "0x%x", (int)t); /* may lose bits, that's okay */
2169 return buf;
2170 }
2171
2172 #include "regc_lex.c"
2173 #include "regc_color.c"
2174 #include "regc_nfa.c"
2175 #include "regc_cvec.c"
2176 #include "regc_locale.c"
2177
2178 /* End of regcomp.c */

Properties

Name Value
svn:eol-style native
svn:keywords Header

dashley@gmail.com
ViewVC Help
Powered by ViewVC 1.1.25