/* $Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/tclxtens/arblenints.c,v 1.12 2001/08/18 09:47:00 dtashley Exp $ */ //-------------------------------------------------------------------------------- //Copyright 2001 David T. Ashley //------------------------------------------------------------------------------------------------- //This source code and any program in which it is compiled/used is provided under the GNU GENERAL //PUBLIC LICENSE, Version 3, full license text below. //------------------------------------------------------------------------------------------------- // GNU GENERAL PUBLIC LICENSE // Version 3, 29 June 2007 // // Copyright (C) 2007 Free Software Foundation, Inc. // Everyone is permitted to copy and distribute verbatim copies // of this license document, but changing it is not allowed. // // Preamble // // The GNU General Public License is a free, copyleft license for //software and other kinds of works. // // The licenses for most software and other practical works are designed //to take away your freedom to share and change the works. By contrast, //the GNU General Public License is intended to guarantee your freedom to //share and change all versions of a program--to make sure it remains free //software for all its users. We, the Free Software Foundation, use the //GNU General Public License for most of our software; it applies also to //any other work released this way by its authors. You can apply it to //your programs, too. // // When we speak of free software, we are referring to freedom, not //price. Our General Public Licenses are designed to make sure that you //have the freedom to distribute copies of free software (and charge for //them if you wish), that you receive source code or can get it if you //want it, that you can change the software or use pieces of it in new //free programs, and that you know you can do these things. // // To protect your rights, we need to prevent others from denying you //these rights or asking you to surrender the rights. Therefore, you have //certain responsibilities if you distribute copies of the software, or if //you modify it: responsibilities to respect the freedom of others. // // For example, if you distribute copies of such a program, whether //gratis or for a fee, you must pass on to the recipients the same //freedoms that you received. You must make sure that they, too, receive //or can get the source code. And you must show them these terms so they //know their rights. // // Developers that use the GNU GPL protect your rights with two steps: //(1) assert copyright on the software, and (2) offer you this License //giving you legal permission to copy, distribute and/or modify it. // // For the developers' and authors' protection, the GPL clearly explains //that there is no warranty for this free software. For both users' and //authors' sake, the GPL requires that modified versions be marked as //changed, so that their problems will not be attributed erroneously to //authors of previous versions. // // Some devices are designed to deny users access to install or run //modified versions of the software inside them, although the manufacturer //can do so. This is fundamentally incompatible with the aim of //protecting users' freedom to change the software. The systematic //pattern of such abuse occurs in the area of products for individuals to //use, which is precisely where it is most unacceptable. Therefore, we //have designed this version of the GPL to prohibit the practice for those //products. If such problems arise substantially in other domains, we //stand ready to extend this provision to those domains in future versions //of the GPL, as needed to protect the freedom of users. // // Finally, every program is threatened constantly by software patents. //States should not allow patents to restrict development and use of //software on general-purpose computers, but in those that do, we wish to //avoid the special danger that patents applied to a free program could //make it effectively proprietary. To prevent this, the GPL assures that //patents cannot be used to render the program non-free. // // The precise terms and conditions for copying, distribution and //modification follow. // // TERMS AND CONDITIONS // // 0. Definitions. // // "This License" refers to version 3 of the GNU General Public License. // // "Copyright" also means copyright-like laws that apply to other kinds of //works, such as semiconductor masks. // // "The Program" refers to any copyrightable work licensed under this //License. Each licensee is addressed as "you". "Licensees" and //"recipients" may be individuals or organizations. // // To "modify" a work means to copy from or adapt all or part of the work //in a fashion requiring copyright permission, other than the making of an //exact copy. The resulting work is called a "modified version" of the //earlier work or a work "based on" the earlier work. // // A "covered work" means either the unmodified Program or a work based //on the Program. // // To "propagate" a work means to do anything with it that, without //permission, would make you directly or secondarily liable for //infringement under applicable copyright law, except executing it on a //computer or modifying a private copy. Propagation includes copying, //distribution (with or without modification), making available to the //public, and in some countries other activities as well. // // To "convey" a work means any kind of propagation that enables other //parties to make or receive copies. Mere interaction with a user through //a computer network, with no transfer of a copy, is not conveying. // // An interactive user interface displays "Appropriate Legal Notices" //to the extent that it includes a convenient and prominently visible //feature that (1) displays an appropriate copyright notice, and (2) //tells the user that there is no warranty for the work (except to the //extent that warranties are provided), that licensees may convey the //work under this License, and how to view a copy of this License. If //the interface presents a list of user commands or options, such as a //menu, a prominent item in the list meets this criterion. // // 1. Source Code. // // The "source code" for a work means the preferred form of the work //for making modifications to it. "Object code" means any non-source //form of a work. // // A "Standard Interface" means an interface that either is an official //standard defined by a recognized standards body, or, in the case of //interfaces specified for a particular programming language, one that //is widely used among developers working in that language. // // The "System Libraries" of an executable work include anything, other //than the work as a whole, that (a) is included in the normal form of //packaging a Major Component, but which is not part of that Major //Component, and (b) serves only to enable use of the work with that //Major Component, or to implement a Standard Interface for which an //implementation is available to the public in source code form. A //"Major Component", in this context, means a major essential component //(kernel, window system, and so on) of the specific operating system //(if any) on which the executable work runs, or a compiler used to //produce the work, or an object code interpreter used to run it. // // The "Corresponding Source" for a work in object code form means all //the source code needed to generate, install, and (for an executable //work) run the object code and to modify the work, including scripts to //control those activities. However, it does not include the work's //System Libraries, or general-purpose tools or generally available free //programs which are used unmodified in performing those activities but //which are not part of the work. For example, Corresponding Source //includes interface definition files associated with source files for //the work, and the source code for shared libraries and dynamically //linked subprograms that the work is specifically designed to require, //such as by intimate data communication or control flow between those //subprograms and other parts of the work. // // The Corresponding Source need not include anything that users //can regenerate automatically from other parts of the Corresponding //Source. // // The Corresponding Source for a work in source code form is that //same work. // // 2. Basic Permissions. // // All rights granted under this License are granted for the term of //copyright on the Program, and are irrevocable provided the stated //conditions are met. This License explicitly affirms your unlimited //permission to run the unmodified Program. The output from running a //covered work is covered by this License only if the output, given its //content, constitutes a covered work. This License acknowledges your //rights of fair use or other equivalent, as provided by copyright law. // // You may make, run and propagate covered works that you do not //convey, without conditions so long as your license otherwise remains //in force. You may convey covered works to others for the sole purpose //of having them make modifications exclusively for you, or provide you //with facilities for running those works, provided that you comply with //the terms of this License in conveying all material for which you do //not control copyright. Those thus making or running the covered works //for you must do so exclusively on your behalf, under your direction //and control, on terms that prohibit them from making any copies of //your copyrighted material outside their relationship with you. // // Conveying under any other circumstances is permitted solely under //the conditions stated below. Sublicensing is not allowed; section 10 //makes it unnecessary. // // 3. Protecting Users' Legal Rights From Anti-Circumvention Law. // // No covered work shall be deemed part of an effective technological //measure under any applicable law fulfilling obligations under article //11 of the WIPO copyright treaty adopted on 20 December 1996, or //similar laws prohibiting or restricting circumvention of such //measures. // // When you convey a covered work, you waive any legal power to forbid //circumvention of technological measures to the extent such circumvention //is effected by exercising rights under this License with respect to //the covered work, and you disclaim any intention to limit operation or //modification of the work as a means of enforcing, against the work's //users, your or third parties' legal rights to forbid circumvention of //technological measures. // // 4. Conveying Verbatim Copies. // // You may convey verbatim copies of the Program's source code as you //receive it, in any medium, provided that you conspicuously and //appropriately publish on each copy an appropriate copyright notice; //keep intact all notices stating that this License and any //non-permissive terms added in accord with section 7 apply to the code; //keep intact all notices of the absence of any warranty; and give all //recipients a copy of this License along with the Program. // // You may charge any price or no price for each copy that you convey, //and you may offer support or warranty protection for a fee. // // 5. Conveying Modified Source Versions. // // You may convey a work based on the Program, or the modifications to //produce it from the Program, in the form of source code under the //terms of section 4, provided that you also meet all of these conditions: // // a) The work must carry prominent notices stating that you modified // it, and giving a relevant date. // // b) The work must carry prominent notices stating that it is // released under this License and any conditions added under section // 7. This requirement modifies the requirement in section 4 to // "keep intact all notices". // // c) You must license the entire work, as a whole, under this // License to anyone who comes into possession of a copy. This // License will therefore apply, along with any applicable section 7 // additional terms, to the whole of the work, and all its parts, // regardless of how they are packaged. This License gives no // permission to license the work in any other way, but it does not // invalidate such permission if you have separately received it. // // d) If the work has interactive user interfaces, each must display // Appropriate Legal Notices; however, if the Program has interactive // interfaces that do not display Appropriate Legal Notices, your // work need not make them do so. // // A compilation of a covered work with other separate and independent //works, which are not by their nature extensions of the covered work, //and which are not combined with it such as to form a larger program, //in or on a volume of a storage or distribution medium, is called an //"aggregate" if the compilation and its resulting copyright are not //used to limit the access or legal rights of the compilation's users //beyond what the individual works permit. Inclusion of a covered work //in an aggregate does not cause this License to apply to the other //parts of the aggregate. // // 6. Conveying Non-Source Forms. // // You may convey a covered work in object code form under the terms //of sections 4 and 5, provided that you also convey the //machine-readable Corresponding Source under the terms of this License, //in one of these ways: // // a) Convey the object code in, or embodied in, a physical product // (including a physical distribution medium), accompanied by the // Corresponding Source fixed on a durable physical medium // customarily used for software interchange. // // b) Convey the object code in, or embodied in, a physical product // (including a physical distribution medium), accompanied by a // written offer, valid for at least three years and valid for as // long as you offer spare parts or customer support for that product // model, to give anyone who possesses the object code either (1) a // copy of the Corresponding Source for all the software in the // product that is covered by this License, on a durable physical // medium customarily used for software interchange, for a price no // more than your reasonable cost of physically performing this // conveying of source, or (2) access to copy the // Corresponding Source from a network server at no charge. // // c) Convey individual copies of the object code with a copy of the // written offer to provide the Corresponding Source. This // alternative is allowed only occasionally and noncommercially, and // only if you received the object code with such an offer, in accord // with subsection 6b. // // d) Convey the object code by offering access from a designated // place (gratis or for a charge), and offer equivalent access to the // Corresponding Source in the same way through the same place at no // further charge. You need not require recipients to copy the // Corresponding Source along with the object code. If the place to // copy the object code is a network server, the Corresponding Source // may be on a different server (operated by you or a third party) // that supports equivalent copying facilities, provided you maintain // clear directions next to the object code saying where to find the // Corresponding Source. Regardless of what server hosts the // Corresponding Source, you remain obligated to ensure that it is // available for as long as needed to satisfy these requirements. // // e) Convey the object code using peer-to-peer transmission, provided // you inform other peers where the object code and Corresponding // Source of the work are being offered to the general public at no // charge under subsection 6d. // // A separable portion of the object code, whose source code is excluded //from the Corresponding Source as a System Library, need not be //included in conveying the object code work. // // A "User Product" is either (1) a "consumer product", which means any //tangible personal property which is normally used for personal, family, //or household purposes, or (2) anything designed or sold for incorporation //into a dwelling. In determining whether a product is a consumer product, //doubtful cases shall be resolved in favor of coverage. For a particular //product received by a particular user, "normally used" refers to a //typical or common use of that class of product, regardless of the status //of the particular user or of the way in which the particular user //actually uses, or expects or is expected to use, the product. A product //is a consumer product regardless of whether the product has substantial //commercial, industrial or non-consumer uses, unless such uses represent //the only significant mode of use of the product. // // "Installation Information" for a User Product means any methods, //procedures, authorization keys, or other information required to install //and execute modified versions of a covered work in that User Product from //a modified version of its Corresponding Source. The information must //suffice to ensure that the continued functioning of the modified object //code is in no case prevented or interfered with solely because //modification has been made. // // If you convey an object code work under this section in, or with, or //specifically for use in, a User Product, and the conveying occurs as //part of a transaction in which the right of possession and use of the //User Product is transferred to the recipient in perpetuity or for a //fixed term (regardless of how the transaction is characterized), the //Corresponding Source conveyed under this section must be accompanied //by the Installation Information. But this requirement does not apply //if neither you nor any third party retains the ability to install //modified object code on the User Product (for example, the work has //been installed in ROM). // // The requirement to provide Installation Information does not include a //requirement to continue to provide support service, warranty, or updates //for a work that has been modified or installed by the recipient, or for //the User Product in which it has been modified or installed. Access to a //network may be denied when the modification itself materially and //adversely affects the operation of the network or violates the rules and //protocols for communication across the network. // // Corresponding Source conveyed, and Installation Information provided, //in accord with this section must be in a format that is publicly //documented (and with an implementation available to the public in //source code form), and must require no special password or key for //unpacking, reading or copying. // // 7. Additional Terms. // // "Additional permissions" are terms that supplement the terms of this //License by making exceptions from one or more of its conditions. //Additional permissions that are applicable to the entire Program shall //be treated as though they were included in this License, to the extent //that they are valid under applicable law. If additional permissions //apply only to part of the Program, that part may be used separately //under those permissions, but the entire Program remains governed by //this License without regard to the additional permissions. // // When you convey a copy of a covered work, you may at your option //remove any additional permissions from that copy, or from any part of //it. (Additional permissions may be written to require their own //removal in certain cases when you modify the work.) You may place //additional permissions on material, added by you to a covered work, //for which you have or can give appropriate copyright permission. // // Notwithstanding any other provision of this License, for material you //add to a covered work, you may (if authorized by the copyright holders of //that material) supplement the terms of this License with terms: // // a) Disclaiming warranty or limiting liability differently from the // terms of sections 15 and 16 of this License; or // // b) Requiring preservation of specified reasonable legal notices or // author attributions in that material or in the Appropriate Legal // Notices displayed by works containing it; or // // c) Prohibiting misrepresentation of the origin of that material, or // requiring that modified versions of such material be marked in // reasonable ways as different from the original version; or // // d) Limiting the use for publicity purposes of names of licensors or // authors of the material; or // // e) Declining to grant rights under trademark law for use of some // trade names, trademarks, or service marks; or // // f) Requiring indemnification of licensors and authors of that // material by anyone who conveys the material (or modified versions of // it) with contractual assumptions of liability to the recipient, for // any liability that these contractual assumptions directly impose on // those licensors and authors. // // All other non-permissive additional terms are considered "further //restrictions" within the meaning of section 10. If the Program as you //received it, or any part of it, contains a notice stating that it is //governed by this License along with a term that is a further //restriction, you may remove that term. If a license document contains //a further restriction but permits relicensing or conveying under this //License, you may add to a covered work material governed by the terms //of that license document, provided that the further restriction does //not survive such relicensing or conveying. // // If you add terms to a covered work in accord with this section, you //must place, in the relevant source files, a statement of the //additional terms that apply to those files, or a notice indicating //where to find the applicable terms. // // Additional terms, permissive or non-permissive, may be stated in the //form of a separately written license, or stated as exceptions; //the above requirements apply either way. // // 8. Termination. // // You may not propagate or modify a covered work except as expressly //provided under this License. Any attempt otherwise to propagate or //modify it is void, and will automatically terminate your rights under //this License (including any patent licenses granted under the third //paragraph of section 11). // // However, if you cease all violation of this License, then your //license from a particular copyright holder is reinstated (a) //provisionally, unless and until the copyright holder explicitly and //finally terminates your license, and (b) permanently, if the copyright //holder fails to notify you of the violation by some reasonable means //prior to 60 days after the cessation. // // Moreover, your license from a particular copyright holder is //reinstated permanently if the copyright holder notifies you of the //violation by some reasonable means, this is the first time you have //received notice of violation of this License (for any work) from that //copyright holder, and you cure the violation prior to 30 days after //your receipt of the notice. // // Termination of your rights under this section does not terminate the //licenses of parties who have received copies or rights from you under //this License. If your rights have been terminated and not permanently //reinstated, you do not qualify to receive new licenses for the same //material under section 10. // // 9. Acceptance Not Required for Having Copies. // // You are not required to accept this License in order to receive or //run a copy of the Program. Ancillary propagation of a covered work //occurring solely as a consequence of using peer-to-peer transmission //to receive a copy likewise does not require acceptance. However, //nothing other than this License grants you permission to propagate or //modify any covered work. These actions infringe copyright if you do //not accept this License. Therefore, by modifying or propagating a //covered work, you indicate your acceptance of this License to do so. // // 10. Automatic Licensing of Downstream Recipients. // // Each time you convey a covered work, the recipient automatically //receives a license from the original licensors, to run, modify and //propagate that work, subject to this License. You are not responsible //for enforcing compliance by third parties with this License. // // An "entity transaction" is a transaction transferring control of an //organization, or substantially all assets of one, or subdividing an //organization, or merging organizations. If propagation of a covered //work results from an entity transaction, each party to that //transaction who receives a copy of the work also receives whatever //licenses to the work the party's predecessor in interest had or could //give under the previous paragraph, plus a right to possession of the //Corresponding Source of the work from the predecessor in interest, if //the predecessor has it or can get it with reasonable efforts. // // You may not impose any further restrictions on the exercise of the //rights granted or affirmed under this License. For example, you may //not impose a license fee, royalty, or other charge for exercise of //rights granted under this License, and you may not initiate litigation //(including a cross-claim or counterclaim in a lawsuit) alleging that //any patent claim is infringed by making, using, selling, offering for //sale, or importing the Program or any portion of it. // // 11. Patents. // // A "contributor" is a copyright holder who authorizes use under this //License of the Program or a work on which the Program is based. The //work thus licensed is called the contributor's "contributor version". // // A contributor's "essential patent claims" are all patent claims //owned or controlled by the contributor, whether already acquired or //hereafter acquired, that would be infringed by some manner, permitted //by this License, of making, using, or selling its contributor version, //but do not include claims that would be infringed only as a //consequence of further modification of the contributor version. For //purposes of this definition, "control" includes the right to grant //patent sublicenses in a manner consistent with the requirements of //this License. // // Each contributor grants you a non-exclusive, worldwide, royalty-free //patent license under the contributor's essential patent claims, to //make, use, sell, offer for sale, import and otherwise run, modify and //propagate the contents of its contributor version. // // In the following three paragraphs, a "patent license" is any express //agreement or commitment, however denominated, not to enforce a patent //(such as an express permission to practice a patent or covenant not to //sue for patent infringement). To "grant" such a patent license to a //party means to make such an agreement or commitment not to enforce a //patent against the party. // // If you convey a covered work, knowingly relying on a patent license, //and the Corresponding Source of the work is not available for anyone //to copy, free of charge and under the terms of this License, through a //publicly available network server or other readily accessible means, //then you must either (1) cause the Corresponding Source to be so //available, or (2) arrange to deprive yourself of the benefit of the //patent license for this particular work, or (3) arrange, in a manner //consistent with the requirements of this License, to extend the patent //license to downstream recipients. "Knowingly relying" means you have //actual knowledge that, but for the patent license, your conveying the //covered work in a country, or your recipient's use of the covered work //in a country, would infringe one or more identifiable patents in that //country that you have reason to believe are valid. // // If, pursuant to or in connection with a single transaction or //arrangement, you convey, or propagate by procuring conveyance of, a //covered work, and grant a patent license to some of the parties //receiving the covered work authorizing them to use, propagate, modify //or convey a specific copy of the covered work, then the patent license //you grant is automatically extended to all recipients of the covered //work and works based on it. // // A patent license is "discriminatory" if it does not include within //the scope of its coverage, prohibits the exercise of, or is //conditioned on the non-exercise of one or more of the rights that are //specifically granted under this License. You may not convey a covered //work if you are a party to an arrangement with a third party that is //in the business of distributing software, under which you make payment //to the third party based on the extent of your activity of conveying //the work, and under which the third party grants, to any of the //parties who would receive the covered work from you, a discriminatory //patent license (a) in connection with copies of the covered work //conveyed by you (or copies made from those copies), or (b) primarily //for and in connection with specific products or compilations that //contain the covered work, unless you entered into that arrangement, //or that patent license was granted, prior to 28 March 2007. // // Nothing in this License shall be construed as excluding or limiting //any implied license or other defenses to infringement that may //otherwise be available to you under applicable patent law. // // 12. No Surrender of Others' Freedom. // // If conditions are imposed on you (whether by court order, agreement or //otherwise) that contradict the conditions of this License, they do not //excuse you from the conditions of this License. If you cannot convey a //covered work so as to satisfy simultaneously your obligations under this //License and any other pertinent obligations, then as a consequence you may //not convey it at all. For example, if you agree to terms that obligate you //to collect a royalty for further conveying from those to whom you convey //the Program, the only way you could satisfy both those terms and this //License would be to refrain entirely from conveying the Program. // // 13. Use with the GNU Affero General Public License. // // Notwithstanding any other provision of this License, you have //permission to link or combine any covered work with a work licensed //under version 3 of the GNU Affero General Public License into a single //combined work, and to convey the resulting work. The terms of this //License will continue to apply to the part which is the covered work, //but the special requirements of the GNU Affero General Public License, //section 13, concerning interaction through a network will apply to the //combination as such. // // 14. Revised Versions of this License. // // The Free Software Foundation may publish revised and/or new versions of //the GNU General Public License from time to time. Such new versions will //be similar in spirit to the present version, but may differ in detail to //address new problems or concerns. // // Each version is given a distinguishing version number. If the //Program specifies that a certain numbered version of the GNU General //Public License "or any later version" applies to it, you have the //option of following the terms and conditions either of that numbered //version or of any later version published by the Free Software //Foundation. If the Program does not specify a version number of the //GNU General Public License, you may choose any version ever published //by the Free Software Foundation. // // If the Program specifies that a proxy can decide which future //versions of the GNU General Public License can be used, that proxy's //public statement of acceptance of a version permanently authorizes you //to choose that version for the Program. // // Later license versions may give you additional or different //permissions. However, no additional obligations are imposed on any //author or copyright holder as a result of your choosing to follow a //later version. // // 15. Disclaimer of Warranty. // // THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY //APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT //HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY //OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, //THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR //PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM //IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF //ALL NECESSARY SERVICING, REPAIR OR CORRECTION. // // 16. Limitation of Liability. // // IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING //WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS //THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY //GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE //USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF //DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD //PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), //EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF //SUCH DAMAGES. // // 17. Interpretation of Sections 15 and 16. // // If the disclaimer of warranty and limitation of liability provided //above cannot be given local legal effect according to their terms, //reviewing courts shall apply local law that most closely approximates //an absolute waiver of all civil liability in connection with the //Program, unless a warranty or assumption of liability accompanies a //copy of the Program in return for a fee. // // END OF TERMS AND CONDITIONS // // How to Apply These Terms to Your New Programs // // If you develop a new program, and you want it to be of the greatest //possible use to the public, the best way to achieve this is to make it //free software which everyone can redistribute and change under these terms. // // To do so, attach the following notices to the program. It is safest //to attach them to the start of each source file to most effectively //state the exclusion of warranty; and each file should have at least //the "copyright" line and a pointer to where the full notice is found. // // // Copyright (C) // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //Also add information on how to contact you by electronic and paper mail. // // If the program does terminal interaction, make it output a short //notice like this when it starts in an interactive mode: // // Copyright (C) // This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. // This is free software, and you are welcome to redistribute it // under certain conditions; type `show c' for details. // //The hypothetical commands `show w' and `show c' should show the appropriate //parts of the General Public License. Of course, your program's commands //might be different; for a GUI interface, you would use an "about box". // // You should also get your employer (if you work as a programmer) or school, //if any, to sign a "copyright disclaimer" for the program, if necessary. //For more information on this, and how to apply and follow the GNU GPL, see //. // // The GNU General Public License does not permit incorporating your program //into proprietary programs. If your program is a subroutine library, you //may consider it more useful to permit linking proprietary applications with //the library. If this is what you want to do, use the GNU Lesser General //Public License instead of this License. But first, please read //. //------------------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------- #define MODULE_ARBLENINTS #include #include #include "tcl.h" #include "tcldecls.h" #include "arblenints.h" #include "bstrfunc.h" #include "extninit.h" #include "gmp_ints.h" #include "gmp_rats.h" #include "gmp_ralg.h" #include "intfunc.h" #include "tclalloc.h" //Handles the "cfbrapab" subextension. //08/16/01: Visual inspection OK. static int ARBLENINTS_cfbrapab_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have at least two additional arguments //to this extension. if (objc < 4) { Tcl_WrongNumArgs(interp, 2, objv, "srn uint_kmax ?uint_hmax? ?options?"); return(TCL_ERROR); } else { char *input_arg; int failure, first_dashed_parameter; char *string_result; int string_result_n_allocd; int chars_reqd; int i; int pred_option_specified = 0; int succ_option_specified = 0; int neversmaller_option_specified = 0; int neverlarger_option_specified = 0; int n_option_specified = 0; unsigned n = 0; GMP_RATS_mpq_struct q_rn; GMP_INTS_mpz_struct z_kmax; GMP_INTS_mpz_struct z_hmax; //Allocate dynamic memory. GMP_RATS_mpq_init(&q_rn); GMP_INTS_mpz_init(&z_kmax); GMP_INTS_mpz_init(&z_hmax); //Grab a pointer to the string representation of //the first input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our first input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &q_rn); if (failure) { rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //Try to parse our next argument as an integer, which //will be KMAX. This must be specified. // //Get string pointer. Storage does not belong to us. input_arg = Tcl_GetString(objv[3]); assert(input_arg != NULL); //Try to convert KMAX to an integer. Fatal if an error, //and fatal if the argument is zero or negative. GMP_INTS_mpz_set_general_int(&z_kmax, &failure, input_arg); //If there was a parse failure or if the integer is zero //or negative, must flag error. if (failure || GMP_INTS_mpz_is_neg(&z_kmax) || GMP_INTS_mpz_is_zero(&z_kmax)) { rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized positive integer.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //We need to look for HMAX as the next parameter, if it exists. //The way we will figure this out is by whether the //parameter begins with a "-" or not. if (objc >= 5) { input_arg = Tcl_GetString(objv[4]); assert(input_arg != NULL); if (input_arg[0] == '-') { first_dashed_parameter = 4; } else { first_dashed_parameter = 5; } } else { first_dashed_parameter = 4; } //If there is another parameter and it //doesn't begin with a dash, try to parse //it as HMAX. We don't explicitly record whether //HMAX is specified, because zero is a signal //when calculating Farey neighbors that HMAX isn't //to be considered. if ((objc >= 5) && (first_dashed_parameter == 5)) { //Get string pointer. Storage does not belong to us. input_arg = Tcl_GetString(objv[4]); assert(input_arg != NULL); //Try to convert HMAX to an integer. Fatal if an error, //and fatal if the argument is zero or negative. GMP_INTS_mpz_set_general_int(&z_hmax, &failure, input_arg); //If there was a parse failure or if the integer is zero //or negative, must flag error. if (failure || GMP_INTS_mpz_is_neg(&z_hmax) || GMP_INTS_mpz_is_zero(&z_hmax)) { rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized positive integer.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } } //Process all of the dashed command-line arguments. //This involves iterating through all of the //parameters and processing them. for (i=first_dashed_parameter; i= (objc - 1)) { rv = Tcl_NewStringObj("arbint cfbrapab: -n option specified without following integer.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //We have at least one additional parameter. Try //to parse out the next parameter as the integer //we need for n. i++; input_arg = Tcl_GetString(objv[i]); assert(input_arg != NULL); GMP_INTS_mpz_parse_into_uint32(&n, &failure, input_arg); //If the parse was unsuccessful, terminate. if (failure) { rv = Tcl_NewStringObj("arbint cfbrapab: -n option followed by invalid integer.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //Clip the integer into a 24-bit quantity. n &= 0x00FFFFFF; } else { //Unrecognized option. Crash out. rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized option.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } } //Look for any mutually exclusive options. Give a catchall if any of //them specified. Because we set them all to 1, addition is the easiest //way to do this. if ((pred_option_specified + succ_option_specified + neversmaller_option_specified + neverlarger_option_specified + n_option_specified) > 1) { rv = Tcl_NewStringObj("arbint cfbrapab: -pred, -succ, -neversmaller, -neverlarger, and -n are mutually exclusive options.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //Split into cases based on what we're doing. This is wasteful of code, //but this is a PC application, not an embedded application. In all cases //create a hard error if something goes wrong. Any anomalies should trash //a script. if (!pred_option_specified && !succ_option_specified && !n_option_specified) { //This is the traditional best approximation case, with the possibility of //the -neverlarger or -neversmaller being specified. This is the most messy //of all the cases. We must gather neighbors and figure out which is closer, //and if there is a tie, which has the smaller magnitude. It is fairly //messy. GMP_RALG_fab_neighbor_collection_struct neighbor_data; GMP_RATS_mpq_struct left_neigh, right_neigh, diff_left, diff_right, closer_neighbor; int dist_cmp; int mag_cmp; //Allocate inner dynamic variables. GMP_RATS_mpq_init(&left_neigh); GMP_RATS_mpq_init(&right_neigh); GMP_RATS_mpq_init(&diff_left); GMP_RATS_mpq_init(&diff_right); GMP_RATS_mpq_init(&closer_neighbor); //Form up the neighbor data. We're only looking for up to one neighbor on each //side. GMP_RALG_consecutive_fab_terms( &q_rn, &z_kmax, &z_hmax, 1, 1, &neighbor_data ); //If there was an error or we couldn't get any neighbors to play with, give //an error return. As long as we have one neighbor on either side, we can definitely //complete. if (neighbor_data.error || (!neighbor_data.equality && (!neighbor_data.n_left_out || !neighbor_data.n_right_out))) { rv = Tcl_NewStringObj("arbint cfbrapab: unable to form neighbors.", -1); Tcl_SetObjResult(interp, rv); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); GMP_RATS_mpq_clear(&left_neigh); GMP_RATS_mpq_clear(&right_neigh); GMP_RATS_mpq_clear(&diff_left); GMP_RATS_mpq_clear(&diff_right); GMP_RATS_mpq_clear(&closer_neighbor); return(TCL_ERROR); } if (neighbor_data.equality) { //The equality case takes precedence, always. GMP_RATS_mpq_copy(&closer_neighbor, &(neighbor_data.norm_rn)); } else { //The boolean test somewhat above guaranteed that we have both left //and right neighbors. We can assume this. GMP_RATS_mpq_copy(&left_neigh, &(neighbor_data.lefts[0].neighbor)); GMP_RATS_mpq_copy(&right_neigh, &(neighbor_data.rights[0].neighbor)); GMP_RATS_mpq_sub(&diff_left, &left_neigh, &(neighbor_data.norm_rn)); GMP_RATS_mpq_sub(&diff_right, &right_neigh, &(neighbor_data.norm_rn)); GMP_INTS_mpz_abs(&(diff_left.num)); GMP_INTS_mpz_abs(&(diff_right.num)); dist_cmp = GMP_RATS_mpq_cmp(&diff_left, &diff_right, NULL); //If we have a tie on the distance, will need to revert to magnitude of the neighbors. GMP_INTS_mpz_abs(&(left_neigh.num)); GMP_INTS_mpz_abs(&(right_neigh.num)); mag_cmp = GMP_RATS_mpq_cmp(&left_neigh, &right_neigh, NULL); if (!neversmaller_option_specified && (neverlarger_option_specified || (dist_cmp < 0) || ((dist_cmp==0) && (mag_cmp < 0)))) { GMP_RATS_mpq_copy(&closer_neighbor, &(neighbor_data.lefts[0].neighbor)); } else { GMP_RATS_mpq_copy(&closer_neighbor, &(neighbor_data.rights[0].neighbor)); } } //Stuff our variable of choice into a string ... chars_reqd = INTFUNC_max( GMP_INTS_mpz_size_in_base_10(&(closer_neighbor.num)), GMP_INTS_mpz_size_in_base_10(&(closer_neighbor.den)) ); string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); GMP_INTS_mpz_to_string(string_result, &(closer_neighbor.num)); rv = Tcl_NewStringObj(string_result, -1); Tcl_AppendToObj(rv, "/", -1); GMP_INTS_mpz_to_string(string_result, &(closer_neighbor.den)); Tcl_AppendToObj(rv, string_result, -1); Tcl_SetObjResult(interp, rv); //Deallocate variables, make normal return. TclpFree(string_result); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); GMP_RATS_mpq_clear(&left_neigh); GMP_RATS_mpq_clear(&right_neigh); GMP_RATS_mpq_clear(&diff_left); GMP_RATS_mpq_clear(&diff_right); GMP_RATS_mpq_clear(&closer_neighbor); return(TCL_OK); } else if (n_option_specified) { char sbuf[50]; //Static buffer just to stage 32-bit integers. //Multiple neighbors. Must iterate through. GMP_RALG_fab_neighbor_collection_struct neighbor_data; //Form up the neighbor data. GMP_RALG_consecutive_fab_terms( &q_rn, &z_kmax, &z_hmax, n, n, &neighbor_data ); //If there was an error forming up the neighbor data, create a hard error. if (neighbor_data.error) { rv = Tcl_NewStringObj("arbint cfbrapab: unable to form neighbors.", -1); Tcl_SetObjResult(interp, rv); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //Allocate a default buffer of 10K for the ASCII representation of integers. //In the vast majority of cases, there will be only one allocation, because it //takes a mean integer to exceed 10K. However, the logic allows it to grow. string_result_n_allocd = 10000; string_result = TclpAlloc(sizeof(char) * string_result_n_allocd); assert(string_result != NULL); //Start off with a return value of the null string. rv = Tcl_NewStringObj("", -1); //Loop through, spitting out the left neighbors. for (i = neighbor_data.n_left_out-1; i >= 0; i--) { //The protocol here is everyone spits out one space before //they print anything. Must skip this on first loop iteration. if (i != neighbor_data.n_left_out-1) Tcl_AppendToObj(rv, " ", -1); //The index will be the negative of the iteration variable minus one. sprintf(sbuf, "%d", -i - 1); Tcl_AppendToObj(rv, sbuf, -1); //Force the buffer to have enough space for the components of the rational //number. chars_reqd = INTFUNC_max( GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[i].neighbor.num)), GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[i].neighbor.den)) ); if (chars_reqd > string_result_n_allocd) { string_result_n_allocd = chars_reqd; string_result = TclpRealloc(string_result, sizeof(char) * string_result_n_allocd); assert(string_result != NULL); } //Print the rational number out to the Tcl object. Tcl_AppendToObj(rv, " ", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[i].neighbor.num)); Tcl_AppendToObj(rv, string_result, -1); Tcl_AppendToObj(rv, "/", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[i].neighbor.den)); Tcl_AppendToObj(rv, string_result, -1); } //Spit out the equality case if appropriate. if (neighbor_data.equality) { if (neighbor_data.n_left_out) Tcl_AppendToObj(rv, " ", -1); Tcl_AppendToObj(rv, "0", -1); //Force the buffer to have enough space for the components of the rational //number. chars_reqd = INTFUNC_max( GMP_INTS_mpz_size_in_base_10(&(neighbor_data.norm_rn.num)), GMP_INTS_mpz_size_in_base_10(&(neighbor_data.norm_rn.den)) ); if (chars_reqd > string_result_n_allocd) { string_result_n_allocd = chars_reqd; string_result = TclpRealloc(string_result, sizeof(char) * string_result_n_allocd); assert(string_result != NULL); } //Print the rational number out to the Tcl object. Tcl_AppendToObj(rv, " ", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.norm_rn.num)); Tcl_AppendToObj(rv, string_result, -1); Tcl_AppendToObj(rv, "/", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.norm_rn.den)); Tcl_AppendToObj(rv, string_result, -1); } //Loop through, spitting out the right neighbors. for (i = 0; i < neighbor_data.n_right_out; i++) { //The protocol here is everyone spits out one space before //they print anything. Must skip this on first loop iteration. if (neighbor_data.n_left_out || neighbor_data.equality || i) Tcl_AppendToObj(rv, " ", -1); //The index will be the iteration variable plus one. sprintf(sbuf, "%d", i+1); Tcl_AppendToObj(rv, sbuf, -1); //Force the buffer to have enough space for the components of the rational //number. chars_reqd = INTFUNC_max( GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[i].neighbor.num)), GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[i].neighbor.den)) ); if (chars_reqd > string_result_n_allocd) { string_result_n_allocd = chars_reqd; string_result = TclpRealloc(string_result, sizeof(char) * string_result_n_allocd); assert(string_result != NULL); } //Print the rational number out to the Tcl object. Tcl_AppendToObj(rv, " ", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[i].neighbor.num)); Tcl_AppendToObj(rv, string_result, -1); Tcl_AppendToObj(rv, "/", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[i].neighbor.den)); Tcl_AppendToObj(rv, string_result, -1); } //Set up for a normal return. Tcl_SetObjResult(interp, rv); TclpFree(string_result); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_OK); } else if (pred_option_specified) { //Simple predecessor case. GMP_RALG_fab_neighbor_collection_struct neighbor_data; //Form up the neighbor data. GMP_RALG_consecutive_fab_terms( &q_rn, &z_kmax, &z_hmax, 1, 0, &neighbor_data ); //If there was an error forming up the neighbor data or there are no left neighbors, //create a hard error. if (neighbor_data.error || !neighbor_data.n_left_out) { rv = Tcl_NewStringObj("arbint cfbrapab: unable to find predecessor.", -1); Tcl_SetObjResult(interp, rv); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //The test above confirmed that we have at least one left neighbor calculated. //We can dump it to a string and finish up. chars_reqd = INTFUNC_max( GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[0].neighbor.num)), GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[0].neighbor.den)) ); string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[0].neighbor.num)); rv = Tcl_NewStringObj(string_result, -1); Tcl_AppendToObj(rv, "/", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[0].neighbor.den)); Tcl_AppendToObj(rv, string_result, -1); Tcl_SetObjResult(interp, rv); TclpFree(string_result); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_OK); } else if (succ_option_specified) { //Simple successor. GMP_RALG_fab_neighbor_collection_struct neighbor_data; //Form up the neighbor data. GMP_RALG_consecutive_fab_terms( &q_rn, &z_kmax, &z_hmax, 0, 1, &neighbor_data ); //If there was an error forming up the neighbor data or there are no right neighbors, //create a hard error. if (neighbor_data.error || !neighbor_data.n_right_out) { rv = Tcl_NewStringObj("arbint cfbrapab: unable to find successor.", -1); Tcl_SetObjResult(interp, rv); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_ERROR); } //The test above confirmed that we have at least one right neighbor calculated. //We can dump it to a string and finish up. chars_reqd = INTFUNC_max( GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[0].neighbor.num)), GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[0].neighbor.den)) ); string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[0].neighbor.num)); rv = Tcl_NewStringObj(string_result, -1); Tcl_AppendToObj(rv, "/", -1); GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[0].neighbor.den)); Tcl_AppendToObj(rv, string_result, -1); Tcl_SetObjResult(interp, rv); TclpFree(string_result); GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); return(TCL_OK); } //Free up all dynamic memory. GMP_RATS_mpq_clear(&q_rn); GMP_INTS_mpz_clear(&z_kmax); GMP_INTS_mpz_clear(&z_hmax); //Return return(TCL_OK); } } //Handles the "cfratnum" subextension. //08/07/01: Visually inspected, OK. static int ARBLENINTS_cfratnum_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly one additional argument //to this function, which is the rational number //whose continued fraction decomposition is to be //calculated. if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "urn"); return(TCL_ERROR); } else { char *input_arg; int failure; unsigned chars_reqd; char *string_result; int n_string_result; int i; GMP_RATS_mpq_struct rn; GMP_RALG_cf_app_struct decomp; //In this function, we are going to return a string //result formed by starting with a string and then //concatenating to it again and again. We start //off believing that 10,000 characters of space is enough, //but we may need to revise upward and reallocate. //A 10,000 character block is chosen because it is quick //to allocate and most times won't go beyond that. n_string_result = 10000; string_result = TclpAlloc(sizeof(char) * n_string_result); assert(string_result != NULL); //We will need a rational number to hold the return value //from the parsing function. Allocate that now. GMP_RATS_mpq_init(&rn); //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &rn); if (failure) { rv = Tcl_NewStringObj("arbint cfratnum: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized non-negative rational number.", -1); Tcl_SetObjResult(interp, rv); TclpFree(string_result); GMP_RATS_mpq_clear(&rn); return(TCL_ERROR); } //OK, we have a rational number, but there is a possibility //it is negative, which is a no-no. Normalize the signs //for easier testing. GMP_RATS_mpq_normalize_sign(&rn); if (GMP_INTS_mpz_is_neg(&(rn.num))) { rv = Tcl_NewStringObj("arbint cfratnum: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is negative.", -1); Tcl_SetObjResult(interp, rv); TclpFree(string_result); GMP_RATS_mpq_clear(&rn); return(TCL_ERROR); } //OK, we have a rational number. Form the continued fraction //decomposition of it. The function called is set up so that //one must deallocate, even in an error condition. GMP_RALG_cfdecomp_init(&decomp, &failure, &(rn.num), &(rn.den)); //If we failed in the decomposition (don't know why that would //happen) use the general error flag "NAN". if (failure) { rv = Tcl_NewStringObj("NAN", -1); Tcl_SetObjResult(interp, rv); TclpFree(string_result); GMP_RATS_mpq_clear(&rn); GMP_RALG_cfdecomp_destroy(&decomp); return(TCL_ERROR); } //OK, that really is the last error we could have. //Iterate, adding the partial quotients and convergents //to the string which we'll return. We need to watch out //for running over our 10K buffer. rv = Tcl_NewStringObj("", -1); for (i=0; i (unsigned)n_string_result) { n_string_result = chars_reqd; string_result = TclpRealloc(string_result, sizeof(char) * n_string_result); } GMP_INTS_mpz_to_string(string_result, &(decomp.a[i])); Tcl_AppendToObj(rv, string_result, -1); Tcl_AppendToObj(rv, " ", -1); //Numerator of convergent. chars_reqd = GMP_INTS_mpz_size_in_base_10(&(decomp.p[i])); if (chars_reqd > (unsigned)n_string_result) { n_string_result = chars_reqd; string_result = TclpRealloc(string_result, sizeof(char) * n_string_result); } GMP_INTS_mpz_to_string(string_result, &(decomp.p[i])); Tcl_AppendToObj(rv, string_result, -1); Tcl_AppendToObj(rv, " ", -1); //Denominator of convergent. chars_reqd = GMP_INTS_mpz_size_in_base_10(&(decomp.q[i])); if (chars_reqd > (unsigned)n_string_result) { n_string_result = chars_reqd; string_result = TclpRealloc(string_result, sizeof(char) * n_string_result); } GMP_INTS_mpz_to_string(string_result, &(decomp.q[i])); Tcl_AppendToObj(rv, string_result, -1); if (i != (decomp.n - 1)) //No space after last number. Tcl_AppendToObj(rv, " ", -1); } //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. TclpFree(string_result); GMP_RATS_mpq_clear(&rn); GMP_RALG_cfdecomp_destroy(&decomp); //Return return(TCL_OK); } } //Handles the "commanate" subextension. //07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this //from memory an intuition as far as how to set return results and so forth. static int ARBLENINTS_commanate_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have one and exactly one additional argument //to this function, which is the string we want to //commanate. if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "sint"); return(TCL_ERROR); } else { char *string_arg; //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. string_arg = Tcl_GetString(objv[2]); assert(string_arg != NULL); //Try to parse the string as one of the error tags. //If it is one of those, it isn't an error, but don't //want to touch the string. if (GMP_INTS_identify_nan_string(string_arg) >= 0) { rv = Tcl_NewStringObj(string_arg, -1); Tcl_SetObjResult(interp, rv); return(TCL_OK); } //Try to parse it as a signed integer with commas already. //If it already has commas, there is no need to add any. else if (BSTRFUNC_is_sint_w_commas(string_arg)) { //This is already an acceptable commanated signed integer. Send it //back as the return value. rv = Tcl_NewStringObj(string_arg, -1); Tcl_SetObjResult(interp, rv); return(TCL_OK); } //Try to parse the argument as a signed integer without commas. //If it is one of those, commanate it and return it. else if (BSTRFUNC_is_sint_wo_commas(string_arg)) { size_t len; char *buffer; len = strlen(string_arg); buffer = TclpAlloc(((sizeof(char) * 4 * len) / 3) + 10); strcpy(buffer, string_arg); BSTRFUNC_commanate(buffer); rv = Tcl_NewStringObj(buffer, -1); TclpFree(buffer); Tcl_SetObjResult(interp, rv); return(TCL_OK); } else { //Error case. Must give error message. rv = Tcl_NewStringObj("arbint commanate: \"", -1); Tcl_AppendToObj(rv, string_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized integer.", -1); Tcl_SetObjResult(interp, rv); return(TCL_ERROR); } } } //Handles the "const" subextension. //08/17/01: Visual inspection OK. static int ARBLENINTS_const_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { //Table of constants used. static struct { char *tag; //The symbolic tag used to identify the number. char *desc; //The full description of the number. It must consist //of a string with lines no longer than about 70 chars, //separated by newlines, and indented by 6 spaces. char *minmant; //The minimum mantissa or minimum representation. //May not be empty or NULL. char *mantrem; //The remaining mantissa or remaining portion of //number. May be empty, but may not be NULL. char *exp; //The exponent portion, if any, or NULL otherwise. int deflen; //The default number of digits for the constant //if none is specified. int digit_count_offset; //The offset to go from string length of mantissa //portions to number of digits. Cheap way to adjust //for - sign and decimal point. } tbl[] = { //e--the transcendental number e. { //tag "e", //desc " Historically significant transcendental constant. Digits obtained\n" " from http://fermi.udw.ac.za/physics/e.html on 08/17/01.", //minmant "2.7", //mantrem "182818284590452353602874713526624977572470936999595749669676277240766303535" "475945713821785251664274274663919320030599218174135966290435729003342952605956" "307381323286279434907632338298807531952510190115738341879307021540891499348841" "675092447614606680822648001684774118537423454424371075390777449920695517027618" "386062613313845830007520449338265602976067371132007093287091274437470472306969" "772093101416928368190255151086574637721112523897844250569536967707854499699679" "468644549059879316368892300987931277361782154249992295763514822082698951936680" "331825288693984964651058209392398294887933203625094431173012381970684161403970" "198376793206832823764648042953118023287825098194558153017567173613320698112509" "961818815930416903515988885193458072738667385894228792284998920868058257492796" "104841984443634632449684875602336248270419786232090021609902353043699418491463" "140934317381436405462531520961836908887070167683964243781405927145635490613031" "07208510383750510115747704171898610687396965521267154688957035035", //exp NULL, //deflen 30, //digit_count_offset 1 }, //g_metric { //tag "g_si", //desc " Gravitational acceleration in SI units, meters per second**2.\n" " Obtained from NIST Special Publication 811 on 08/17/01.", //minmant "9.80665", //mantrem "", //exp NULL, //deflen 30, //digit_count_offset 1 }, //in2m { //tag "in2m", //desc " Multiplicative conversion factor from inches to meters.\n" " Obtained from NIST Special Publication 811 on 08/17/01.", //minmant "2.54", //mantrem "", //exp "e-2", //deflen 30, //digit_count_offset 1 }, //mi2km { //tag "mi2km", //desc " Multiplicative conversion factor from miles to kilometers.\n" " Obtained from NIST Special Publication 811 on 08/17/01.", //minmant "1.609344", //mantrem "", //exp NULL, //deflen 30, //digit_count_offset 1 }, //pi--the transcendental number PI. { //tag "pi", //desc " Transcendental constant supplying ratio of a circle's circumference\n" " to its diameter. Digits obtained from http://www.joyofpi.com/\n" " pi.htm on 08/17/01.", //minmant "3.14", //mantrem "15926535897932384626433832795028841971" "6939937510582097494459230781640628620899" "8628034825342117067982148086513282306647" "0938446095505822317253594081284811174502" "8410270193852110555964462294895493038196" "4428810975665933446128475648233786783165" "2712019091456485669234603486104543266482" "1339360726024914127372458700660631558817" "4881520920962829254091715364367892590360" "0113305305488204665213841469519415116094" "3305727036575959195309218611738193261179" "3105118548074462379962749567351885752724" "8912279381830119491298336733624406566430" "8602139494639522473719070217986094370277" "0539217176293176752384674818467669405132" "0005681271452635608277857713427577896091" "7363717872146844090122495343014654958537" "1050792279689258923542019956112129021960" "8640344181598136297747713099605187072113" "4999999837297804995105973173281609631859" "5024459455346908302642522308253344685035" "2619311881710100031378387528865875332083" "8142061717766914730359825349042875546873" "1159562863882353787593751957781857780532" "1712268066130019278766111959092164201989" "3809525720106548586327886593615338182796" "8230301952035301852968995773622599413891" "2497217752834791315155748572424541506959" "5082953311686172785588907509838175463746" "4939319255060400927701671139009848824012", //exp NULL, //deflen 30, //digit_count_offset 1 }, //sqrt5--the square root of 5. { //tag "sqrt5", //desc " The square root of 5. Digits obtained from\n" " http://home.earthlink.net/~maryski/sqrt51000000.txt on 08/17/01.", //minmant "2.236", //mantrem "0679774997896964091736687312762354406183596115257242708972454105209256378048" "99414414408378782274969508176150773783504253267724447073863586360121533452708866" "77817319187916581127664532263985658053576135041753378500342339241406444208643253" "90972525926272288762995174024406816117759089094984923713907297288984820886415426" "89894099131693577019748678884425089754132956183176921499977424801530434115035957" "66833251249881517813940800056242085524354223555610630634282023409333198293395974" "63522712013417496142026359047378855043896870611356600457571399565955669569175645" "78221952500060539231234005009286764875529722056766253666074485853505262330678494" "63342224231763727702663240768010444331582573350589309813622634319868647194698997" "01808189524264459620345221411922329125981963258111041704958070481204034559949435" "06855551855572512388641655010262436312571024449618789424682903404474716115455723" "20173767659046091852957560357798439805415538077906439363972302875606299948221385" "21773485924535151210463455550407072278724215347787529112121211843317893351910380", //exp NULL, //deflen 30, //digit_count_offset 1 }, }; Tcl_Obj *rv; //Value that will be returned to caller. int i; //Iteration variable. int tbl_idx; //Index into lookup table, of -1 if not found. int ndigits; //The number of digits to supply. int result_code; //Return value from Tcl library function. //We must have either one or two additional arguments. if ((objc != 3) && (objc != 4)) { Tcl_WrongNumArgs(interp, 2, objv, "constant_tag ?ndigits?"); return(TCL_ERROR); } else { char *string_arg; //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. string_arg = Tcl_GetString(objv[2]); assert(string_arg != NULL); //Try to look up the string argument in the table. tbl_idx = -1; for (i=0; i 0) { if (ndigits >= (int)strlen(tbl[tbl_idx].mantrem)) { Tcl_AppendToObj(rv, tbl[tbl_idx].mantrem, -1); } else { Tcl_AppendToObj(rv, tbl[tbl_idx].mantrem, ndigits); } } //Append the exponent portion. if (tbl[tbl_idx].exp) Tcl_AppendToObj(rv, tbl[tbl_idx].exp, -1); //Default successful return. Tcl_SetObjResult(interp, rv); return(TCL_OK); } } //Handles the "decommanate" subextension. //07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this //from memory an intuition as far as how to set return results and so forth. static int ARBLENINTS_decommanate_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have one and exactly one additional argument //to this function, which is the string we want to //decommanate. if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "sint"); return(TCL_ERROR); } else { char *string_arg; //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. string_arg = Tcl_GetString(objv[2]); assert(string_arg != NULL); //Try to parse the string as one of the error tags. //If it is one of those, it isn't an error, but don't //want to touch the string. if (GMP_INTS_identify_nan_string(string_arg) >= 0) { rv = Tcl_NewStringObj(string_arg, -1); Tcl_SetObjResult(interp, rv); return(TCL_OK); } //Try to parse it as a signed integer without commas. //If it has no commas, there is no need to decommanate it. else if (BSTRFUNC_is_sint_wo_commas(string_arg)) { //This is already an acceptable commanated signed integer. Send it //back as the return value. rv = Tcl_NewStringObj(string_arg, -1); Tcl_SetObjResult(interp, rv); return(TCL_OK); } //Try to parse the argument as a signed integer with commas. //If it is one of those, decommanate it and return it. else if (BSTRFUNC_is_sint_w_commas(string_arg)) { size_t len; char *buffer; len = strlen(string_arg); buffer = TclpAlloc(sizeof(char) * len + 1); strcpy(buffer, string_arg); BSTRFUNC_decommanate(buffer); rv = Tcl_NewStringObj(buffer, -1); TclpFree(buffer); Tcl_SetObjResult(interp, rv); return(TCL_OK); } else { //Error case. Must give error message. rv = Tcl_NewStringObj("arbint decommanate: \"", -1); Tcl_AppendToObj(rv, string_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized integer.", -1); Tcl_SetObjResult(interp, rv); return(TCL_ERROR); } } } //Handles the "intadd" subextension. //08/06/01: Visual inspection OK. static int ARBLENINTS_intadd_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //sum is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; char *add_arg1, *add_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integer result. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_arg2); GMP_INTS_mpz_init(&arb_result); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. add_arg1 = Tcl_GetString(objv[2]); assert(add_arg1 != NULL); add_arg2 = Tcl_GetString(objv[3]); assert(add_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(add_arg1); j = GMP_INTS_identify_nan_string(add_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, add_arg1); GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, add_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intadd: \"", -1); if (failure1) Tcl_AppendToObj(rv, add_arg1, -1); else Tcl_AppendToObj(rv, add_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Calculate the sum. GMP_INTS_mpz_add(&arb_result, &arb_arg1, &arb_arg2); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //08/01/01: Visual inspection and some unit testing, OK. //Handles the "intcmp" subextension. static int ARBLENINTS_intcmp_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers to be compared. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_arg2; char *cmp_arg1, *cmp_arg2; int failure1, failure2; int i, j, compare_result; //Allocate space for the arbitrary-length integer result. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_arg2); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. cmp_arg1 = Tcl_GetString(objv[2]); assert(cmp_arg1 != NULL); cmp_arg2 = Tcl_GetString(objv[3]); assert(cmp_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //We cannot compare NAN tags. If either is a NAN tag, we must signal an //error. i = GMP_INTS_identify_nan_string(cmp_arg1); j = GMP_INTS_identify_nan_string(cmp_arg2); if ((i >= 0) || (j >= 0)) { rv = Tcl_NewStringObj("arbint intcmp: cannot compare NAN symbolic tags.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); return(TCL_ERROR); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, cmp_arg1); GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, cmp_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intcmp: \"", -1); if (failure1) Tcl_AppendToObj(rv, cmp_arg1, -1); else Tcl_AppendToObj(rv, cmp_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); return(TCL_ERROR); } //Calculate the compare result. compare_result = GMP_INTS_mpz_cmp(&arb_arg1, &arb_arg2); //Assign the return value based on the result. if (compare_result < 0) rv = Tcl_NewStringObj("-1", -1); else if (compare_result == 0) rv = Tcl_NewStringObj("0", -1); else rv = Tcl_NewStringObj("1", -1); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intdiv" subextension. //07/31/01: Visually inspected, OK. static int ARBLENINTS_intdiv_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //integer quotient is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_dividend, arb_divisor, arb_quotient, arb_remainder; char *dividend_arg1, *divisor_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integer arguments and results. GMP_INTS_mpz_init(&arb_dividend); GMP_INTS_mpz_init(&arb_divisor); GMP_INTS_mpz_init(&arb_quotient); GMP_INTS_mpz_init(&arb_remainder); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. dividend_arg1 = Tcl_GetString(objv[2]); assert(dividend_arg1 != NULL); divisor_arg2 = Tcl_GetString(objv[3]); assert(divisor_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(dividend_arg1); j = GMP_INTS_identify_nan_string(divisor_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_dividend); GMP_INTS_mpz_clear(&arb_divisor); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_dividend, &failure1, dividend_arg1); GMP_INTS_mpz_set_general_int(&arb_divisor, &failure2, divisor_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intdiv: \"", -1); if (failure1) Tcl_AppendToObj(rv, dividend_arg1, -1); else Tcl_AppendToObj(rv, divisor_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_dividend); GMP_INTS_mpz_clear(&arb_divisor); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); return(TCL_ERROR); } //Calculate the quotient. GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder, &arb_dividend, &arb_divisor); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_quotient); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_quotient); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_dividend); GMP_INTS_mpz_clear(&arb_divisor); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //08/01/01: Visually inspected. //Handles the "intexp" subextension. static int ARBLENINTS_intexp_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers used to //calculate the exponential. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint uint32"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_result; unsigned arg2; char *str_arg1, *str_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integers. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_result); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. str_arg1 = Tcl_GetString(objv[2]); assert(str_arg1 != NULL); str_arg2 = Tcl_GetString(objv[3]); assert(str_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(str_arg1); j = GMP_INTS_identify_nan_string(str_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert the first string into arbitrary integers. //The first string can be anything, including zero or a negative //arugument. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, str_arg1); //If the conversion of the first string did not go alright, //print error message and abort. if (failure1) { rv = Tcl_NewStringObj("arbint intexp: \"", -1); Tcl_AppendToObj(rv, str_arg1, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Try to convert the second string into an unsigned 32-bit //integer. GMP_INTS_mpz_parse_into_uint32(&arg2, &failure2, str_arg2); //If the conversion of the second string did not go alright, //print error message and abort. if (failure2) { rv = Tcl_NewStringObj("arbint intexp: \"", -1); Tcl_AppendToObj(rv, str_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized unsigned 32-bit integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Calculate the exponential. GMP_INTS_mpz_pow_ui(&arb_result, &arb_arg1, arg2); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intfac" subextension. //07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this //from memory an intuition as far as how to set return results and so forth. static int ARBLENINTS_intfac_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have one and exactly one additional argument //to this function, which is the integer whose //factorial is to be evaluated. if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "uint32"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_result; char *fac_arg; int failure; unsigned fac_ui_arg; unsigned chars_reqd; char *string_result; int i; //Allocate space for the arbitrary-length integer result. GMP_INTS_mpz_init(&arb_result); //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. fac_arg = Tcl_GetString(objv[2]); assert(fac_arg != NULL); //Try to interpret the string as one of the NAN tags. //If it is one, return the appropriate result for //a unary operation. if ((i = GMP_INTS_identify_nan_string(fac_arg)) >= 0) { const char *p; switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert the string to a UINT32 using all //known methods. GMP_INTS_mpz_parse_into_uint32(&fac_ui_arg, &failure, fac_arg); //If there was a parse failure, we have to return an error //message. if (failure) { rv = Tcl_NewStringObj("arbint intfac: \"", -1); Tcl_AppendToObj(rv, fac_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized 32-bit unsigned integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Calculate the factorial. GMP_INTS_mpz_fac_ui(&arb_result, fac_ui_arg); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integer. GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intgcd" subextension. //08/06/01: Visual inspection OK. static int ARBLENINTS_intgcd_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //gcd is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; char *gcd_arg1, *gcd_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integer result. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_arg2); GMP_INTS_mpz_init(&arb_result); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. gcd_arg1 = Tcl_GetString(objv[2]); assert(gcd_arg1 != NULL); gcd_arg2 = Tcl_GetString(objv[3]); assert(gcd_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(gcd_arg1); j = GMP_INTS_identify_nan_string(gcd_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, gcd_arg1); GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, gcd_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intgcd: \"", -1); if (failure1) Tcl_AppendToObj(rv, gcd_arg1, -1); else Tcl_AppendToObj(rv, gcd_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Calculate the gcd. GMP_INTS_mpz_gcd(&arb_result, &arb_arg1, &arb_arg2); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intlcm" subextension. //08/10/01: Visual inspection OK. static int ARBLENINTS_intlcm_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //lcm is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_arg2, gcd, remainder, arb_result; char *lcm_arg1, *lcm_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integers. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_arg2); GMP_INTS_mpz_init(&gcd); GMP_INTS_mpz_init(&remainder); GMP_INTS_mpz_init(&arb_result); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. lcm_arg1 = Tcl_GetString(objv[2]); assert(lcm_arg1 != NULL); lcm_arg2 = Tcl_GetString(objv[3]); assert(lcm_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(lcm_arg1); j = GMP_INTS_identify_nan_string(lcm_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&gcd); GMP_INTS_mpz_clear(&remainder); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, lcm_arg1); GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, lcm_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intlcm: \"", -1); if (failure1) Tcl_AppendToObj(rv, lcm_arg1, -1); else Tcl_AppendToObj(rv, lcm_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&gcd); GMP_INTS_mpz_clear(&remainder); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Adjust errant arguments. if (GMP_INTS_mpz_is_neg(&arb_arg1)) GMP_INTS_mpz_negate(&arb_arg1); else if (GMP_INTS_mpz_is_zero(&arb_arg1)) GMP_INTS_mpz_set_ui(&arb_arg1, 1); if (GMP_INTS_mpz_is_neg(&arb_arg2)) GMP_INTS_mpz_negate(&arb_arg2); else if (GMP_INTS_mpz_is_zero(&arb_arg2)) GMP_INTS_mpz_set_ui(&arb_arg2, 1); //Calculate the gcd. GMP_INTS_mpz_gcd(&gcd, &arb_arg1, &arb_arg2); //Calculate the lcm. GMP_INTS_mpz_mul(&arb_arg1, &arb_arg1, &arb_arg2); GMP_INTS_mpz_tdiv_qr(&arb_result, &remainder, &arb_arg1, &gcd); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&gcd); GMP_INTS_mpz_clear(&remainder); GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intmod" subextension. //08/06/01: Visual inspection OK. static int ARBLENINTS_intmod_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //integer quotient is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_dividend, arb_divisor, arb_quotient, arb_remainder; char *dividend_arg1, *divisor_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integer arguments and results. GMP_INTS_mpz_init(&arb_dividend); GMP_INTS_mpz_init(&arb_divisor); GMP_INTS_mpz_init(&arb_quotient); GMP_INTS_mpz_init(&arb_remainder); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. dividend_arg1 = Tcl_GetString(objv[2]); assert(dividend_arg1 != NULL); divisor_arg2 = Tcl_GetString(objv[3]); assert(divisor_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(dividend_arg1); j = GMP_INTS_identify_nan_string(divisor_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_dividend); GMP_INTS_mpz_clear(&arb_divisor); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_dividend, &failure1, dividend_arg1); GMP_INTS_mpz_set_general_int(&arb_divisor, &failure2, divisor_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intmod: \"", -1); if (failure1) Tcl_AppendToObj(rv, dividend_arg1, -1); else Tcl_AppendToObj(rv, divisor_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_dividend); GMP_INTS_mpz_clear(&arb_divisor); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); return(TCL_ERROR); } //Calculate the quotient and remainder. GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder, &arb_dividend, &arb_divisor); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_remainder); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_remainder); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_dividend); GMP_INTS_mpz_clear(&arb_divisor); GMP_INTS_mpz_clear(&arb_quotient); GMP_INTS_mpz_clear(&arb_remainder); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intmul" subextension. //08/06/01: Visual inspection OK. static int ARBLENINTS_intmul_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //product is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; char *mul_arg1, *mul_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integer result. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_arg2); GMP_INTS_mpz_init(&arb_result); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. mul_arg1 = Tcl_GetString(objv[2]); assert(mul_arg1 != NULL); mul_arg2 = Tcl_GetString(objv[3]); assert(mul_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(mul_arg1); j = GMP_INTS_identify_nan_string(mul_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, mul_arg1); GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, mul_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intmul: \"", -1); if (failure1) Tcl_AppendToObj(rv, mul_arg1, -1); else Tcl_AppendToObj(rv, mul_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Calculate the product. GMP_INTS_mpz_mul(&arb_result, &arb_arg1, &arb_arg2); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "intsub" subextension. //08/06/01: Visual inspection OK. static int ARBLENINTS_intsub_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have two and exactly two additional arguments //to this function, which are the integers whose //difference is to be calculated. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "sint sint"); return(TCL_ERROR); } else { GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; char *sub_arg1, *sub_arg2; int failure1, failure2; unsigned chars_reqd; char *string_result; int i, j; //Allocate space for the arbitrary-length integer result. GMP_INTS_mpz_init(&arb_arg1); GMP_INTS_mpz_init(&arb_arg2); GMP_INTS_mpz_init(&arb_result); //Grab pointers to the string representation of //the input arguments. The storage does not belong to us. sub_arg1 = Tcl_GetString(objv[2]); assert(sub_arg1 != NULL); sub_arg2 = Tcl_GetString(objv[3]); assert(sub_arg2 != NULL); //Try to interpret either of the strings as one of the NAN tags. //If it is one, return the appropriate result for //a binary operation. i = GMP_INTS_identify_nan_string(sub_arg1); j = GMP_INTS_identify_nan_string(sub_arg2); if ((i >= 0) || (j >= 0)) { const char *p; //Find the max of i and j. This isn't a scientific way to tag the //result, but will be OK. Some information is lost no matter what //we do. if (i > j) ; else i = j; //i now contains the max. switch (i) { case 0: p = GMP_INTS_supply_nan_string(2); break; case 1: p = GMP_INTS_supply_nan_string(3); break; case 2: p = GMP_INTS_supply_nan_string(2); break; case 3: p = GMP_INTS_supply_nan_string(3); break; default: assert(0); break; } rv = Tcl_NewStringObj(p, -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_OK); } //Try to convert both strings into arbitrary integers. GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, sub_arg1); GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, sub_arg2); //If there was a parse failure, we have to return an error //message. It is possible that both arguments failed the parse, //but only return one in the error message. if (failure1 || failure2) { rv = Tcl_NewStringObj("arbint intsub: \"", -1); if (failure1) Tcl_AppendToObj(rv, sub_arg1, -1); else Tcl_AppendToObj(rv, sub_arg2, -1); Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); Tcl_SetObjResult(interp, rv); GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); return(TCL_ERROR); } //Calculate the difference. GMP_INTS_mpz_sub(&arb_result, &arb_arg1, &arb_arg2); //Figure out the number of characters required for //the output string. chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); //Allocate space for the conversion result. string_result = TclpAlloc(sizeof(char) * chars_reqd); assert(string_result != NULL); //Make the conversion to a character string. GMP_INTS_mpz_to_string(string_result, &arb_result); //Assign the string result to a Tcl object. rv = Tcl_NewStringObj(string_result, -1); //Deallocate the string. TclpFree(string_result); //Deallocate space for the arbitrary-length integers. GMP_INTS_mpz_clear(&arb_arg1); GMP_INTS_mpz_clear(&arb_arg2); GMP_INTS_mpz_clear(&arb_result); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //Handles the "iseflag" subextension. //07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this //from memory an intuition as far as how to set return results and so forth. static int ARBLENINTS_iseflag_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have one and exactly one additional argument //to this function, which is the string we want to //classify. if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "stringarg"); return(TCL_ERROR); } else { char *string_arg; //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. string_arg = Tcl_GetString(objv[2]); assert(string_arg != NULL); //Try to parse it out. We will definitely get one of //the return values. if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_POS_STRING)) { rv = Tcl_NewStringObj("1", -1); } else if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_NEG_STRING)) { rv = Tcl_NewStringObj("2", -1); } else if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_TAINT_POS_STRING)) { rv = Tcl_NewStringObj("3", -1); } else if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_TAINT_NEG_STRING)) { rv = Tcl_NewStringObj("4", -1); } else { rv = Tcl_NewStringObj("0", -1); } //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Return return(TCL_OK); } } //08/08/01: Visual inspection OK. static int ARBLENINTS_rnadd_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly two additional arguments //to this function, which are the rational numbers //to add. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "srn srn"); return(TCL_ERROR); } else { char *input_arg; int failure; char *string_result; GMP_RATS_mpq_struct arg1, arg2, result; //Allocate space for the rational numbers. GMP_RATS_mpq_init(&arg1); GMP_RATS_mpq_init(&arg2); GMP_RATS_mpq_init(&result); //Grab a pointer to the string representation of //the first input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our first input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg1); if (failure) { rv = Tcl_NewStringObj("arbint rnadd: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Grab a pointer to the string representation of //the second input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[3]); assert(input_arg != NULL); //Try to parse our second input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg2); if (failure) { rv = Tcl_NewStringObj("arbint rnadd: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Perform the actual addition of the rational numbers. All //error cases are covered. If either of the inputs has a //denominator of zero, this will propagate to the result. GMP_RATS_mpq_add(&result, &arg1, &arg2); //If the result has been NAN'd, return the string "NAN". if (GMP_RATS_mpq_is_nan(&result)) { rv = Tcl_NewStringObj("NAN", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_OK); } //Allocate space for the string result which we'll form for //both numerator and denominator. We need the maximum, because we'll only //do one number at a time. string_result = TclpAlloc(sizeof(char) * INTFUNC_max ( GMP_INTS_mpz_size_in_base_10(&(result.num)), GMP_INTS_mpz_size_in_base_10(&(result.den)) ) ); assert(string_result != NULL); //Convert the numerator to a string and set that to be the //return value. GMP_INTS_mpz_to_string(string_result, &(result.num)); rv = Tcl_NewStringObj(string_result, -1); //Append the separating slash. Tcl_AppendToObj(rv, "/", -1); //Convert the denominator to a string and append that to the //return value. GMP_INTS_mpz_to_string(string_result, &(result.den)); Tcl_AppendToObj(rv, string_result, -1); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. TclpFree(string_result); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); //Return return(TCL_OK); } } //08/16/01: Visual inspection OK. static int ARBLENINTS_rncmp_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly two additional arguments //to this function, which are the rational numbers //to compare. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "srn srn"); return(TCL_ERROR); } else { char *input_arg; int failure, compare_result; GMP_RATS_mpq_struct arg1, arg2; //Allocate space for the rational numbers. GMP_RATS_mpq_init(&arg1); GMP_RATS_mpq_init(&arg2); //Grab a pointer to the string representation of //the first input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our first input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg1); if (failure) { rv = Tcl_NewStringObj("arbint rncmp: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); return(TCL_ERROR); } //Grab a pointer to the string representation of //the second input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[3]); assert(input_arg != NULL); //Try to parse our second input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg2); if (failure) { rv = Tcl_NewStringObj("arbint rncmp: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); return(TCL_ERROR); } //Perform the actual comparison of the rational numbers. All //error cases are covered. If either of the inputs has a //denominator of zero, this will propagate to the result. compare_result = GMP_RATS_mpq_cmp(&arg1, &arg2, &failure); //If the failure flag was thrown, we have to throw an error. //The reason is that if we can't successfully compare the two //rational numbers, then we have to kill the script--logical //correctness is not possible. if (failure) { rv = Tcl_NewStringObj("arbint rncmp: can't compare supplied rational numbers.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); return(TCL_ERROR); } //Convert the comparison result to a string. if (compare_result < 0) rv = Tcl_NewStringObj("-1", -1); else if (compare_result == 0) rv = Tcl_NewStringObj("0", -1); else rv = Tcl_NewStringObj("1", -1); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); //Return return(TCL_OK); } } //08/09/01: Visual inspection OK. static int ARBLENINTS_rndiv_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly two additional arguments //to this function, which are the rational numbers //to divide. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "srn srn"); return(TCL_ERROR); } else { char *input_arg; int failure; char *string_result; GMP_RATS_mpq_struct arg1, arg2, result; //Allocate space for the rational numbers. GMP_RATS_mpq_init(&arg1); GMP_RATS_mpq_init(&arg2); GMP_RATS_mpq_init(&result); //Grab a pointer to the string representation of //the first input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our first input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg1); if (failure) { rv = Tcl_NewStringObj("arbint rndiv: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Grab a pointer to the string representation of //the second input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[3]); assert(input_arg != NULL); //Try to parse our second input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg2); if (failure) { rv = Tcl_NewStringObj("arbint rndiv: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Perform the actual division of the rational numbers. All //error cases are covered. If either of the inputs has a //denominator of zero, this will propagate to the result. GMP_RATS_mpq_div(&result, &arg1, &arg2); //If the result has been NAN'd, return the string "NAN". if (GMP_RATS_mpq_is_nan(&result)) { rv = Tcl_NewStringObj("NAN", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_OK); } //Allocate space for the string result which we'll form for //both numerator and denominator. We need the maximum, because we'll only //do one number at a time. string_result = TclpAlloc(sizeof(char) * INTFUNC_max ( GMP_INTS_mpz_size_in_base_10(&(result.num)), GMP_INTS_mpz_size_in_base_10(&(result.den)) ) ); assert(string_result != NULL); //Convert the numerator to a string and set that to be the //return value. GMP_INTS_mpz_to_string(string_result, &(result.num)); rv = Tcl_NewStringObj(string_result, -1); //Append the separating slash. Tcl_AppendToObj(rv, "/", -1); //Convert the denominator to a string and append that to the //return value. GMP_INTS_mpz_to_string(string_result, &(result.den)); Tcl_AppendToObj(rv, string_result, -1); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. TclpFree(string_result); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); //Return return(TCL_OK); } } //08/09/01: Visual inspection OK. static int ARBLENINTS_rnmul_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly two additional arguments //to this function, which are the rational numbers //to add. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "srn srn"); return(TCL_ERROR); } else { char *input_arg; int failure; char *string_result; GMP_RATS_mpq_struct arg1, arg2, result; //Allocate space for the rational numbers. GMP_RATS_mpq_init(&arg1); GMP_RATS_mpq_init(&arg2); GMP_RATS_mpq_init(&result); //Grab a pointer to the string representation of //the first input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our first input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg1); if (failure) { rv = Tcl_NewStringObj("arbint rnmul: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Grab a pointer to the string representation of //the second input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[3]); assert(input_arg != NULL); //Try to parse our second input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg2); if (failure) { rv = Tcl_NewStringObj("arbint rnmul: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Perform the actual multiplication of the rational numbers. All //error cases are covered. If either of the inputs has a //denominator of zero, this will propagate to the result. GMP_RATS_mpq_mul(&result, &arg1, &arg2); //If the result has been NAN'd, return the string "NAN". if (GMP_RATS_mpq_is_nan(&result)) { rv = Tcl_NewStringObj("NAN", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_OK); } //Allocate space for the string result which we'll form for //both numerator and denominator. We need the maximum, because we'll only //do one number at a time. string_result = TclpAlloc(sizeof(char) * INTFUNC_max ( GMP_INTS_mpz_size_in_base_10(&(result.num)), GMP_INTS_mpz_size_in_base_10(&(result.den)) ) ); assert(string_result != NULL); //Convert the numerator to a string and set that to be the //return value. GMP_INTS_mpz_to_string(string_result, &(result.num)); rv = Tcl_NewStringObj(string_result, -1); //Append the separating slash. Tcl_AppendToObj(rv, "/", -1); //Convert the denominator to a string and append that to the //return value. GMP_INTS_mpz_to_string(string_result, &(result.den)); Tcl_AppendToObj(rv, string_result, -1); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. TclpFree(string_result); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); //Return return(TCL_OK); } } //08/09/01: Visual inspection OK. static int ARBLENINTS_rnred_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly one additional argument //to this function, which is the rational number //to provide the fully reduced form of. if (objc != 3) { Tcl_WrongNumArgs(interp, 2, objv, "srn"); return(TCL_ERROR); } else { char *input_arg; int failure; char *string_result; GMP_RATS_mpq_struct rn; //We will need a rational number to hold the return value //from the parsing function. Allocate that now. GMP_RATS_mpq_init(&rn); //Grab a pointer to the string representation of //the input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &rn); if (failure) { rv = Tcl_NewStringObj("arbint rnred: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&rn); return(TCL_ERROR); } //Normalize the rational number. This takes care of the //sign and also of the coprimality of numerator and //denominator. GMP_RATS_mpq_normalize(&rn); //Allocate space for the string result which we'll form for //both numbers. We need the maximum, because we'll only //do one number at a time. string_result = TclpAlloc(sizeof(char) * INTFUNC_max ( GMP_INTS_mpz_size_in_base_10(&(rn.num)), GMP_INTS_mpz_size_in_base_10(&(rn.den)) ) ); assert(string_result != NULL); //Convert the numerator to a string and set that to be the //return value. GMP_INTS_mpz_to_string(string_result, &(rn.num)); rv = Tcl_NewStringObj(string_result, -1); //Append the separating slash. Tcl_AppendToObj(rv, "/", -1); //Convert the denominator to a string and append that to the //return value. GMP_INTS_mpz_to_string(string_result, &(rn.den)); Tcl_AppendToObj(rv, string_result, -1); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. TclpFree(string_result); GMP_RATS_mpq_clear(&rn); //Return return(TCL_OK); } } //08/08/01: Visual inspection OK. static int ARBLENINTS_rnsub_handler(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { Tcl_Obj *rv; //We must have exactly two additional arguments //to this function, which are the rational numbers //to subtract. if (objc != 4) { Tcl_WrongNumArgs(interp, 2, objv, "srn srn"); return(TCL_ERROR); } else { char *input_arg; int failure; char *string_result; GMP_RATS_mpq_struct arg1, arg2, result; //Allocate space for the rational numbers. GMP_RATS_mpq_init(&arg1); GMP_RATS_mpq_init(&arg2); GMP_RATS_mpq_init(&result); //Grab a pointer to the string representation of //the first input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[2]); assert(input_arg != NULL); //Try to parse our first input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg1); if (failure) { rv = Tcl_NewStringObj("arbint rnsub: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Grab a pointer to the string representation of //the second input argument. The storage does not belong to us. input_arg = Tcl_GetString(objv[3]); assert(input_arg != NULL); //Try to parse our second input string as a rational number. //If we are not successful in this, must abort. GMP_RATS_mpq_set_all_format_rat_num(input_arg, &failure, &arg2); if (failure) { rv = Tcl_NewStringObj("arbint rnsub: \"", -1); Tcl_AppendToObj(rv, input_arg, -1); Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_ERROR); } //Perform the actual subtraction of the rational numbers. All //error cases are covered. If either of the inputs has a //denominator of zero, this will propagate to the result. GMP_RATS_mpq_sub(&result, &arg1, &arg2); //If the result has been NAN'd, return the string "NAN". if (GMP_RATS_mpq_is_nan(&result)) { rv = Tcl_NewStringObj("NAN", -1); Tcl_SetObjResult(interp, rv); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); return(TCL_OK); } //Allocate space for the string result which we'll form for //both numerator and denominator. We need the maximum, because we'll only //do one number at a time. string_result = TclpAlloc(sizeof(char) * INTFUNC_max ( GMP_INTS_mpz_size_in_base_10(&(result.num)), GMP_INTS_mpz_size_in_base_10(&(result.den)) ) ); assert(string_result != NULL); //Convert the numerator to a string and set that to be the //return value. GMP_INTS_mpz_to_string(string_result, &(result.num)); rv = Tcl_NewStringObj(string_result, -1); //Append the separating slash. Tcl_AppendToObj(rv, "/", -1); //Convert the denominator to a string and append that to the //return value. GMP_INTS_mpz_to_string(string_result, &(result.den)); Tcl_AppendToObj(rv, string_result, -1); //Assign the result to be the return value. Tcl_SetObjResult(interp, rv); //Free up all dynamic memory. TclpFree(string_result); GMP_RATS_mpq_clear(&arg1); GMP_RATS_mpq_clear(&arg2); GMP_RATS_mpq_clear(&result); //Return return(TCL_OK); } } //This is the search data table of possible subcommands //for the "arbint" extension. These must be kept //in alphabetical order, because a binary search is done //on this table in order to find an entry. If this table //falls out of alphabetical order, the binary search may //fail when in fact the entry exists. // //In a lot of cases below, this table is set up to accept //short forms. This is purely undocumented, and I won't put //it in any documentation. In a lot of cases, these table //entries cover common mistakes where people forget the "int". // static struct EXTNINIT_subextn_bsearch_record_struct ARBLENINTS_subextn_tbl[] = { { "brap", ARBLENINTS_cfbrapab_handler }, { "cfbrapab", ARBLENINTS_cfbrapab_handler }, { "cfratnum", ARBLENINTS_cfratnum_handler }, { "cmp", ARBLENINTS_intcmp_handler }, { "commanate", ARBLENINTS_commanate_handler }, { "compare", ARBLENINTS_intcmp_handler }, { "const", ARBLENINTS_const_handler }, { "decommanate", ARBLENINTS_decommanate_handler }, { "div", ARBLENINTS_intdiv_handler }, { "divide", ARBLENINTS_intdiv_handler }, { "exp", ARBLENINTS_intexp_handler }, { "fac", ARBLENINTS_intfac_handler }, { "factorial", ARBLENINTS_intfac_handler }, { "gcd", ARBLENINTS_intgcd_handler }, { "intadd", ARBLENINTS_intadd_handler }, { "intcmp", ARBLENINTS_intcmp_handler }, { "intdiv", ARBLENINTS_intdiv_handler }, { "intexp", ARBLENINTS_intexp_handler }, { "intfac", ARBLENINTS_intfac_handler }, { "intgcd", ARBLENINTS_intgcd_handler }, { "intlcm", ARBLENINTS_intlcm_handler }, { "intmod", ARBLENINTS_intmod_handler }, { "intmul", ARBLENINTS_intmul_handler }, { "intsub", ARBLENINTS_intsub_handler }, { "iseflag", ARBLENINTS_iseflag_handler }, { "lcm", ARBLENINTS_intlcm_handler }, { "mod", ARBLENINTS_intmod_handler }, { "mul", ARBLENINTS_intmul_handler }, { "multiply", ARBLENINTS_intmul_handler }, { "rnadd", ARBLENINTS_rnadd_handler }, { "rncmp", ARBLENINTS_rncmp_handler }, { "rndiv", ARBLENINTS_rndiv_handler }, { "rnmul", ARBLENINTS_rnmul_handler }, { "rnred", ARBLENINTS_rnred_handler }, { "rnsub", ARBLENINTS_rnsub_handler }, { "times", ARBLENINTS_intmul_handler }, }; //Procedure called when the "arbint" command is encountered in a Tcl script. //07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this //from memory an intuition as far as how to set return results and so forth. int ARBLENINTS_arbint_extn_command(ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *objv[]) { char *subcommand; //Pointer to subcommand string. int tbl_entry; //Index into the subcommand lookup table, or -1 //if no match. Tcl_Obj *rv; //The return result (a string) if there is an error. //In the normal execution case, one of the functions //above supplies the return object. if (objc < 2) { //It isn't possible to have an object count of less than //2, because you must have at least the command name //plus a subcommand. The best way to handle this is //to indicate wrong number of arguments. Tcl_WrongNumArgs(interp, 1, objv, "option ?args?"); return(TCL_ERROR); } else { //A potentially appropriate number of arguments has been //specified. Try to look up the subcommand. subcommand = Tcl_GetString(objv[1]); //Grab the string representation of the subcommand. //This is constant, belongs to Tcl, and cannot be //modified. tbl_entry = EXTNINIT_subextension_bsearch( ARBLENINTS_subextn_tbl, sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]), subcommand); assert(tbl_entry < (int)(sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]))); //If the integer returned is zero or positive, should //run the subfunction. If negative, this is an error and //should generate meaningful message. A meaningful message //would definitely consist of all valid subcommands. if (tbl_entry < 0) { //This is an error path. rv = Tcl_NewStringObj("arbint: bad option \"", -1); subcommand = Tcl_GetString(objv[1]); Tcl_AppendToObj(rv, subcommand, -1); Tcl_AppendToObj(rv, "\": valid options are ", -1); for (tbl_entry=0; tbl_entry < sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]); tbl_entry++) { if ((sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]) != 1) && (tbl_entry == sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]) - 1)) Tcl_AppendToObj(rv, "and ", -1); Tcl_AppendToObj(rv, ARBLENINTS_subextn_tbl[tbl_entry].name, -1); if (tbl_entry == sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]) - 1) Tcl_AppendToObj(rv, ".", -1); else Tcl_AppendToObj(rv, ", ", -1); } //Now, set the return value to be the object with our //meaningful string message. Tcl_SetObjResult(interp, rv); return(TCL_ERROR); } else { //Call the function pointer. Called function will //set the string return value. return((*ARBLENINTS_subextn_tbl[tbl_entry].fptr) (dummy, interp, objc, objv)); } } } //Performs initial registration to the hash table. //07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this //from memory an intuition as far as how to set return results and so forth. void ARBLENINTS_arbint_extn_init(Tcl_Interp *interp) { //Register a command named "crc32". Tcl_CreateObjCommand(interp, "arbint", (Tcl_ObjCmdProc *)ARBLENINTS_arbint_extn_command, NULL, NULL); } //Returns version control string for file. // const char *ARBLENINTS_cvcinfo(void) { return ("$Header: /cvsroot/esrg/sfesrg/esrgpcpj/shared/tclxtens/arblenints.c,v 1.12 2001/08/18 09:47:00 dtashley Exp $"); } //Returns version control string for associated .H file. // const char *ARBLENINTS_hvcinfo(void) { return (ARBLENINTS_H_VERSION); } //$Log: arblenints.c,v $ //Revision 1.12 2001/08/18 09:47:00 dtashley //Preparing for test for release of v1.05. // //Revision 1.11 2001/08/16 19:49:40 dtashley //Beginning to prepare for v1.05 release. // //Revision 1.10 2001/08/16 12:20:09 dtashley //Version number changes. // //Revision 1.9 2001/08/12 10:20:58 dtashley //Safety check-in. Substantial progress. // //Revision 1.8 2001/08/10 00:53:59 dtashley //Completion of basic rational number arithmetic utilities and extensions. // //Revision 1.7 2001/08/08 02:16:51 dtashley //Completion of RNRED utility and ARBINT RNRED Tcl extension. // //Revision 1.6 2001/08/07 10:42:48 dtashley //Completion of CFRATNUM extensions and DOS command-line utility. // //Revision 1.5 2001/08/01 03:35:29 dtashley //Finished most primitive integer operations, both as Tcl extensions and //as DOS command-line utilities, such as addition, subtraction, //multiplication, division, and modulo. // //Revision 1.4 2001/07/30 02:51:18 dtashley //INTGCD extension and command-line utility finished up. // //Revision 1.3 2001/07/29 07:17:04 dtashley //Completion of ARBINT INTFAC extension. // //Revision 1.2 2001/07/28 06:03:57 dtashley //Safety check-in. Substantial edits. // //Revision 1.1 2001/07/27 07:00:56 dtashley //Initial check-in. // //End of ARBLENINTS.C