1 |
dashley |
71 |
/* $Header$ */ |
2 |
|
|
/* |
3 |
|
|
* tclAsync.c -- |
4 |
|
|
* |
5 |
|
|
* This file provides low-level support needed to invoke signal |
6 |
|
|
* handlers in a safe way. The code here doesn't actually handle |
7 |
|
|
* signals, though. This code is based on proposals made by |
8 |
|
|
* Mark Diekhans and Don Libes. |
9 |
|
|
* |
10 |
|
|
* Copyright (c) 1993 The Regents of the University of California. |
11 |
|
|
* Copyright (c) 1994 Sun Microsystems, Inc. |
12 |
|
|
* |
13 |
|
|
* See the file "license.terms" for information on usage and redistribution |
14 |
|
|
* of this file, and for a DISCLAIMER OF ALL WARRANTIES. |
15 |
|
|
* |
16 |
|
|
* RCS: @(#) $Id: tclasync.c,v 1.1.1.1 2001/06/13 04:33:03 dtashley Exp $ |
17 |
|
|
*/ |
18 |
|
|
|
19 |
|
|
#include "tclInt.h" |
20 |
|
|
#include "tclPort.h" |
21 |
|
|
|
22 |
|
|
/* |
23 |
|
|
* One of the following structures exists for each asynchronous |
24 |
|
|
* handler: |
25 |
|
|
*/ |
26 |
|
|
|
27 |
|
|
typedef struct AsyncHandler { |
28 |
|
|
int ready; /* Non-zero means this handler should |
29 |
|
|
* be invoked in the next call to |
30 |
|
|
* Tcl_AsyncInvoke. */ |
31 |
|
|
struct AsyncHandler *nextPtr; /* Next in list of all handlers for |
32 |
|
|
* the process. */ |
33 |
|
|
Tcl_AsyncProc *proc; /* Procedure to call when handler |
34 |
|
|
* is invoked. */ |
35 |
|
|
ClientData clientData; /* Value to pass to handler when it |
36 |
|
|
* is invoked. */ |
37 |
|
|
} AsyncHandler; |
38 |
|
|
|
39 |
|
|
/* |
40 |
|
|
* The variables below maintain a list of all existing handlers. |
41 |
|
|
*/ |
42 |
|
|
|
43 |
|
|
static AsyncHandler *firstHandler; /* First handler defined for process, |
44 |
|
|
* or NULL if none. */ |
45 |
|
|
static AsyncHandler *lastHandler; /* Last handler or NULL. */ |
46 |
|
|
|
47 |
|
|
TCL_DECLARE_MUTEX(asyncMutex) /* Process-wide async handler lock */ |
48 |
|
|
|
49 |
|
|
/* |
50 |
|
|
* The variable below is set to 1 whenever a handler becomes ready and |
51 |
|
|
* it is cleared to zero whenever Tcl_AsyncInvoke is called. It can be |
52 |
|
|
* checked elsewhere in the application by calling Tcl_AsyncReady to see |
53 |
|
|
* if Tcl_AsyncInvoke should be invoked. |
54 |
|
|
*/ |
55 |
|
|
|
56 |
|
|
static int asyncReady = 0; |
57 |
|
|
|
58 |
|
|
/* |
59 |
|
|
* The variable below indicates whether Tcl_AsyncInvoke is currently |
60 |
|
|
* working. If so then we won't set asyncReady again until |
61 |
|
|
* Tcl_AsyncInvoke returns. |
62 |
|
|
*/ |
63 |
|
|
|
64 |
|
|
static int asyncActive = 0; |
65 |
|
|
|
66 |
|
|
/* |
67 |
|
|
*---------------------------------------------------------------------- |
68 |
|
|
* |
69 |
|
|
* Tcl_AsyncCreate -- |
70 |
|
|
* |
71 |
|
|
* This procedure creates the data structures for an asynchronous |
72 |
|
|
* handler, so that no memory has to be allocated when the handler |
73 |
|
|
* is activated. |
74 |
|
|
* |
75 |
|
|
* Results: |
76 |
|
|
* The return value is a token for the handler, which can be used |
77 |
|
|
* to activate it later on. |
78 |
|
|
* |
79 |
|
|
* Side effects: |
80 |
|
|
* Information about the handler is recorded. |
81 |
|
|
* |
82 |
|
|
*---------------------------------------------------------------------- |
83 |
|
|
*/ |
84 |
|
|
|
85 |
|
|
Tcl_AsyncHandler |
86 |
|
|
Tcl_AsyncCreate(proc, clientData) |
87 |
|
|
Tcl_AsyncProc *proc; /* Procedure to call when handler |
88 |
|
|
* is invoked. */ |
89 |
|
|
ClientData clientData; /* Argument to pass to handler. */ |
90 |
|
|
{ |
91 |
|
|
AsyncHandler *asyncPtr; |
92 |
|
|
|
93 |
|
|
asyncPtr = (AsyncHandler *) ckalloc(sizeof(AsyncHandler)); |
94 |
|
|
asyncPtr->ready = 0; |
95 |
|
|
asyncPtr->nextPtr = NULL; |
96 |
|
|
asyncPtr->proc = proc; |
97 |
|
|
asyncPtr->clientData = clientData; |
98 |
|
|
Tcl_MutexLock(&asyncMutex); |
99 |
|
|
if (firstHandler == NULL) { |
100 |
|
|
firstHandler = asyncPtr; |
101 |
|
|
} else { |
102 |
|
|
lastHandler->nextPtr = asyncPtr; |
103 |
|
|
} |
104 |
|
|
lastHandler = asyncPtr; |
105 |
|
|
Tcl_MutexUnlock(&asyncMutex); |
106 |
|
|
return (Tcl_AsyncHandler) asyncPtr; |
107 |
|
|
} |
108 |
|
|
|
109 |
|
|
/* |
110 |
|
|
*---------------------------------------------------------------------- |
111 |
|
|
* |
112 |
|
|
* Tcl_AsyncMark -- |
113 |
|
|
* |
114 |
|
|
* This procedure is called to request that an asynchronous handler |
115 |
|
|
* be invoked as soon as possible. It's typically called from |
116 |
|
|
* an interrupt handler, where it isn't safe to do anything that |
117 |
|
|
* depends on or modifies application state. |
118 |
|
|
* |
119 |
|
|
* Results: |
120 |
|
|
* None. |
121 |
|
|
* |
122 |
|
|
* Side effects: |
123 |
|
|
* The handler gets marked for invocation later. |
124 |
|
|
* |
125 |
|
|
*---------------------------------------------------------------------- |
126 |
|
|
*/ |
127 |
|
|
|
128 |
|
|
void |
129 |
|
|
Tcl_AsyncMark(async) |
130 |
|
|
Tcl_AsyncHandler async; /* Token for handler. */ |
131 |
|
|
{ |
132 |
|
|
Tcl_MutexLock(&asyncMutex); |
133 |
|
|
((AsyncHandler *) async)->ready = 1; |
134 |
|
|
if (!asyncActive) { |
135 |
|
|
asyncReady = 1; |
136 |
|
|
TclpAsyncMark(async); |
137 |
|
|
} |
138 |
|
|
Tcl_MutexUnlock(&asyncMutex); |
139 |
|
|
} |
140 |
|
|
|
141 |
|
|
/* |
142 |
|
|
*---------------------------------------------------------------------- |
143 |
|
|
* |
144 |
|
|
* Tcl_AsyncInvoke -- |
145 |
|
|
* |
146 |
|
|
* This procedure is called at a "safe" time at background level |
147 |
|
|
* to invoke any active asynchronous handlers. |
148 |
|
|
* |
149 |
|
|
* Results: |
150 |
|
|
* The return value is a normal Tcl result, which is intended to |
151 |
|
|
* replace the code argument as the current completion code for |
152 |
|
|
* interp. |
153 |
|
|
* |
154 |
|
|
* Side effects: |
155 |
|
|
* Depends on the handlers that are active. |
156 |
|
|
* |
157 |
|
|
*---------------------------------------------------------------------- |
158 |
|
|
*/ |
159 |
|
|
|
160 |
|
|
int |
161 |
|
|
Tcl_AsyncInvoke(interp, code) |
162 |
|
|
Tcl_Interp *interp; /* If invoked from Tcl_Eval just after |
163 |
|
|
* completing a command, points to |
164 |
|
|
* interpreter. Otherwise it is |
165 |
|
|
* NULL. */ |
166 |
|
|
int code; /* If interp is non-NULL, this gives |
167 |
|
|
* completion code from command that |
168 |
|
|
* just completed. */ |
169 |
|
|
{ |
170 |
|
|
AsyncHandler *asyncPtr; |
171 |
|
|
Tcl_MutexLock(&asyncMutex); |
172 |
|
|
|
173 |
|
|
if (asyncReady == 0) { |
174 |
|
|
Tcl_MutexUnlock(&asyncMutex); |
175 |
|
|
return code; |
176 |
|
|
} |
177 |
|
|
asyncReady = 0; |
178 |
|
|
asyncActive = 1; |
179 |
|
|
if (interp == NULL) { |
180 |
|
|
code = 0; |
181 |
|
|
} |
182 |
|
|
|
183 |
|
|
/* |
184 |
|
|
* Make one or more passes over the list of handlers, invoking |
185 |
|
|
* at most one handler in each pass. After invoking a handler, |
186 |
|
|
* go back to the start of the list again so that (a) if a new |
187 |
|
|
* higher-priority handler gets marked while executing a lower |
188 |
|
|
* priority handler, we execute the higher-priority handler |
189 |
|
|
* next, and (b) if a handler gets deleted during the execution |
190 |
|
|
* of a handler, then the list structure may change so it isn't |
191 |
|
|
* safe to continue down the list anyway. |
192 |
|
|
*/ |
193 |
|
|
|
194 |
|
|
while (1) { |
195 |
|
|
for (asyncPtr = firstHandler; asyncPtr != NULL; |
196 |
|
|
asyncPtr = asyncPtr->nextPtr) { |
197 |
|
|
if (asyncPtr->ready) { |
198 |
|
|
break; |
199 |
|
|
} |
200 |
|
|
} |
201 |
|
|
if (asyncPtr == NULL) { |
202 |
|
|
break; |
203 |
|
|
} |
204 |
|
|
asyncPtr->ready = 0; |
205 |
|
|
Tcl_MutexUnlock(&asyncMutex); |
206 |
|
|
code = (*asyncPtr->proc)(asyncPtr->clientData, interp, code); |
207 |
|
|
Tcl_MutexLock(&asyncMutex); |
208 |
|
|
} |
209 |
|
|
asyncActive = 0; |
210 |
|
|
Tcl_MutexUnlock(&asyncMutex); |
211 |
|
|
return code; |
212 |
|
|
} |
213 |
|
|
|
214 |
|
|
/* |
215 |
|
|
*---------------------------------------------------------------------- |
216 |
|
|
* |
217 |
|
|
* Tcl_AsyncDelete -- |
218 |
|
|
* |
219 |
|
|
* Frees up all the state for an asynchronous handler. The handler |
220 |
|
|
* should never be used again. |
221 |
|
|
* |
222 |
|
|
* Results: |
223 |
|
|
* None. |
224 |
|
|
* |
225 |
|
|
* Side effects: |
226 |
|
|
* The state associated with the handler is deleted. |
227 |
|
|
* |
228 |
|
|
*---------------------------------------------------------------------- |
229 |
|
|
*/ |
230 |
|
|
|
231 |
|
|
void |
232 |
|
|
Tcl_AsyncDelete(async) |
233 |
|
|
Tcl_AsyncHandler async; /* Token for handler to delete. */ |
234 |
|
|
{ |
235 |
|
|
AsyncHandler *asyncPtr = (AsyncHandler *) async; |
236 |
|
|
AsyncHandler *prevPtr; |
237 |
|
|
|
238 |
|
|
Tcl_MutexLock(&asyncMutex); |
239 |
|
|
if (firstHandler == asyncPtr) { |
240 |
|
|
firstHandler = asyncPtr->nextPtr; |
241 |
|
|
if (firstHandler == NULL) { |
242 |
|
|
lastHandler = NULL; |
243 |
|
|
} |
244 |
|
|
} else { |
245 |
|
|
prevPtr = firstHandler; |
246 |
|
|
while (prevPtr->nextPtr != asyncPtr) { |
247 |
|
|
prevPtr = prevPtr->nextPtr; |
248 |
|
|
} |
249 |
|
|
prevPtr->nextPtr = asyncPtr->nextPtr; |
250 |
|
|
if (lastHandler == asyncPtr) { |
251 |
|
|
lastHandler = prevPtr; |
252 |
|
|
} |
253 |
|
|
} |
254 |
|
|
Tcl_MutexUnlock(&asyncMutex); |
255 |
|
|
ckfree((char *) asyncPtr); |
256 |
|
|
} |
257 |
|
|
|
258 |
|
|
/* |
259 |
|
|
*---------------------------------------------------------------------- |
260 |
|
|
* |
261 |
|
|
* Tcl_AsyncReady -- |
262 |
|
|
* |
263 |
|
|
* This procedure can be used to tell whether Tcl_AsyncInvoke |
264 |
|
|
* needs to be called. This procedure is the external interface |
265 |
|
|
* for checking the internal asyncReady variable. |
266 |
|
|
* |
267 |
|
|
* Results: |
268 |
|
|
* The return value is 1 whenever a handler is ready and is 0 |
269 |
|
|
* when no handlers are ready. |
270 |
|
|
* |
271 |
|
|
* Side effects: |
272 |
|
|
* None. |
273 |
|
|
* |
274 |
|
|
*---------------------------------------------------------------------- |
275 |
|
|
*/ |
276 |
|
|
|
277 |
|
|
int |
278 |
|
|
Tcl_AsyncReady() |
279 |
|
|
{ |
280 |
|
|
return asyncReady; |
281 |
|
|
} |
282 |
|
|
|
283 |
|
|
/* End of tclasync.c */ |