1 |
//$Header$ |
2 |
//------------------------------------------------------------------------------------------------- |
3 |
//This file is part of "David T. Ashley's Shared Source Code", a set of shared components |
4 |
//integrated into many of David T. Ashley's projects. |
5 |
//------------------------------------------------------------------------------------------------- |
6 |
//This source code and any program in which it is compiled/used is provided under the MIT License, |
7 |
//reproduced below. |
8 |
//------------------------------------------------------------------------------------------------- |
9 |
//Permission is hereby granted, free of charge, to any person obtaining a copy of |
10 |
//this software and associated documentation files(the "Software"), to deal in the |
11 |
//Software without restriction, including without limitation the rights to use, |
12 |
//copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the |
13 |
//Software, and to permit persons to whom the Software is furnished to do so, |
14 |
//subject to the following conditions : |
15 |
// |
16 |
//The above copyright notice and this permission notice shall be included in all |
17 |
//copies or substantial portions of the Software. |
18 |
// |
19 |
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 |
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 |
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE |
22 |
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 |
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 |
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
25 |
//SOFTWARE. |
26 |
//------------------------------------------------------------------------------------------------- |
27 |
#define MODULE_ARBLENINTS |
28 |
|
29 |
#include <assert.h> |
30 |
#include <string.h> |
31 |
|
32 |
#include "tcl.h" |
33 |
#include "tcldecls.h" |
34 |
|
35 |
#include "arblenints.h" |
36 |
#include "bstrfunc.h" |
37 |
#include "extninit.h" |
38 |
#include "gmp_ints.h" |
39 |
#include "gmp_rats.h" |
40 |
#include "gmp_ralg.h" |
41 |
#include "intfunc.h" |
42 |
#include "tclalloc.h" |
43 |
|
44 |
|
45 |
//Handles the "cfbrapab" subextension. |
46 |
//08/16/01: Visual inspection OK. |
47 |
static |
48 |
int ARBLENINTS_cfbrapab_handler(ClientData dummy, |
49 |
Tcl_Interp *interp, |
50 |
int objc, |
51 |
Tcl_Obj *objv[]) |
52 |
{ |
53 |
Tcl_Obj *rv; |
54 |
|
55 |
//We must have at least two additional arguments |
56 |
//to this extension. |
57 |
if (objc < 4) |
58 |
{ |
59 |
Tcl_WrongNumArgs(interp, |
60 |
2, |
61 |
objv, |
62 |
"srn uint_kmax ?uint_hmax? ?options?"); |
63 |
return(TCL_ERROR); |
64 |
} |
65 |
else |
66 |
{ |
67 |
char *input_arg; |
68 |
int failure, first_dashed_parameter; |
69 |
char *string_result; |
70 |
int string_result_n_allocd; |
71 |
int chars_reqd; |
72 |
int i; |
73 |
int pred_option_specified = 0; |
74 |
int succ_option_specified = 0; |
75 |
int neversmaller_option_specified = 0; |
76 |
int neverlarger_option_specified = 0; |
77 |
int n_option_specified = 0; |
78 |
unsigned n = 0; |
79 |
|
80 |
GMP_RATS_mpq_struct q_rn; |
81 |
GMP_INTS_mpz_struct z_kmax; |
82 |
GMP_INTS_mpz_struct z_hmax; |
83 |
|
84 |
//Allocate dynamic memory. |
85 |
GMP_RATS_mpq_init(&q_rn); |
86 |
GMP_INTS_mpz_init(&z_kmax); |
87 |
GMP_INTS_mpz_init(&z_hmax); |
88 |
|
89 |
//Grab a pointer to the string representation of |
90 |
//the first input argument. The storage does not belong to us. |
91 |
input_arg = Tcl_GetString(objv[2]); |
92 |
assert(input_arg != NULL); |
93 |
|
94 |
//Try to parse our first input string as a rational number. |
95 |
//If we are not successful in this, must abort. |
96 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
97 |
&failure, |
98 |
&q_rn); |
99 |
|
100 |
if (failure) |
101 |
{ |
102 |
rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); |
103 |
Tcl_AppendToObj(rv, input_arg, -1); |
104 |
|
105 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
106 |
Tcl_SetObjResult(interp, rv); |
107 |
|
108 |
GMP_RATS_mpq_clear(&q_rn); |
109 |
GMP_INTS_mpz_clear(&z_kmax); |
110 |
GMP_INTS_mpz_clear(&z_hmax); |
111 |
|
112 |
return(TCL_ERROR); |
113 |
} |
114 |
|
115 |
//Try to parse our next argument as an integer, which |
116 |
//will be KMAX. This must be specified. |
117 |
// |
118 |
//Get string pointer. Storage does not belong to us. |
119 |
input_arg = Tcl_GetString(objv[3]); |
120 |
assert(input_arg != NULL); |
121 |
|
122 |
//Try to convert KMAX to an integer. Fatal if an error, |
123 |
//and fatal if the argument is zero or negative. |
124 |
GMP_INTS_mpz_set_general_int(&z_kmax, &failure, input_arg); |
125 |
|
126 |
//If there was a parse failure or if the integer is zero |
127 |
//or negative, must flag error. |
128 |
if (failure || GMP_INTS_mpz_is_neg(&z_kmax) || GMP_INTS_mpz_is_zero(&z_kmax)) |
129 |
{ |
130 |
rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); |
131 |
Tcl_AppendToObj(rv, input_arg, -1); |
132 |
Tcl_AppendToObj(rv, "\" is not a recognized positive integer.", -1); |
133 |
Tcl_SetObjResult(interp, rv); |
134 |
|
135 |
GMP_RATS_mpq_clear(&q_rn); |
136 |
GMP_INTS_mpz_clear(&z_kmax); |
137 |
GMP_INTS_mpz_clear(&z_hmax); |
138 |
|
139 |
return(TCL_ERROR); |
140 |
} |
141 |
|
142 |
//We need to look for HMAX as the next parameter, if it exists. |
143 |
//The way we will figure this out is by whether the |
144 |
//parameter begins with a "-" or not. |
145 |
if (objc >= 5) |
146 |
{ |
147 |
input_arg = Tcl_GetString(objv[4]); |
148 |
assert(input_arg != NULL); |
149 |
|
150 |
if (input_arg[0] == '-') |
151 |
{ |
152 |
first_dashed_parameter = 4; |
153 |
} |
154 |
else |
155 |
{ |
156 |
first_dashed_parameter = 5; |
157 |
} |
158 |
} |
159 |
else |
160 |
{ |
161 |
first_dashed_parameter = 4; |
162 |
} |
163 |
|
164 |
//If there is another parameter and it |
165 |
//doesn't begin with a dash, try to parse |
166 |
//it as HMAX. We don't explicitly record whether |
167 |
//HMAX is specified, because zero is a signal |
168 |
//when calculating Farey neighbors that HMAX isn't |
169 |
//to be considered. |
170 |
if ((objc >= 5) && (first_dashed_parameter == 5)) |
171 |
{ |
172 |
//Get string pointer. Storage does not belong to us. |
173 |
input_arg = Tcl_GetString(objv[4]); |
174 |
assert(input_arg != NULL); |
175 |
|
176 |
//Try to convert HMAX to an integer. Fatal if an error, |
177 |
//and fatal if the argument is zero or negative. |
178 |
GMP_INTS_mpz_set_general_int(&z_hmax, &failure, input_arg); |
179 |
|
180 |
//If there was a parse failure or if the integer is zero |
181 |
//or negative, must flag error. |
182 |
if (failure || GMP_INTS_mpz_is_neg(&z_hmax) || GMP_INTS_mpz_is_zero(&z_hmax)) |
183 |
{ |
184 |
rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); |
185 |
Tcl_AppendToObj(rv, input_arg, -1); |
186 |
Tcl_AppendToObj(rv, "\" is not a recognized positive integer.", -1); |
187 |
Tcl_SetObjResult(interp, rv); |
188 |
|
189 |
GMP_RATS_mpq_clear(&q_rn); |
190 |
GMP_INTS_mpz_clear(&z_kmax); |
191 |
GMP_INTS_mpz_clear(&z_hmax); |
192 |
|
193 |
return(TCL_ERROR); |
194 |
} |
195 |
} |
196 |
|
197 |
//Process all of the dashed command-line arguments. |
198 |
//This involves iterating through all of the |
199 |
//parameters and processing them. |
200 |
for (i=first_dashed_parameter; i<objc; i++) |
201 |
{ |
202 |
input_arg = Tcl_GetString(objv[i]); |
203 |
assert(input_arg != NULL); |
204 |
|
205 |
if (!strcmp("-pred", input_arg)) |
206 |
{ |
207 |
pred_option_specified = 1; |
208 |
} |
209 |
else if (!strcmp("-succ", input_arg)) |
210 |
{ |
211 |
succ_option_specified = 1; |
212 |
} |
213 |
else if (!strcmp("-neversmaller", input_arg)) |
214 |
{ |
215 |
neversmaller_option_specified = 1; |
216 |
} |
217 |
else if (!strcmp("-neverlarger", input_arg)) |
218 |
{ |
219 |
neverlarger_option_specified = 1; |
220 |
} |
221 |
else if (!strcmp("-n", input_arg)) |
222 |
{ |
223 |
n_option_specified = 1; |
224 |
|
225 |
//If -n was specified, there must be a following |
226 |
//parameter which supplies the integer. First |
227 |
//check for existence of an additional parameter. |
228 |
if (i >= (objc - 1)) |
229 |
{ |
230 |
rv = Tcl_NewStringObj("arbint cfbrapab: -n option specified without following integer.", -1); |
231 |
Tcl_SetObjResult(interp, rv); |
232 |
|
233 |
GMP_RATS_mpq_clear(&q_rn); |
234 |
GMP_INTS_mpz_clear(&z_kmax); |
235 |
GMP_INTS_mpz_clear(&z_hmax); |
236 |
|
237 |
return(TCL_ERROR); |
238 |
} |
239 |
|
240 |
//We have at least one additional parameter. Try |
241 |
//to parse out the next parameter as the integer |
242 |
//we need for n. |
243 |
i++; |
244 |
|
245 |
input_arg = Tcl_GetString(objv[i]); |
246 |
assert(input_arg != NULL); |
247 |
|
248 |
GMP_INTS_mpz_parse_into_uint32(&n, &failure, input_arg); |
249 |
|
250 |
//If the parse was unsuccessful, terminate. |
251 |
if (failure) |
252 |
{ |
253 |
rv = Tcl_NewStringObj("arbint cfbrapab: -n option followed by invalid integer.", -1); |
254 |
Tcl_SetObjResult(interp, rv); |
255 |
|
256 |
GMP_RATS_mpq_clear(&q_rn); |
257 |
GMP_INTS_mpz_clear(&z_kmax); |
258 |
GMP_INTS_mpz_clear(&z_hmax); |
259 |
|
260 |
return(TCL_ERROR); |
261 |
} |
262 |
|
263 |
//Clip the integer into a 24-bit quantity. |
264 |
n &= 0x00FFFFFF; |
265 |
} |
266 |
else |
267 |
{ |
268 |
//Unrecognized option. Crash out. |
269 |
rv = Tcl_NewStringObj("arbint cfbrapab: \"", -1); |
270 |
Tcl_AppendToObj(rv, input_arg, -1); |
271 |
Tcl_AppendToObj(rv, "\" is not a recognized option.", -1); |
272 |
Tcl_SetObjResult(interp, rv); |
273 |
|
274 |
GMP_RATS_mpq_clear(&q_rn); |
275 |
GMP_INTS_mpz_clear(&z_kmax); |
276 |
GMP_INTS_mpz_clear(&z_hmax); |
277 |
|
278 |
return(TCL_ERROR); |
279 |
} |
280 |
} |
281 |
|
282 |
//Look for any mutually exclusive options. Give a catchall if any of |
283 |
//them specified. Because we set them all to 1, addition is the easiest |
284 |
//way to do this. |
285 |
if ((pred_option_specified + succ_option_specified + neversmaller_option_specified |
286 |
+ neverlarger_option_specified + n_option_specified) > 1) |
287 |
{ |
288 |
rv = Tcl_NewStringObj("arbint cfbrapab: -pred, -succ, -neversmaller, -neverlarger, and -n are mutually exclusive options.", -1); |
289 |
Tcl_SetObjResult(interp, rv); |
290 |
|
291 |
GMP_RATS_mpq_clear(&q_rn); |
292 |
GMP_INTS_mpz_clear(&z_kmax); |
293 |
GMP_INTS_mpz_clear(&z_hmax); |
294 |
|
295 |
return(TCL_ERROR); |
296 |
} |
297 |
|
298 |
//Split into cases based on what we're doing. This is wasteful of code, |
299 |
//but this is a PC application, not an embedded application. In all cases |
300 |
//create a hard error if something goes wrong. Any anomalies should trash |
301 |
//a script. |
302 |
if (!pred_option_specified && !succ_option_specified && !n_option_specified) |
303 |
{ |
304 |
//This is the traditional best approximation case, with the possibility of |
305 |
//the -neverlarger or -neversmaller being specified. This is the most messy |
306 |
//of all the cases. We must gather neighbors and figure out which is closer, |
307 |
//and if there is a tie, which has the smaller magnitude. It is fairly |
308 |
//messy. |
309 |
GMP_RALG_fab_neighbor_collection_struct neighbor_data; |
310 |
GMP_RATS_mpq_struct left_neigh, right_neigh, diff_left, diff_right, closer_neighbor; |
311 |
int dist_cmp; |
312 |
int mag_cmp; |
313 |
|
314 |
//Allocate inner dynamic variables. |
315 |
GMP_RATS_mpq_init(&left_neigh); |
316 |
GMP_RATS_mpq_init(&right_neigh); |
317 |
GMP_RATS_mpq_init(&diff_left); |
318 |
GMP_RATS_mpq_init(&diff_right); |
319 |
GMP_RATS_mpq_init(&closer_neighbor); |
320 |
|
321 |
//Form up the neighbor data. We're only looking for up to one neighbor on each |
322 |
//side. |
323 |
GMP_RALG_consecutive_fab_terms( |
324 |
&q_rn, |
325 |
&z_kmax, |
326 |
&z_hmax, |
327 |
1, |
328 |
1, |
329 |
&neighbor_data |
330 |
); |
331 |
|
332 |
//If there was an error or we couldn't get any neighbors to play with, give |
333 |
//an error return. As long as we have one neighbor on either side, we can definitely |
334 |
//complete. |
335 |
if (neighbor_data.error || (!neighbor_data.equality && (!neighbor_data.n_left_out || !neighbor_data.n_right_out))) |
336 |
{ |
337 |
rv = Tcl_NewStringObj("arbint cfbrapab: unable to form neighbors.", -1); |
338 |
Tcl_SetObjResult(interp, rv); |
339 |
|
340 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
341 |
GMP_RATS_mpq_clear(&q_rn); |
342 |
GMP_INTS_mpz_clear(&z_kmax); |
343 |
GMP_INTS_mpz_clear(&z_hmax); |
344 |
|
345 |
GMP_RATS_mpq_clear(&left_neigh); |
346 |
GMP_RATS_mpq_clear(&right_neigh); |
347 |
GMP_RATS_mpq_clear(&diff_left); |
348 |
GMP_RATS_mpq_clear(&diff_right); |
349 |
GMP_RATS_mpq_clear(&closer_neighbor); |
350 |
|
351 |
return(TCL_ERROR); |
352 |
} |
353 |
|
354 |
if (neighbor_data.equality) |
355 |
{ |
356 |
//The equality case takes precedence, always. |
357 |
GMP_RATS_mpq_copy(&closer_neighbor, &(neighbor_data.norm_rn)); |
358 |
} |
359 |
else |
360 |
{ |
361 |
//The boolean test somewhat above guaranteed that we have both left |
362 |
//and right neighbors. We can assume this. |
363 |
GMP_RATS_mpq_copy(&left_neigh, &(neighbor_data.lefts[0].neighbor)); |
364 |
GMP_RATS_mpq_copy(&right_neigh, &(neighbor_data.rights[0].neighbor)); |
365 |
|
366 |
GMP_RATS_mpq_sub(&diff_left, &left_neigh, &(neighbor_data.norm_rn)); |
367 |
GMP_RATS_mpq_sub(&diff_right, &right_neigh, &(neighbor_data.norm_rn)); |
368 |
GMP_INTS_mpz_abs(&(diff_left.num)); |
369 |
GMP_INTS_mpz_abs(&(diff_right.num)); |
370 |
dist_cmp = GMP_RATS_mpq_cmp(&diff_left, &diff_right, NULL); |
371 |
|
372 |
//If we have a tie on the distance, will need to revert to magnitude of the neighbors. |
373 |
GMP_INTS_mpz_abs(&(left_neigh.num)); |
374 |
GMP_INTS_mpz_abs(&(right_neigh.num)); |
375 |
mag_cmp = GMP_RATS_mpq_cmp(&left_neigh, &right_neigh, NULL); |
376 |
|
377 |
if (!neversmaller_option_specified |
378 |
&& |
379 |
(neverlarger_option_specified || (dist_cmp < 0) || ((dist_cmp==0) && (mag_cmp < 0)))) |
380 |
{ |
381 |
GMP_RATS_mpq_copy(&closer_neighbor, &(neighbor_data.lefts[0].neighbor)); |
382 |
} |
383 |
else |
384 |
{ |
385 |
GMP_RATS_mpq_copy(&closer_neighbor, &(neighbor_data.rights[0].neighbor)); |
386 |
} |
387 |
} |
388 |
|
389 |
//Stuff our variable of choice into a string ... |
390 |
chars_reqd = INTFUNC_max( |
391 |
GMP_INTS_mpz_size_in_base_10(&(closer_neighbor.num)), |
392 |
GMP_INTS_mpz_size_in_base_10(&(closer_neighbor.den)) |
393 |
); |
394 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
395 |
assert(string_result != NULL); |
396 |
|
397 |
GMP_INTS_mpz_to_string(string_result, &(closer_neighbor.num)); |
398 |
rv = Tcl_NewStringObj(string_result, -1); |
399 |
Tcl_AppendToObj(rv, "/", -1); |
400 |
GMP_INTS_mpz_to_string(string_result, &(closer_neighbor.den)); |
401 |
Tcl_AppendToObj(rv, string_result, -1); |
402 |
|
403 |
Tcl_SetObjResult(interp, rv); |
404 |
|
405 |
//Deallocate variables, make normal return. |
406 |
TclpFree(string_result); |
407 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
408 |
GMP_RATS_mpq_clear(&q_rn); |
409 |
GMP_INTS_mpz_clear(&z_kmax); |
410 |
GMP_INTS_mpz_clear(&z_hmax); |
411 |
|
412 |
GMP_RATS_mpq_clear(&left_neigh); |
413 |
GMP_RATS_mpq_clear(&right_neigh); |
414 |
GMP_RATS_mpq_clear(&diff_left); |
415 |
GMP_RATS_mpq_clear(&diff_right); |
416 |
GMP_RATS_mpq_clear(&closer_neighbor); |
417 |
|
418 |
return(TCL_OK); |
419 |
} |
420 |
else if (n_option_specified) |
421 |
{ |
422 |
char sbuf[50]; |
423 |
//Static buffer just to stage 32-bit integers. |
424 |
|
425 |
//Multiple neighbors. Must iterate through. |
426 |
|
427 |
GMP_RALG_fab_neighbor_collection_struct neighbor_data; |
428 |
|
429 |
//Form up the neighbor data. |
430 |
GMP_RALG_consecutive_fab_terms( |
431 |
&q_rn, |
432 |
&z_kmax, |
433 |
&z_hmax, |
434 |
n, |
435 |
n, |
436 |
&neighbor_data |
437 |
); |
438 |
|
439 |
//If there was an error forming up the neighbor data, create a hard error. |
440 |
if (neighbor_data.error) |
441 |
{ |
442 |
rv = Tcl_NewStringObj("arbint cfbrapab: unable to form neighbors.", -1); |
443 |
Tcl_SetObjResult(interp, rv); |
444 |
|
445 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
446 |
GMP_RATS_mpq_clear(&q_rn); |
447 |
GMP_INTS_mpz_clear(&z_kmax); |
448 |
GMP_INTS_mpz_clear(&z_hmax); |
449 |
|
450 |
return(TCL_ERROR); |
451 |
} |
452 |
|
453 |
//Allocate a default buffer of 10K for the ASCII representation of integers. |
454 |
//In the vast majority of cases, there will be only one allocation, because it |
455 |
//takes a mean integer to exceed 10K. However, the logic allows it to grow. |
456 |
string_result_n_allocd = 10000; |
457 |
string_result = TclpAlloc(sizeof(char) * string_result_n_allocd); |
458 |
assert(string_result != NULL); |
459 |
|
460 |
//Start off with a return value of the null string. |
461 |
rv = Tcl_NewStringObj("", -1); |
462 |
|
463 |
//Loop through, spitting out the left neighbors. |
464 |
for (i = neighbor_data.n_left_out-1; i >= 0; i--) |
465 |
{ |
466 |
//The protocol here is everyone spits out one space before |
467 |
//they print anything. Must skip this on first loop iteration. |
468 |
if (i != neighbor_data.n_left_out-1) |
469 |
Tcl_AppendToObj(rv, " ", -1); |
470 |
|
471 |
//The index will be the negative of the iteration variable minus one. |
472 |
sprintf(sbuf, "%d", -i - 1); |
473 |
Tcl_AppendToObj(rv, sbuf, -1); |
474 |
|
475 |
//Force the buffer to have enough space for the components of the rational |
476 |
//number. |
477 |
chars_reqd = INTFUNC_max( |
478 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[i].neighbor.num)), |
479 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[i].neighbor.den)) |
480 |
); |
481 |
if (chars_reqd > string_result_n_allocd) |
482 |
{ |
483 |
string_result_n_allocd = chars_reqd; |
484 |
string_result = TclpRealloc(string_result, sizeof(char) * string_result_n_allocd); |
485 |
assert(string_result != NULL); |
486 |
} |
487 |
|
488 |
//Print the rational number out to the Tcl object. |
489 |
Tcl_AppendToObj(rv, " ", -1); |
490 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[i].neighbor.num)); |
491 |
Tcl_AppendToObj(rv, string_result, -1); |
492 |
Tcl_AppendToObj(rv, "/", -1); |
493 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[i].neighbor.den)); |
494 |
Tcl_AppendToObj(rv, string_result, -1); |
495 |
} |
496 |
|
497 |
//Spit out the equality case if appropriate. |
498 |
if (neighbor_data.equality) |
499 |
{ |
500 |
if (neighbor_data.n_left_out) |
501 |
Tcl_AppendToObj(rv, " ", -1); |
502 |
|
503 |
Tcl_AppendToObj(rv, "0", -1); |
504 |
|
505 |
//Force the buffer to have enough space for the components of the rational |
506 |
//number. |
507 |
chars_reqd = INTFUNC_max( |
508 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.norm_rn.num)), |
509 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.norm_rn.den)) |
510 |
); |
511 |
if (chars_reqd > string_result_n_allocd) |
512 |
{ |
513 |
string_result_n_allocd = chars_reqd; |
514 |
string_result = TclpRealloc(string_result, sizeof(char) * string_result_n_allocd); |
515 |
assert(string_result != NULL); |
516 |
} |
517 |
|
518 |
//Print the rational number out to the Tcl object. |
519 |
Tcl_AppendToObj(rv, " ", -1); |
520 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.norm_rn.num)); |
521 |
Tcl_AppendToObj(rv, string_result, -1); |
522 |
Tcl_AppendToObj(rv, "/", -1); |
523 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.norm_rn.den)); |
524 |
Tcl_AppendToObj(rv, string_result, -1); |
525 |
} |
526 |
|
527 |
//Loop through, spitting out the right neighbors. |
528 |
for (i = 0; i < neighbor_data.n_right_out; i++) |
529 |
{ |
530 |
//The protocol here is everyone spits out one space before |
531 |
//they print anything. Must skip this on first loop iteration. |
532 |
if (neighbor_data.n_left_out || neighbor_data.equality || i) |
533 |
Tcl_AppendToObj(rv, " ", -1); |
534 |
|
535 |
//The index will be the iteration variable plus one. |
536 |
sprintf(sbuf, "%d", i+1); |
537 |
Tcl_AppendToObj(rv, sbuf, -1); |
538 |
|
539 |
//Force the buffer to have enough space for the components of the rational |
540 |
//number. |
541 |
chars_reqd = INTFUNC_max( |
542 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[i].neighbor.num)), |
543 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[i].neighbor.den)) |
544 |
); |
545 |
if (chars_reqd > string_result_n_allocd) |
546 |
{ |
547 |
string_result_n_allocd = chars_reqd; |
548 |
string_result = TclpRealloc(string_result, sizeof(char) * string_result_n_allocd); |
549 |
assert(string_result != NULL); |
550 |
} |
551 |
|
552 |
//Print the rational number out to the Tcl object. |
553 |
Tcl_AppendToObj(rv, " ", -1); |
554 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[i].neighbor.num)); |
555 |
Tcl_AppendToObj(rv, string_result, -1); |
556 |
Tcl_AppendToObj(rv, "/", -1); |
557 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[i].neighbor.den)); |
558 |
Tcl_AppendToObj(rv, string_result, -1); |
559 |
} |
560 |
|
561 |
//Set up for a normal return. |
562 |
Tcl_SetObjResult(interp, rv); |
563 |
|
564 |
TclpFree(string_result); |
565 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
566 |
GMP_RATS_mpq_clear(&q_rn); |
567 |
GMP_INTS_mpz_clear(&z_kmax); |
568 |
GMP_INTS_mpz_clear(&z_hmax); |
569 |
|
570 |
return(TCL_OK); |
571 |
} |
572 |
else if (pred_option_specified) |
573 |
{ |
574 |
//Simple predecessor case. |
575 |
|
576 |
GMP_RALG_fab_neighbor_collection_struct neighbor_data; |
577 |
|
578 |
//Form up the neighbor data. |
579 |
GMP_RALG_consecutive_fab_terms( |
580 |
&q_rn, |
581 |
&z_kmax, |
582 |
&z_hmax, |
583 |
1, |
584 |
0, |
585 |
&neighbor_data |
586 |
); |
587 |
|
588 |
//If there was an error forming up the neighbor data or there are no left neighbors, |
589 |
//create a hard error. |
590 |
if (neighbor_data.error || !neighbor_data.n_left_out) |
591 |
{ |
592 |
rv = Tcl_NewStringObj("arbint cfbrapab: unable to find predecessor.", -1); |
593 |
Tcl_SetObjResult(interp, rv); |
594 |
|
595 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
596 |
GMP_RATS_mpq_clear(&q_rn); |
597 |
GMP_INTS_mpz_clear(&z_kmax); |
598 |
GMP_INTS_mpz_clear(&z_hmax); |
599 |
|
600 |
return(TCL_ERROR); |
601 |
} |
602 |
|
603 |
//The test above confirmed that we have at least one left neighbor calculated. |
604 |
//We can dump it to a string and finish up. |
605 |
chars_reqd = INTFUNC_max( |
606 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[0].neighbor.num)), |
607 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.lefts[0].neighbor.den)) |
608 |
); |
609 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
610 |
assert(string_result != NULL); |
611 |
|
612 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[0].neighbor.num)); |
613 |
rv = Tcl_NewStringObj(string_result, -1); |
614 |
Tcl_AppendToObj(rv, "/", -1); |
615 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.lefts[0].neighbor.den)); |
616 |
Tcl_AppendToObj(rv, string_result, -1); |
617 |
|
618 |
Tcl_SetObjResult(interp, rv); |
619 |
|
620 |
TclpFree(string_result); |
621 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
622 |
GMP_RATS_mpq_clear(&q_rn); |
623 |
GMP_INTS_mpz_clear(&z_kmax); |
624 |
GMP_INTS_mpz_clear(&z_hmax); |
625 |
|
626 |
return(TCL_OK); |
627 |
} |
628 |
else if (succ_option_specified) |
629 |
{ |
630 |
//Simple successor. |
631 |
|
632 |
GMP_RALG_fab_neighbor_collection_struct neighbor_data; |
633 |
|
634 |
//Form up the neighbor data. |
635 |
GMP_RALG_consecutive_fab_terms( |
636 |
&q_rn, |
637 |
&z_kmax, |
638 |
&z_hmax, |
639 |
0, |
640 |
1, |
641 |
&neighbor_data |
642 |
); |
643 |
|
644 |
//If there was an error forming up the neighbor data or there are no right neighbors, |
645 |
//create a hard error. |
646 |
if (neighbor_data.error || !neighbor_data.n_right_out) |
647 |
{ |
648 |
rv = Tcl_NewStringObj("arbint cfbrapab: unable to find successor.", -1); |
649 |
Tcl_SetObjResult(interp, rv); |
650 |
|
651 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
652 |
GMP_RATS_mpq_clear(&q_rn); |
653 |
GMP_INTS_mpz_clear(&z_kmax); |
654 |
GMP_INTS_mpz_clear(&z_hmax); |
655 |
|
656 |
return(TCL_ERROR); |
657 |
} |
658 |
|
659 |
//The test above confirmed that we have at least one right neighbor calculated. |
660 |
//We can dump it to a string and finish up. |
661 |
chars_reqd = INTFUNC_max( |
662 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[0].neighbor.num)), |
663 |
GMP_INTS_mpz_size_in_base_10(&(neighbor_data.rights[0].neighbor.den)) |
664 |
); |
665 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
666 |
assert(string_result != NULL); |
667 |
|
668 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[0].neighbor.num)); |
669 |
rv = Tcl_NewStringObj(string_result, -1); |
670 |
Tcl_AppendToObj(rv, "/", -1); |
671 |
GMP_INTS_mpz_to_string(string_result, &(neighbor_data.rights[0].neighbor.den)); |
672 |
Tcl_AppendToObj(rv, string_result, -1); |
673 |
|
674 |
Tcl_SetObjResult(interp, rv); |
675 |
|
676 |
TclpFree(string_result); |
677 |
GMP_RALG_consecutive_fab_terms_result_free(&neighbor_data); |
678 |
GMP_RATS_mpq_clear(&q_rn); |
679 |
GMP_INTS_mpz_clear(&z_kmax); |
680 |
GMP_INTS_mpz_clear(&z_hmax); |
681 |
|
682 |
return(TCL_OK); |
683 |
} |
684 |
|
685 |
//Free up all dynamic memory. |
686 |
GMP_RATS_mpq_clear(&q_rn); |
687 |
GMP_INTS_mpz_clear(&z_kmax); |
688 |
GMP_INTS_mpz_clear(&z_hmax); |
689 |
|
690 |
//Return |
691 |
return(TCL_OK); |
692 |
} |
693 |
} |
694 |
|
695 |
|
696 |
//Handles the "cfratnum" subextension. |
697 |
//08/07/01: Visually inspected, OK. |
698 |
static |
699 |
int ARBLENINTS_cfratnum_handler(ClientData dummy, |
700 |
Tcl_Interp *interp, |
701 |
int objc, |
702 |
Tcl_Obj *objv[]) |
703 |
{ |
704 |
Tcl_Obj *rv; |
705 |
|
706 |
//We must have exactly one additional argument |
707 |
//to this function, which is the rational number |
708 |
//whose continued fraction decomposition is to be |
709 |
//calculated. |
710 |
if (objc != 3) |
711 |
{ |
712 |
Tcl_WrongNumArgs(interp, |
713 |
2, |
714 |
objv, |
715 |
"urn"); |
716 |
return(TCL_ERROR); |
717 |
} |
718 |
else |
719 |
{ |
720 |
char *input_arg; |
721 |
int failure; |
722 |
unsigned chars_reqd; |
723 |
char *string_result; |
724 |
int n_string_result; |
725 |
int i; |
726 |
GMP_RATS_mpq_struct rn; |
727 |
GMP_RALG_cf_app_struct decomp; |
728 |
|
729 |
//In this function, we are going to return a string |
730 |
//result formed by starting with a string and then |
731 |
//concatenating to it again and again. We start |
732 |
//off believing that 10,000 characters of space is enough, |
733 |
//but we may need to revise upward and reallocate. |
734 |
//A 10,000 character block is chosen because it is quick |
735 |
//to allocate and most times won't go beyond that. |
736 |
n_string_result = 10000; |
737 |
string_result = TclpAlloc(sizeof(char) * n_string_result); |
738 |
assert(string_result != NULL); |
739 |
|
740 |
//We will need a rational number to hold the return value |
741 |
//from the parsing function. Allocate that now. |
742 |
GMP_RATS_mpq_init(&rn); |
743 |
|
744 |
//Grab a pointer to the string representation of |
745 |
//the input argument. The storage does not belong to us. |
746 |
input_arg = Tcl_GetString(objv[2]); |
747 |
assert(input_arg != NULL); |
748 |
|
749 |
//Try to parse our input string as a rational number. |
750 |
//If we are not successful in this, must abort. |
751 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
752 |
&failure, |
753 |
&rn); |
754 |
|
755 |
if (failure) |
756 |
{ |
757 |
rv = Tcl_NewStringObj("arbint cfratnum: \"", -1); |
758 |
Tcl_AppendToObj(rv, input_arg, -1); |
759 |
|
760 |
Tcl_AppendToObj(rv, "\" is not a recognized non-negative rational number.", -1); |
761 |
Tcl_SetObjResult(interp, rv); |
762 |
|
763 |
TclpFree(string_result); |
764 |
GMP_RATS_mpq_clear(&rn); |
765 |
|
766 |
return(TCL_ERROR); |
767 |
} |
768 |
|
769 |
//OK, we have a rational number, but there is a possibility |
770 |
//it is negative, which is a no-no. Normalize the signs |
771 |
//for easier testing. |
772 |
GMP_RATS_mpq_normalize_sign(&rn); |
773 |
if (GMP_INTS_mpz_is_neg(&(rn.num))) |
774 |
{ |
775 |
rv = Tcl_NewStringObj("arbint cfratnum: \"", -1); |
776 |
Tcl_AppendToObj(rv, input_arg, -1); |
777 |
|
778 |
Tcl_AppendToObj(rv, "\" is negative.", -1); |
779 |
Tcl_SetObjResult(interp, rv); |
780 |
|
781 |
TclpFree(string_result); |
782 |
GMP_RATS_mpq_clear(&rn); |
783 |
|
784 |
return(TCL_ERROR); |
785 |
} |
786 |
|
787 |
//OK, we have a rational number. Form the continued fraction |
788 |
//decomposition of it. The function called is set up so that |
789 |
//one must deallocate, even in an error condition. |
790 |
GMP_RALG_cfdecomp_init(&decomp, |
791 |
&failure, |
792 |
&(rn.num), |
793 |
&(rn.den)); |
794 |
|
795 |
//If we failed in the decomposition (don't know why that would |
796 |
//happen) use the general error flag "NAN". |
797 |
if (failure) |
798 |
{ |
799 |
rv = Tcl_NewStringObj("NAN", -1); |
800 |
|
801 |
Tcl_SetObjResult(interp, rv); |
802 |
|
803 |
TclpFree(string_result); |
804 |
GMP_RATS_mpq_clear(&rn); |
805 |
GMP_RALG_cfdecomp_destroy(&decomp); |
806 |
|
807 |
return(TCL_ERROR); |
808 |
} |
809 |
|
810 |
//OK, that really is the last error we could have. |
811 |
//Iterate, adding the partial quotients and convergents |
812 |
//to the string which we'll return. We need to watch out |
813 |
//for running over our 10K buffer. |
814 |
rv = Tcl_NewStringObj("", -1); |
815 |
for (i=0; i<decomp.n; i++) |
816 |
{ |
817 |
//Partial quotient. |
818 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&(decomp.a[i])); |
819 |
if (chars_reqd > (unsigned)n_string_result) |
820 |
{ |
821 |
n_string_result = chars_reqd; |
822 |
string_result = TclpRealloc(string_result, |
823 |
sizeof(char) * n_string_result); |
824 |
} |
825 |
GMP_INTS_mpz_to_string(string_result, &(decomp.a[i])); |
826 |
Tcl_AppendToObj(rv, string_result, -1); |
827 |
Tcl_AppendToObj(rv, " ", -1); |
828 |
|
829 |
//Numerator of convergent. |
830 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&(decomp.p[i])); |
831 |
if (chars_reqd > (unsigned)n_string_result) |
832 |
{ |
833 |
n_string_result = chars_reqd; |
834 |
string_result = TclpRealloc(string_result, |
835 |
sizeof(char) * n_string_result); |
836 |
} |
837 |
GMP_INTS_mpz_to_string(string_result, &(decomp.p[i])); |
838 |
Tcl_AppendToObj(rv, string_result, -1); |
839 |
Tcl_AppendToObj(rv, " ", -1); |
840 |
|
841 |
//Denominator of convergent. |
842 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&(decomp.q[i])); |
843 |
if (chars_reqd > (unsigned)n_string_result) |
844 |
{ |
845 |
n_string_result = chars_reqd; |
846 |
string_result = TclpRealloc(string_result, |
847 |
sizeof(char) * n_string_result); |
848 |
} |
849 |
GMP_INTS_mpz_to_string(string_result, &(decomp.q[i])); |
850 |
Tcl_AppendToObj(rv, string_result, -1); |
851 |
if (i != (decomp.n - 1)) //No space after last number. |
852 |
Tcl_AppendToObj(rv, " ", -1); |
853 |
} |
854 |
|
855 |
//Assign the result to be the return value. |
856 |
Tcl_SetObjResult(interp, rv); |
857 |
|
858 |
//Free up all dynamic memory. |
859 |
TclpFree(string_result); |
860 |
GMP_RATS_mpq_clear(&rn); |
861 |
GMP_RALG_cfdecomp_destroy(&decomp); |
862 |
|
863 |
//Return |
864 |
return(TCL_OK); |
865 |
} |
866 |
} |
867 |
|
868 |
|
869 |
//Handles the "commanate" subextension. |
870 |
//07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this |
871 |
//from memory an intuition as far as how to set return results and so forth. |
872 |
static |
873 |
int ARBLENINTS_commanate_handler(ClientData dummy, |
874 |
Tcl_Interp *interp, |
875 |
int objc, |
876 |
Tcl_Obj *objv[]) |
877 |
{ |
878 |
Tcl_Obj *rv; |
879 |
|
880 |
//We must have one and exactly one additional argument |
881 |
//to this function, which is the string we want to |
882 |
//commanate. |
883 |
if (objc != 3) |
884 |
{ |
885 |
Tcl_WrongNumArgs(interp, |
886 |
2, |
887 |
objv, |
888 |
"sint"); |
889 |
return(TCL_ERROR); |
890 |
} |
891 |
else |
892 |
{ |
893 |
char *string_arg; |
894 |
|
895 |
//Grab a pointer to the string representation of |
896 |
//the input argument. The storage does not belong to us. |
897 |
string_arg = Tcl_GetString(objv[2]); |
898 |
assert(string_arg != NULL); |
899 |
|
900 |
//Try to parse the string as one of the error tags. |
901 |
//If it is one of those, it isn't an error, but don't |
902 |
//want to touch the string. |
903 |
if (GMP_INTS_identify_nan_string(string_arg) >= 0) |
904 |
{ |
905 |
rv = Tcl_NewStringObj(string_arg, -1); |
906 |
Tcl_SetObjResult(interp, rv); |
907 |
return(TCL_OK); |
908 |
} |
909 |
//Try to parse it as a signed integer with commas already. |
910 |
//If it already has commas, there is no need to add any. |
911 |
else if (BSTRFUNC_is_sint_w_commas(string_arg)) |
912 |
{ |
913 |
//This is already an acceptable commanated signed integer. Send it |
914 |
//back as the return value. |
915 |
rv = Tcl_NewStringObj(string_arg, -1); |
916 |
Tcl_SetObjResult(interp, rv); |
917 |
return(TCL_OK); |
918 |
} |
919 |
//Try to parse the argument as a signed integer without commas. |
920 |
//If it is one of those, commanate it and return it. |
921 |
else if (BSTRFUNC_is_sint_wo_commas(string_arg)) |
922 |
{ |
923 |
size_t len; |
924 |
char *buffer; |
925 |
|
926 |
len = strlen(string_arg); |
927 |
buffer = TclpAlloc(((sizeof(char) * 4 * len) / 3) + 10); |
928 |
strcpy(buffer, string_arg); |
929 |
BSTRFUNC_commanate(buffer); |
930 |
rv = Tcl_NewStringObj(buffer, -1); |
931 |
TclpFree(buffer); |
932 |
Tcl_SetObjResult(interp, rv); |
933 |
return(TCL_OK); |
934 |
} |
935 |
else |
936 |
{ |
937 |
//Error case. Must give error message. |
938 |
rv = Tcl_NewStringObj("arbint commanate: \"", -1); |
939 |
Tcl_AppendToObj(rv, string_arg, -1); |
940 |
Tcl_AppendToObj(rv, "\" is not a recognized integer.", -1); |
941 |
Tcl_SetObjResult(interp, rv); |
942 |
return(TCL_ERROR); |
943 |
} |
944 |
} |
945 |
} |
946 |
|
947 |
|
948 |
//Handles the "const" subextension. |
949 |
//08/17/01: Visual inspection OK. |
950 |
static |
951 |
int ARBLENINTS_const_handler(ClientData dummy, |
952 |
Tcl_Interp *interp, |
953 |
int objc, |
954 |
Tcl_Obj *objv[]) |
955 |
{ |
956 |
//Table of constants used. |
957 |
static struct |
958 |
{ |
959 |
char *tag; |
960 |
//The symbolic tag used to identify the number. |
961 |
char *desc; |
962 |
//The full description of the number. It must consist |
963 |
//of a string with lines no longer than about 70 chars, |
964 |
//separated by newlines, and indented by 6 spaces. |
965 |
char *minmant; |
966 |
//The minimum mantissa or minimum representation. |
967 |
//May not be empty or NULL. |
968 |
char *mantrem; |
969 |
//The remaining mantissa or remaining portion of |
970 |
//number. May be empty, but may not be NULL. |
971 |
char *exp; |
972 |
//The exponent portion, if any, or NULL otherwise. |
973 |
int deflen; |
974 |
//The default number of digits for the constant |
975 |
//if none is specified. |
976 |
int digit_count_offset; |
977 |
//The offset to go from string length of mantissa |
978 |
//portions to number of digits. Cheap way to adjust |
979 |
//for - sign and decimal point. |
980 |
} tbl[] = |
981 |
{ |
982 |
//e--the transcendental number e. |
983 |
{ |
984 |
//tag |
985 |
"e", |
986 |
//desc |
987 |
" Historically significant transcendental constant. Digits obtained\n" |
988 |
" from http://fermi.udw.ac.za/physics/e.html on 08/17/01.", |
989 |
//minmant |
990 |
"2.7", |
991 |
//mantrem |
992 |
"182818284590452353602874713526624977572470936999595749669676277240766303535" |
993 |
"475945713821785251664274274663919320030599218174135966290435729003342952605956" |
994 |
"307381323286279434907632338298807531952510190115738341879307021540891499348841" |
995 |
"675092447614606680822648001684774118537423454424371075390777449920695517027618" |
996 |
"386062613313845830007520449338265602976067371132007093287091274437470472306969" |
997 |
"772093101416928368190255151086574637721112523897844250569536967707854499699679" |
998 |
"468644549059879316368892300987931277361782154249992295763514822082698951936680" |
999 |
"331825288693984964651058209392398294887933203625094431173012381970684161403970" |
1000 |
"198376793206832823764648042953118023287825098194558153017567173613320698112509" |
1001 |
"961818815930416903515988885193458072738667385894228792284998920868058257492796" |
1002 |
"104841984443634632449684875602336248270419786232090021609902353043699418491463" |
1003 |
"140934317381436405462531520961836908887070167683964243781405927145635490613031" |
1004 |
"07208510383750510115747704171898610687396965521267154688957035035", |
1005 |
//exp |
1006 |
NULL, |
1007 |
//deflen |
1008 |
30, |
1009 |
//digit_count_offset |
1010 |
1 |
1011 |
}, |
1012 |
//g_metric |
1013 |
{ |
1014 |
//tag |
1015 |
"g_si", |
1016 |
//desc |
1017 |
" Gravitational acceleration in SI units, meters per second**2.\n" |
1018 |
" Obtained from NIST Special Publication 811 on 08/17/01.", |
1019 |
//minmant |
1020 |
"9.80665", |
1021 |
//mantrem |
1022 |
"", |
1023 |
//exp |
1024 |
NULL, |
1025 |
//deflen |
1026 |
30, |
1027 |
//digit_count_offset |
1028 |
1 |
1029 |
}, |
1030 |
//in2m |
1031 |
{ |
1032 |
//tag |
1033 |
"in2m", |
1034 |
//desc |
1035 |
" Multiplicative conversion factor from inches to meters.\n" |
1036 |
" Obtained from NIST Special Publication 811 on 08/17/01.", |
1037 |
//minmant |
1038 |
"2.54", |
1039 |
//mantrem |
1040 |
"", |
1041 |
//exp |
1042 |
"e-2", |
1043 |
//deflen |
1044 |
30, |
1045 |
//digit_count_offset |
1046 |
1 |
1047 |
}, |
1048 |
//mi2km |
1049 |
{ |
1050 |
//tag |
1051 |
"mi2km", |
1052 |
//desc |
1053 |
" Multiplicative conversion factor from miles to kilometers.\n" |
1054 |
" Obtained from NIST Special Publication 811 on 08/17/01.", |
1055 |
//minmant |
1056 |
"1.609344", |
1057 |
//mantrem |
1058 |
"", |
1059 |
//exp |
1060 |
NULL, |
1061 |
//deflen |
1062 |
30, |
1063 |
//digit_count_offset |
1064 |
1 |
1065 |
}, |
1066 |
//pi--the transcendental number PI. |
1067 |
{ |
1068 |
//tag |
1069 |
"pi", |
1070 |
//desc |
1071 |
" Transcendental constant supplying ratio of a circle's circumference\n" |
1072 |
" to its diameter. Digits obtained from http://www.joyofpi.com/\n" |
1073 |
" pi.htm on 08/17/01.", |
1074 |
//minmant |
1075 |
"3.14", |
1076 |
//mantrem |
1077 |
"15926535897932384626433832795028841971" |
1078 |
"6939937510582097494459230781640628620899" |
1079 |
"8628034825342117067982148086513282306647" |
1080 |
"0938446095505822317253594081284811174502" |
1081 |
"8410270193852110555964462294895493038196" |
1082 |
"4428810975665933446128475648233786783165" |
1083 |
"2712019091456485669234603486104543266482" |
1084 |
"1339360726024914127372458700660631558817" |
1085 |
"4881520920962829254091715364367892590360" |
1086 |
"0113305305488204665213841469519415116094" |
1087 |
"3305727036575959195309218611738193261179" |
1088 |
"3105118548074462379962749567351885752724" |
1089 |
"8912279381830119491298336733624406566430" |
1090 |
"8602139494639522473719070217986094370277" |
1091 |
"0539217176293176752384674818467669405132" |
1092 |
"0005681271452635608277857713427577896091" |
1093 |
"7363717872146844090122495343014654958537" |
1094 |
"1050792279689258923542019956112129021960" |
1095 |
"8640344181598136297747713099605187072113" |
1096 |
"4999999837297804995105973173281609631859" |
1097 |
"5024459455346908302642522308253344685035" |
1098 |
"2619311881710100031378387528865875332083" |
1099 |
"8142061717766914730359825349042875546873" |
1100 |
"1159562863882353787593751957781857780532" |
1101 |
"1712268066130019278766111959092164201989" |
1102 |
"3809525720106548586327886593615338182796" |
1103 |
"8230301952035301852968995773622599413891" |
1104 |
"2497217752834791315155748572424541506959" |
1105 |
"5082953311686172785588907509838175463746" |
1106 |
"4939319255060400927701671139009848824012", |
1107 |
//exp |
1108 |
NULL, |
1109 |
//deflen |
1110 |
30, |
1111 |
//digit_count_offset |
1112 |
1 |
1113 |
}, |
1114 |
//sqrt5--the square root of 5. |
1115 |
{ |
1116 |
//tag |
1117 |
"sqrt5", |
1118 |
//desc |
1119 |
" The square root of 5. Digits obtained from\n" |
1120 |
" http://home.earthlink.net/~maryski/sqrt51000000.txt on 08/17/01.", |
1121 |
//minmant |
1122 |
"2.236", |
1123 |
//mantrem |
1124 |
"0679774997896964091736687312762354406183596115257242708972454105209256378048" |
1125 |
"99414414408378782274969508176150773783504253267724447073863586360121533452708866" |
1126 |
"77817319187916581127664532263985658053576135041753378500342339241406444208643253" |
1127 |
"90972525926272288762995174024406816117759089094984923713907297288984820886415426" |
1128 |
"89894099131693577019748678884425089754132956183176921499977424801530434115035957" |
1129 |
"66833251249881517813940800056242085524354223555610630634282023409333198293395974" |
1130 |
"63522712013417496142026359047378855043896870611356600457571399565955669569175645" |
1131 |
"78221952500060539231234005009286764875529722056766253666074485853505262330678494" |
1132 |
"63342224231763727702663240768010444331582573350589309813622634319868647194698997" |
1133 |
"01808189524264459620345221411922329125981963258111041704958070481204034559949435" |
1134 |
"06855551855572512388641655010262436312571024449618789424682903404474716115455723" |
1135 |
"20173767659046091852957560357798439805415538077906439363972302875606299948221385" |
1136 |
"21773485924535151210463455550407072278724215347787529112121211843317893351910380", |
1137 |
//exp |
1138 |
NULL, |
1139 |
//deflen |
1140 |
30, |
1141 |
//digit_count_offset |
1142 |
1 |
1143 |
}, |
1144 |
}; |
1145 |
|
1146 |
Tcl_Obj *rv; |
1147 |
//Value that will be returned to caller. |
1148 |
int i; |
1149 |
//Iteration variable. |
1150 |
int tbl_idx; |
1151 |
//Index into lookup table, of -1 if not found. |
1152 |
int ndigits; |
1153 |
//The number of digits to supply. |
1154 |
int result_code; |
1155 |
//Return value from Tcl library function. |
1156 |
|
1157 |
//We must have either one or two additional arguments. |
1158 |
if ((objc != 3) && (objc != 4)) |
1159 |
{ |
1160 |
Tcl_WrongNumArgs(interp, |
1161 |
2, |
1162 |
objv, |
1163 |
"constant_tag ?ndigits?"); |
1164 |
return(TCL_ERROR); |
1165 |
} |
1166 |
else |
1167 |
{ |
1168 |
char *string_arg; |
1169 |
|
1170 |
//Grab a pointer to the string representation of |
1171 |
//the input argument. The storage does not belong to us. |
1172 |
string_arg = Tcl_GetString(objv[2]); |
1173 |
assert(string_arg != NULL); |
1174 |
|
1175 |
//Try to look up the string argument in the table. |
1176 |
tbl_idx = -1; |
1177 |
for (i=0; i<sizeof(tbl)/sizeof(tbl[0]); i++) |
1178 |
{ |
1179 |
if (!strcmp(string_arg, tbl[i].tag)) |
1180 |
{ |
1181 |
tbl_idx = i; |
1182 |
break; |
1183 |
} |
1184 |
} |
1185 |
|
1186 |
//If the tag was not found in the table, print a hostile |
1187 |
//message and abort. |
1188 |
if (tbl_idx == -1) |
1189 |
{ |
1190 |
char buf[100]; |
1191 |
|
1192 |
//Error case. Must give error message. |
1193 |
//Must also list the constants available. |
1194 |
rv = Tcl_NewStringObj("arbint const: \"", -1); |
1195 |
Tcl_AppendToObj(rv, string_arg, -1); |
1196 |
Tcl_AppendToObj(rv, "\" is not a recognized constant.\n", -1); |
1197 |
|
1198 |
Tcl_AppendToObj(rv, "Available constants are:\n", -1); |
1199 |
|
1200 |
for (i=0; i<sizeof(tbl)/sizeof(tbl[0]); i++) |
1201 |
{ |
1202 |
Tcl_AppendToObj(rv, " ", -1); |
1203 |
Tcl_AppendToObj(rv, tbl[i].tag, -1); |
1204 |
sprintf(buf, " (%d digits available)\n", |
1205 |
strlen(tbl[i].minmant) + strlen(tbl[i].mantrem) - tbl[i].digit_count_offset); |
1206 |
Tcl_AppendToObj(rv, buf, -1); |
1207 |
Tcl_AppendToObj(rv, tbl[i].desc, -1); |
1208 |
if (i != (sizeof(tbl)/sizeof(tbl[0]) - 1)) |
1209 |
Tcl_AppendToObj(rv, "\n", -1); |
1210 |
} |
1211 |
|
1212 |
Tcl_SetObjResult(interp, rv); |
1213 |
return(TCL_ERROR); |
1214 |
} |
1215 |
|
1216 |
//Make assertions about the string pointers. |
1217 |
assert(tbl[tbl_idx].tag != NULL); |
1218 |
assert(tbl[tbl_idx].desc != NULL); |
1219 |
assert(tbl[tbl_idx].minmant != NULL); |
1220 |
assert(tbl[tbl_idx].mantrem != NULL); |
1221 |
|
1222 |
//Assume the default number of digits by default. |
1223 |
ndigits = tbl[tbl_idx].deflen; |
1224 |
|
1225 |
//If there is an additional parameter, try to interpret |
1226 |
//that as the number of digits. |
1227 |
if (objc == 4) |
1228 |
{ |
1229 |
//SetIntFromAny(interp, objPtr) |
1230 |
result_code = Tcl_GetIntFromObj(NULL, objv[3], &ndigits); |
1231 |
|
1232 |
if (result_code != TCL_OK) |
1233 |
{ |
1234 |
//Could not obtain an integer. Use hostile error |
1235 |
//message and abort. |
1236 |
string_arg = Tcl_GetString(objv[3]); |
1237 |
assert(string_arg != NULL); |
1238 |
|
1239 |
rv = Tcl_NewStringObj("arbint const: \"", -1); |
1240 |
Tcl_AppendToObj(rv, string_arg, -1); |
1241 |
Tcl_AppendToObj(rv, "\" is not a recognized integer.", -1); |
1242 |
Tcl_SetObjResult(interp, rv); |
1243 |
return(TCL_ERROR); |
1244 |
} |
1245 |
} |
1246 |
|
1247 |
//Ndigits may be corrupt. We have to be careful below to not |
1248 |
//allow any funny stuff. |
1249 |
rv = Tcl_NewStringObj(tbl[tbl_idx].minmant, -1); |
1250 |
ndigits = ndigits - strlen(tbl[tbl_idx].minmant) + tbl[tbl_idx].digit_count_offset; |
1251 |
if (ndigits > 0) |
1252 |
{ |
1253 |
if (ndigits >= (int)strlen(tbl[tbl_idx].mantrem)) |
1254 |
{ |
1255 |
Tcl_AppendToObj(rv, tbl[tbl_idx].mantrem, -1); |
1256 |
} |
1257 |
else |
1258 |
{ |
1259 |
Tcl_AppendToObj(rv, tbl[tbl_idx].mantrem, ndigits); |
1260 |
} |
1261 |
} |
1262 |
|
1263 |
//Append the exponent portion. |
1264 |
if (tbl[tbl_idx].exp) |
1265 |
Tcl_AppendToObj(rv, tbl[tbl_idx].exp, -1); |
1266 |
|
1267 |
//Default successful return. |
1268 |
Tcl_SetObjResult(interp, rv); |
1269 |
return(TCL_OK); |
1270 |
} |
1271 |
} |
1272 |
|
1273 |
|
1274 |
//Handles the "decommanate" subextension. |
1275 |
//07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this |
1276 |
//from memory an intuition as far as how to set return results and so forth. |
1277 |
static |
1278 |
int ARBLENINTS_decommanate_handler(ClientData dummy, |
1279 |
Tcl_Interp *interp, |
1280 |
int objc, |
1281 |
Tcl_Obj *objv[]) |
1282 |
{ |
1283 |
Tcl_Obj *rv; |
1284 |
|
1285 |
//We must have one and exactly one additional argument |
1286 |
//to this function, which is the string we want to |
1287 |
//decommanate. |
1288 |
if (objc != 3) |
1289 |
{ |
1290 |
Tcl_WrongNumArgs(interp, |
1291 |
2, |
1292 |
objv, |
1293 |
"sint"); |
1294 |
return(TCL_ERROR); |
1295 |
} |
1296 |
else |
1297 |
{ |
1298 |
char *string_arg; |
1299 |
|
1300 |
//Grab a pointer to the string representation of |
1301 |
//the input argument. The storage does not belong to us. |
1302 |
string_arg = Tcl_GetString(objv[2]); |
1303 |
assert(string_arg != NULL); |
1304 |
|
1305 |
//Try to parse the string as one of the error tags. |
1306 |
//If it is one of those, it isn't an error, but don't |
1307 |
//want to touch the string. |
1308 |
if (GMP_INTS_identify_nan_string(string_arg) >= 0) |
1309 |
{ |
1310 |
rv = Tcl_NewStringObj(string_arg, -1); |
1311 |
Tcl_SetObjResult(interp, rv); |
1312 |
return(TCL_OK); |
1313 |
} |
1314 |
//Try to parse it as a signed integer without commas. |
1315 |
//If it has no commas, there is no need to decommanate it. |
1316 |
else if (BSTRFUNC_is_sint_wo_commas(string_arg)) |
1317 |
{ |
1318 |
//This is already an acceptable commanated signed integer. Send it |
1319 |
//back as the return value. |
1320 |
rv = Tcl_NewStringObj(string_arg, -1); |
1321 |
Tcl_SetObjResult(interp, rv); |
1322 |
return(TCL_OK); |
1323 |
} |
1324 |
//Try to parse the argument as a signed integer with commas. |
1325 |
//If it is one of those, decommanate it and return it. |
1326 |
else if (BSTRFUNC_is_sint_w_commas(string_arg)) |
1327 |
{ |
1328 |
size_t len; |
1329 |
char *buffer; |
1330 |
|
1331 |
len = strlen(string_arg); |
1332 |
buffer = TclpAlloc(sizeof(char) * len + 1); |
1333 |
strcpy(buffer, string_arg); |
1334 |
BSTRFUNC_decommanate(buffer); |
1335 |
rv = Tcl_NewStringObj(buffer, -1); |
1336 |
TclpFree(buffer); |
1337 |
Tcl_SetObjResult(interp, rv); |
1338 |
return(TCL_OK); |
1339 |
} |
1340 |
else |
1341 |
{ |
1342 |
//Error case. Must give error message. |
1343 |
rv = Tcl_NewStringObj("arbint decommanate: \"", -1); |
1344 |
Tcl_AppendToObj(rv, string_arg, -1); |
1345 |
Tcl_AppendToObj(rv, "\" is not a recognized integer.", -1); |
1346 |
Tcl_SetObjResult(interp, rv); |
1347 |
return(TCL_ERROR); |
1348 |
} |
1349 |
} |
1350 |
} |
1351 |
|
1352 |
|
1353 |
//Handles the "intadd" subextension. |
1354 |
//08/06/01: Visual inspection OK. |
1355 |
static |
1356 |
int ARBLENINTS_intadd_handler(ClientData dummy, |
1357 |
Tcl_Interp *interp, |
1358 |
int objc, |
1359 |
Tcl_Obj *objv[]) |
1360 |
{ |
1361 |
Tcl_Obj *rv; |
1362 |
|
1363 |
//We must have two and exactly two additional arguments |
1364 |
//to this function, which are the integers whose |
1365 |
//sum is to be calculated. |
1366 |
if (objc != 4) |
1367 |
{ |
1368 |
Tcl_WrongNumArgs(interp, |
1369 |
2, |
1370 |
objv, |
1371 |
"sint sint"); |
1372 |
return(TCL_ERROR); |
1373 |
} |
1374 |
else |
1375 |
{ |
1376 |
GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; |
1377 |
char *add_arg1, *add_arg2; |
1378 |
int failure1, failure2; |
1379 |
unsigned chars_reqd; |
1380 |
char *string_result; |
1381 |
int i, j; |
1382 |
|
1383 |
//Allocate space for the arbitrary-length integer result. |
1384 |
GMP_INTS_mpz_init(&arb_arg1); |
1385 |
GMP_INTS_mpz_init(&arb_arg2); |
1386 |
GMP_INTS_mpz_init(&arb_result); |
1387 |
|
1388 |
//Grab pointers to the string representation of |
1389 |
//the input arguments. The storage does not belong to us. |
1390 |
add_arg1 = Tcl_GetString(objv[2]); |
1391 |
assert(add_arg1 != NULL); |
1392 |
add_arg2 = Tcl_GetString(objv[3]); |
1393 |
assert(add_arg2 != NULL); |
1394 |
|
1395 |
//Try to interpret either of the strings as one of the NAN tags. |
1396 |
//If it is one, return the appropriate result for |
1397 |
//a binary operation. |
1398 |
i = GMP_INTS_identify_nan_string(add_arg1); |
1399 |
j = GMP_INTS_identify_nan_string(add_arg2); |
1400 |
|
1401 |
if ((i >= 0) || (j >= 0)) |
1402 |
{ |
1403 |
const char *p; |
1404 |
|
1405 |
//Find the max of i and j. This isn't a scientific way to tag the |
1406 |
//result, but will be OK. Some information is lost no matter what |
1407 |
//we do. |
1408 |
if (i > j) |
1409 |
; |
1410 |
else |
1411 |
i = j; |
1412 |
|
1413 |
//i now contains the max. |
1414 |
switch (i) |
1415 |
{ |
1416 |
case 0: p = GMP_INTS_supply_nan_string(2); |
1417 |
break; |
1418 |
case 1: p = GMP_INTS_supply_nan_string(3); |
1419 |
break; |
1420 |
case 2: p = GMP_INTS_supply_nan_string(2); |
1421 |
break; |
1422 |
case 3: p = GMP_INTS_supply_nan_string(3); |
1423 |
break; |
1424 |
default: |
1425 |
assert(0); |
1426 |
break; |
1427 |
} |
1428 |
|
1429 |
rv = Tcl_NewStringObj(p, -1); |
1430 |
Tcl_SetObjResult(interp, rv); |
1431 |
|
1432 |
GMP_INTS_mpz_clear(&arb_arg1); |
1433 |
GMP_INTS_mpz_clear(&arb_arg2); |
1434 |
GMP_INTS_mpz_clear(&arb_result); |
1435 |
|
1436 |
return(TCL_OK); |
1437 |
} |
1438 |
|
1439 |
//Try to convert both strings into arbitrary integers. |
1440 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, add_arg1); |
1441 |
GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, add_arg2); |
1442 |
|
1443 |
//If there was a parse failure, we have to return an error |
1444 |
//message. It is possible that both arguments failed the parse, |
1445 |
//but only return one in the error message. |
1446 |
if (failure1 || failure2) |
1447 |
{ |
1448 |
rv = Tcl_NewStringObj("arbint intadd: \"", -1); |
1449 |
if (failure1) |
1450 |
Tcl_AppendToObj(rv, add_arg1, -1); |
1451 |
else |
1452 |
Tcl_AppendToObj(rv, add_arg2, -1); |
1453 |
|
1454 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
1455 |
Tcl_SetObjResult(interp, rv); |
1456 |
|
1457 |
GMP_INTS_mpz_clear(&arb_arg1); |
1458 |
GMP_INTS_mpz_clear(&arb_arg2); |
1459 |
GMP_INTS_mpz_clear(&arb_result); |
1460 |
|
1461 |
return(TCL_ERROR); |
1462 |
} |
1463 |
|
1464 |
//Calculate the sum. |
1465 |
GMP_INTS_mpz_add(&arb_result, &arb_arg1, &arb_arg2); |
1466 |
|
1467 |
//Figure out the number of characters required for |
1468 |
//the output string. |
1469 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
1470 |
|
1471 |
//Allocate space for the conversion result. |
1472 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
1473 |
assert(string_result != NULL); |
1474 |
|
1475 |
//Make the conversion to a character string. |
1476 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
1477 |
|
1478 |
//Assign the string result to a Tcl object. |
1479 |
rv = Tcl_NewStringObj(string_result, -1); |
1480 |
|
1481 |
//Deallocate the string. |
1482 |
TclpFree(string_result); |
1483 |
|
1484 |
//Deallocate space for the arbitrary-length integers. |
1485 |
GMP_INTS_mpz_clear(&arb_arg1); |
1486 |
GMP_INTS_mpz_clear(&arb_arg2); |
1487 |
GMP_INTS_mpz_clear(&arb_result); |
1488 |
|
1489 |
//Assign the result to be the return value. |
1490 |
Tcl_SetObjResult(interp, rv); |
1491 |
|
1492 |
//Return |
1493 |
return(TCL_OK); |
1494 |
} |
1495 |
} |
1496 |
|
1497 |
|
1498 |
//08/01/01: Visual inspection and some unit testing, OK. |
1499 |
//Handles the "intcmp" subextension. |
1500 |
static |
1501 |
int ARBLENINTS_intcmp_handler(ClientData dummy, |
1502 |
Tcl_Interp *interp, |
1503 |
int objc, |
1504 |
Tcl_Obj *objv[]) |
1505 |
{ |
1506 |
Tcl_Obj *rv; |
1507 |
|
1508 |
//We must have two and exactly two additional arguments |
1509 |
//to this function, which are the integers to be compared. |
1510 |
if (objc != 4) |
1511 |
{ |
1512 |
Tcl_WrongNumArgs(interp, |
1513 |
2, |
1514 |
objv, |
1515 |
"sint sint"); |
1516 |
return(TCL_ERROR); |
1517 |
} |
1518 |
else |
1519 |
{ |
1520 |
GMP_INTS_mpz_struct arb_arg1, arb_arg2; |
1521 |
char *cmp_arg1, *cmp_arg2; |
1522 |
int failure1, failure2; |
1523 |
int i, j, compare_result; |
1524 |
|
1525 |
//Allocate space for the arbitrary-length integer result. |
1526 |
GMP_INTS_mpz_init(&arb_arg1); |
1527 |
GMP_INTS_mpz_init(&arb_arg2); |
1528 |
|
1529 |
//Grab pointers to the string representation of |
1530 |
//the input arguments. The storage does not belong to us. |
1531 |
cmp_arg1 = Tcl_GetString(objv[2]); |
1532 |
assert(cmp_arg1 != NULL); |
1533 |
cmp_arg2 = Tcl_GetString(objv[3]); |
1534 |
assert(cmp_arg2 != NULL); |
1535 |
|
1536 |
//Try to interpret either of the strings as one of the NAN tags. |
1537 |
//We cannot compare NAN tags. If either is a NAN tag, we must signal an |
1538 |
//error. |
1539 |
i = GMP_INTS_identify_nan_string(cmp_arg1); |
1540 |
j = GMP_INTS_identify_nan_string(cmp_arg2); |
1541 |
|
1542 |
if ((i >= 0) || (j >= 0)) |
1543 |
{ |
1544 |
rv = Tcl_NewStringObj("arbint intcmp: cannot compare NAN symbolic tags.", -1); |
1545 |
Tcl_SetObjResult(interp, rv); |
1546 |
|
1547 |
GMP_INTS_mpz_clear(&arb_arg1); |
1548 |
GMP_INTS_mpz_clear(&arb_arg2); |
1549 |
|
1550 |
return(TCL_ERROR); |
1551 |
} |
1552 |
|
1553 |
//Try to convert both strings into arbitrary integers. |
1554 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, cmp_arg1); |
1555 |
GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, cmp_arg2); |
1556 |
|
1557 |
//If there was a parse failure, we have to return an error |
1558 |
//message. It is possible that both arguments failed the parse, |
1559 |
//but only return one in the error message. |
1560 |
if (failure1 || failure2) |
1561 |
{ |
1562 |
rv = Tcl_NewStringObj("arbint intcmp: \"", -1); |
1563 |
if (failure1) |
1564 |
Tcl_AppendToObj(rv, cmp_arg1, -1); |
1565 |
else |
1566 |
Tcl_AppendToObj(rv, cmp_arg2, -1); |
1567 |
|
1568 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
1569 |
Tcl_SetObjResult(interp, rv); |
1570 |
|
1571 |
GMP_INTS_mpz_clear(&arb_arg1); |
1572 |
GMP_INTS_mpz_clear(&arb_arg2); |
1573 |
|
1574 |
return(TCL_ERROR); |
1575 |
} |
1576 |
|
1577 |
//Calculate the compare result. |
1578 |
compare_result = GMP_INTS_mpz_cmp(&arb_arg1, &arb_arg2); |
1579 |
|
1580 |
//Assign the return value based on the result. |
1581 |
if (compare_result < 0) |
1582 |
rv = Tcl_NewStringObj("-1", -1); |
1583 |
else if (compare_result == 0) |
1584 |
rv = Tcl_NewStringObj("0", -1); |
1585 |
else |
1586 |
rv = Tcl_NewStringObj("1", -1); |
1587 |
|
1588 |
//Deallocate space for the arbitrary-length integers. |
1589 |
GMP_INTS_mpz_clear(&arb_arg1); |
1590 |
GMP_INTS_mpz_clear(&arb_arg2); |
1591 |
|
1592 |
//Assign the result to be the return value. |
1593 |
Tcl_SetObjResult(interp, rv); |
1594 |
|
1595 |
//Return |
1596 |
return(TCL_OK); |
1597 |
} |
1598 |
} |
1599 |
|
1600 |
|
1601 |
//Handles the "intdiv" subextension. |
1602 |
//07/31/01: Visually inspected, OK. |
1603 |
static |
1604 |
int ARBLENINTS_intdiv_handler(ClientData dummy, |
1605 |
Tcl_Interp *interp, |
1606 |
int objc, |
1607 |
Tcl_Obj *objv[]) |
1608 |
{ |
1609 |
Tcl_Obj *rv; |
1610 |
|
1611 |
//We must have two and exactly two additional arguments |
1612 |
//to this function, which are the integers whose |
1613 |
//integer quotient is to be calculated. |
1614 |
if (objc != 4) |
1615 |
{ |
1616 |
Tcl_WrongNumArgs(interp, |
1617 |
2, |
1618 |
objv, |
1619 |
"sint sint"); |
1620 |
return(TCL_ERROR); |
1621 |
} |
1622 |
else |
1623 |
{ |
1624 |
GMP_INTS_mpz_struct arb_dividend, arb_divisor, arb_quotient, arb_remainder; |
1625 |
char *dividend_arg1, *divisor_arg2; |
1626 |
int failure1, failure2; |
1627 |
unsigned chars_reqd; |
1628 |
char *string_result; |
1629 |
int i, j; |
1630 |
|
1631 |
//Allocate space for the arbitrary-length integer arguments and results. |
1632 |
GMP_INTS_mpz_init(&arb_dividend); |
1633 |
GMP_INTS_mpz_init(&arb_divisor); |
1634 |
GMP_INTS_mpz_init(&arb_quotient); |
1635 |
GMP_INTS_mpz_init(&arb_remainder); |
1636 |
|
1637 |
//Grab pointers to the string representation of |
1638 |
//the input arguments. The storage does not belong to us. |
1639 |
dividend_arg1 = Tcl_GetString(objv[2]); |
1640 |
assert(dividend_arg1 != NULL); |
1641 |
divisor_arg2 = Tcl_GetString(objv[3]); |
1642 |
assert(divisor_arg2 != NULL); |
1643 |
|
1644 |
//Try to interpret either of the strings as one of the NAN tags. |
1645 |
//If it is one, return the appropriate result for |
1646 |
//a binary operation. |
1647 |
i = GMP_INTS_identify_nan_string(dividend_arg1); |
1648 |
j = GMP_INTS_identify_nan_string(divisor_arg2); |
1649 |
|
1650 |
if ((i >= 0) || (j >= 0)) |
1651 |
{ |
1652 |
const char *p; |
1653 |
|
1654 |
//Find the max of i and j. This isn't a scientific way to tag the |
1655 |
//result, but will be OK. Some information is lost no matter what |
1656 |
//we do. |
1657 |
if (i > j) |
1658 |
; |
1659 |
else |
1660 |
i = j; |
1661 |
|
1662 |
//i now contains the max. |
1663 |
switch (i) |
1664 |
{ |
1665 |
case 0: p = GMP_INTS_supply_nan_string(2); |
1666 |
break; |
1667 |
case 1: p = GMP_INTS_supply_nan_string(3); |
1668 |
break; |
1669 |
case 2: p = GMP_INTS_supply_nan_string(2); |
1670 |
break; |
1671 |
case 3: p = GMP_INTS_supply_nan_string(3); |
1672 |
break; |
1673 |
default: |
1674 |
assert(0); |
1675 |
break; |
1676 |
} |
1677 |
|
1678 |
rv = Tcl_NewStringObj(p, -1); |
1679 |
Tcl_SetObjResult(interp, rv); |
1680 |
|
1681 |
GMP_INTS_mpz_clear(&arb_dividend); |
1682 |
GMP_INTS_mpz_clear(&arb_divisor); |
1683 |
GMP_INTS_mpz_clear(&arb_quotient); |
1684 |
GMP_INTS_mpz_clear(&arb_remainder); |
1685 |
|
1686 |
return(TCL_OK); |
1687 |
} |
1688 |
|
1689 |
//Try to convert both strings into arbitrary integers. |
1690 |
GMP_INTS_mpz_set_general_int(&arb_dividend, &failure1, dividend_arg1); |
1691 |
GMP_INTS_mpz_set_general_int(&arb_divisor, &failure2, divisor_arg2); |
1692 |
|
1693 |
//If there was a parse failure, we have to return an error |
1694 |
//message. It is possible that both arguments failed the parse, |
1695 |
//but only return one in the error message. |
1696 |
if (failure1 || failure2) |
1697 |
{ |
1698 |
rv = Tcl_NewStringObj("arbint intdiv: \"", -1); |
1699 |
if (failure1) |
1700 |
Tcl_AppendToObj(rv, dividend_arg1, -1); |
1701 |
else |
1702 |
Tcl_AppendToObj(rv, divisor_arg2, -1); |
1703 |
|
1704 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
1705 |
Tcl_SetObjResult(interp, rv); |
1706 |
|
1707 |
GMP_INTS_mpz_clear(&arb_dividend); |
1708 |
GMP_INTS_mpz_clear(&arb_divisor); |
1709 |
GMP_INTS_mpz_clear(&arb_quotient); |
1710 |
GMP_INTS_mpz_clear(&arb_remainder); |
1711 |
|
1712 |
return(TCL_ERROR); |
1713 |
} |
1714 |
|
1715 |
//Calculate the quotient. |
1716 |
GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder, &arb_dividend, &arb_divisor); |
1717 |
|
1718 |
//Figure out the number of characters required for |
1719 |
//the output string. |
1720 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_quotient); |
1721 |
|
1722 |
//Allocate space for the conversion result. |
1723 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
1724 |
assert(string_result != NULL); |
1725 |
|
1726 |
//Make the conversion to a character string. |
1727 |
GMP_INTS_mpz_to_string(string_result, &arb_quotient); |
1728 |
|
1729 |
//Assign the string result to a Tcl object. |
1730 |
rv = Tcl_NewStringObj(string_result, -1); |
1731 |
|
1732 |
//Deallocate the string. |
1733 |
TclpFree(string_result); |
1734 |
|
1735 |
//Deallocate space for the arbitrary-length integers. |
1736 |
GMP_INTS_mpz_clear(&arb_dividend); |
1737 |
GMP_INTS_mpz_clear(&arb_divisor); |
1738 |
GMP_INTS_mpz_clear(&arb_quotient); |
1739 |
GMP_INTS_mpz_clear(&arb_remainder); |
1740 |
|
1741 |
//Assign the result to be the return value. |
1742 |
Tcl_SetObjResult(interp, rv); |
1743 |
|
1744 |
//Return |
1745 |
return(TCL_OK); |
1746 |
} |
1747 |
} |
1748 |
|
1749 |
|
1750 |
//08/01/01: Visually inspected. |
1751 |
//Handles the "intexp" subextension. |
1752 |
static |
1753 |
int ARBLENINTS_intexp_handler(ClientData dummy, |
1754 |
Tcl_Interp *interp, |
1755 |
int objc, |
1756 |
Tcl_Obj *objv[]) |
1757 |
{ |
1758 |
Tcl_Obj *rv; |
1759 |
|
1760 |
//We must have two and exactly two additional arguments |
1761 |
//to this function, which are the integers used to |
1762 |
//calculate the exponential. |
1763 |
if (objc != 4) |
1764 |
{ |
1765 |
Tcl_WrongNumArgs(interp, |
1766 |
2, |
1767 |
objv, |
1768 |
"sint uint32"); |
1769 |
return(TCL_ERROR); |
1770 |
} |
1771 |
else |
1772 |
{ |
1773 |
GMP_INTS_mpz_struct arb_arg1, arb_result; |
1774 |
unsigned arg2; |
1775 |
char *str_arg1, *str_arg2; |
1776 |
int failure1, failure2; |
1777 |
unsigned chars_reqd; |
1778 |
char *string_result; |
1779 |
int i, j; |
1780 |
|
1781 |
//Allocate space for the arbitrary-length integers. |
1782 |
GMP_INTS_mpz_init(&arb_arg1); |
1783 |
GMP_INTS_mpz_init(&arb_result); |
1784 |
|
1785 |
//Grab pointers to the string representation of |
1786 |
//the input arguments. The storage does not belong to us. |
1787 |
str_arg1 = Tcl_GetString(objv[2]); |
1788 |
assert(str_arg1 != NULL); |
1789 |
str_arg2 = Tcl_GetString(objv[3]); |
1790 |
assert(str_arg2 != NULL); |
1791 |
|
1792 |
//Try to interpret either of the strings as one of the NAN tags. |
1793 |
//If it is one, return the appropriate result for |
1794 |
//a binary operation. |
1795 |
i = GMP_INTS_identify_nan_string(str_arg1); |
1796 |
j = GMP_INTS_identify_nan_string(str_arg2); |
1797 |
|
1798 |
if ((i >= 0) || (j >= 0)) |
1799 |
{ |
1800 |
const char *p; |
1801 |
|
1802 |
//Find the max of i and j. This isn't a scientific way to tag the |
1803 |
//result, but will be OK. Some information is lost no matter what |
1804 |
//we do. |
1805 |
if (i > j) |
1806 |
; |
1807 |
else |
1808 |
i = j; |
1809 |
|
1810 |
//i now contains the max. |
1811 |
switch (i) |
1812 |
{ |
1813 |
case 0: p = GMP_INTS_supply_nan_string(2); |
1814 |
break; |
1815 |
case 1: p = GMP_INTS_supply_nan_string(3); |
1816 |
break; |
1817 |
case 2: p = GMP_INTS_supply_nan_string(2); |
1818 |
break; |
1819 |
case 3: p = GMP_INTS_supply_nan_string(3); |
1820 |
break; |
1821 |
default: |
1822 |
assert(0); |
1823 |
break; |
1824 |
} |
1825 |
|
1826 |
rv = Tcl_NewStringObj(p, -1); |
1827 |
Tcl_SetObjResult(interp, rv); |
1828 |
|
1829 |
GMP_INTS_mpz_clear(&arb_arg1); |
1830 |
GMP_INTS_mpz_clear(&arb_result); |
1831 |
|
1832 |
return(TCL_OK); |
1833 |
} |
1834 |
|
1835 |
//Try to convert the first string into arbitrary integers. |
1836 |
//The first string can be anything, including zero or a negative |
1837 |
//arugument. |
1838 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, str_arg1); |
1839 |
|
1840 |
//If the conversion of the first string did not go alright, |
1841 |
//print error message and abort. |
1842 |
if (failure1) |
1843 |
{ |
1844 |
rv = Tcl_NewStringObj("arbint intexp: \"", -1); |
1845 |
Tcl_AppendToObj(rv, str_arg1, -1); |
1846 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
1847 |
Tcl_SetObjResult(interp, rv); |
1848 |
|
1849 |
GMP_INTS_mpz_clear(&arb_arg1); |
1850 |
GMP_INTS_mpz_clear(&arb_result); |
1851 |
|
1852 |
return(TCL_ERROR); |
1853 |
} |
1854 |
|
1855 |
|
1856 |
//Try to convert the second string into an unsigned 32-bit |
1857 |
//integer. |
1858 |
GMP_INTS_mpz_parse_into_uint32(&arg2, &failure2, str_arg2); |
1859 |
|
1860 |
//If the conversion of the second string did not go alright, |
1861 |
//print error message and abort. |
1862 |
if (failure2) |
1863 |
{ |
1864 |
rv = Tcl_NewStringObj("arbint intexp: \"", -1); |
1865 |
Tcl_AppendToObj(rv, str_arg2, -1); |
1866 |
Tcl_AppendToObj(rv, "\" is not a recognized unsigned 32-bit integer.", -1); |
1867 |
Tcl_SetObjResult(interp, rv); |
1868 |
|
1869 |
GMP_INTS_mpz_clear(&arb_arg1); |
1870 |
GMP_INTS_mpz_clear(&arb_result); |
1871 |
|
1872 |
return(TCL_ERROR); |
1873 |
} |
1874 |
|
1875 |
//Calculate the exponential. |
1876 |
GMP_INTS_mpz_pow_ui(&arb_result, &arb_arg1, arg2); |
1877 |
|
1878 |
//Figure out the number of characters required for |
1879 |
//the output string. |
1880 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
1881 |
|
1882 |
//Allocate space for the conversion result. |
1883 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
1884 |
assert(string_result != NULL); |
1885 |
|
1886 |
//Make the conversion to a character string. |
1887 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
1888 |
|
1889 |
//Assign the string result to a Tcl object. |
1890 |
rv = Tcl_NewStringObj(string_result, -1); |
1891 |
|
1892 |
//Deallocate the string. |
1893 |
TclpFree(string_result); |
1894 |
|
1895 |
//Deallocate space for the arbitrary-length integers. |
1896 |
GMP_INTS_mpz_clear(&arb_arg1); |
1897 |
GMP_INTS_mpz_clear(&arb_result); |
1898 |
|
1899 |
//Assign the result to be the return value. |
1900 |
Tcl_SetObjResult(interp, rv); |
1901 |
|
1902 |
//Return |
1903 |
return(TCL_OK); |
1904 |
} |
1905 |
} |
1906 |
|
1907 |
|
1908 |
//Handles the "intfac" subextension. |
1909 |
//07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this |
1910 |
//from memory an intuition as far as how to set return results and so forth. |
1911 |
static |
1912 |
int ARBLENINTS_intfac_handler(ClientData dummy, |
1913 |
Tcl_Interp *interp, |
1914 |
int objc, |
1915 |
Tcl_Obj *objv[]) |
1916 |
{ |
1917 |
Tcl_Obj *rv; |
1918 |
|
1919 |
//We must have one and exactly one additional argument |
1920 |
//to this function, which is the integer whose |
1921 |
//factorial is to be evaluated. |
1922 |
if (objc != 3) |
1923 |
{ |
1924 |
Tcl_WrongNumArgs(interp, |
1925 |
2, |
1926 |
objv, |
1927 |
"uint32"); |
1928 |
return(TCL_ERROR); |
1929 |
} |
1930 |
else |
1931 |
{ |
1932 |
GMP_INTS_mpz_struct arb_result; |
1933 |
char *fac_arg; |
1934 |
int failure; |
1935 |
unsigned fac_ui_arg; |
1936 |
unsigned chars_reqd; |
1937 |
char *string_result; |
1938 |
int i; |
1939 |
|
1940 |
//Allocate space for the arbitrary-length integer result. |
1941 |
GMP_INTS_mpz_init(&arb_result); |
1942 |
|
1943 |
//Grab a pointer to the string representation of |
1944 |
//the input argument. The storage does not belong to us. |
1945 |
fac_arg = Tcl_GetString(objv[2]); |
1946 |
assert(fac_arg != NULL); |
1947 |
|
1948 |
//Try to interpret the string as one of the NAN tags. |
1949 |
//If it is one, return the appropriate result for |
1950 |
//a unary operation. |
1951 |
if ((i = GMP_INTS_identify_nan_string(fac_arg)) >= 0) |
1952 |
{ |
1953 |
const char *p; |
1954 |
|
1955 |
switch (i) |
1956 |
{ |
1957 |
case 0: p = GMP_INTS_supply_nan_string(2); |
1958 |
break; |
1959 |
case 1: p = GMP_INTS_supply_nan_string(3); |
1960 |
break; |
1961 |
case 2: p = GMP_INTS_supply_nan_string(2); |
1962 |
break; |
1963 |
case 3: p = GMP_INTS_supply_nan_string(3); |
1964 |
break; |
1965 |
default: |
1966 |
assert(0); |
1967 |
break; |
1968 |
} |
1969 |
|
1970 |
rv = Tcl_NewStringObj(p, -1); |
1971 |
Tcl_SetObjResult(interp, rv); |
1972 |
GMP_INTS_mpz_clear(&arb_result); |
1973 |
return(TCL_OK); |
1974 |
} |
1975 |
|
1976 |
//Try to convert the string to a UINT32 using all |
1977 |
//known methods. |
1978 |
GMP_INTS_mpz_parse_into_uint32(&fac_ui_arg, &failure, fac_arg); |
1979 |
|
1980 |
//If there was a parse failure, we have to return an error |
1981 |
//message. |
1982 |
if (failure) |
1983 |
{ |
1984 |
rv = Tcl_NewStringObj("arbint intfac: \"", -1); |
1985 |
Tcl_AppendToObj(rv, fac_arg, -1); |
1986 |
Tcl_AppendToObj(rv, "\" is not a recognized 32-bit unsigned integer.", -1); |
1987 |
Tcl_SetObjResult(interp, rv); |
1988 |
GMP_INTS_mpz_clear(&arb_result); |
1989 |
return(TCL_ERROR); |
1990 |
} |
1991 |
|
1992 |
//Calculate the factorial. |
1993 |
GMP_INTS_mpz_fac_ui(&arb_result, fac_ui_arg); |
1994 |
|
1995 |
//Figure out the number of characters required for |
1996 |
//the output string. |
1997 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
1998 |
|
1999 |
//Allocate space for the conversion result. |
2000 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
2001 |
assert(string_result != NULL); |
2002 |
|
2003 |
//Make the conversion to a character string. |
2004 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
2005 |
|
2006 |
//Assign the string result to a Tcl object. |
2007 |
rv = Tcl_NewStringObj(string_result, -1); |
2008 |
|
2009 |
//Deallocate the string. |
2010 |
TclpFree(string_result); |
2011 |
|
2012 |
//Deallocate space for the arbitrary-length integer. |
2013 |
GMP_INTS_mpz_clear(&arb_result); |
2014 |
|
2015 |
//Assign the result to be the return value. |
2016 |
Tcl_SetObjResult(interp, rv); |
2017 |
|
2018 |
//Return |
2019 |
return(TCL_OK); |
2020 |
} |
2021 |
} |
2022 |
|
2023 |
|
2024 |
//Handles the "intgcd" subextension. |
2025 |
//08/06/01: Visual inspection OK. |
2026 |
static |
2027 |
int ARBLENINTS_intgcd_handler(ClientData dummy, |
2028 |
Tcl_Interp *interp, |
2029 |
int objc, |
2030 |
Tcl_Obj *objv[]) |
2031 |
{ |
2032 |
Tcl_Obj *rv; |
2033 |
|
2034 |
//We must have two and exactly two additional arguments |
2035 |
//to this function, which are the integers whose |
2036 |
//gcd is to be calculated. |
2037 |
if (objc != 4) |
2038 |
{ |
2039 |
Tcl_WrongNumArgs(interp, |
2040 |
2, |
2041 |
objv, |
2042 |
"sint sint"); |
2043 |
return(TCL_ERROR); |
2044 |
} |
2045 |
else |
2046 |
{ |
2047 |
GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; |
2048 |
char *gcd_arg1, *gcd_arg2; |
2049 |
int failure1, failure2; |
2050 |
unsigned chars_reqd; |
2051 |
char *string_result; |
2052 |
int i, j; |
2053 |
|
2054 |
//Allocate space for the arbitrary-length integer result. |
2055 |
GMP_INTS_mpz_init(&arb_arg1); |
2056 |
GMP_INTS_mpz_init(&arb_arg2); |
2057 |
GMP_INTS_mpz_init(&arb_result); |
2058 |
|
2059 |
//Grab pointers to the string representation of |
2060 |
//the input arguments. The storage does not belong to us. |
2061 |
gcd_arg1 = Tcl_GetString(objv[2]); |
2062 |
assert(gcd_arg1 != NULL); |
2063 |
gcd_arg2 = Tcl_GetString(objv[3]); |
2064 |
assert(gcd_arg2 != NULL); |
2065 |
|
2066 |
//Try to interpret either of the strings as one of the NAN tags. |
2067 |
//If it is one, return the appropriate result for |
2068 |
//a binary operation. |
2069 |
i = GMP_INTS_identify_nan_string(gcd_arg1); |
2070 |
j = GMP_INTS_identify_nan_string(gcd_arg2); |
2071 |
|
2072 |
if ((i >= 0) || (j >= 0)) |
2073 |
{ |
2074 |
const char *p; |
2075 |
|
2076 |
//Find the max of i and j. This isn't a scientific way to tag the |
2077 |
//result, but will be OK. Some information is lost no matter what |
2078 |
//we do. |
2079 |
if (i > j) |
2080 |
; |
2081 |
else |
2082 |
i = j; |
2083 |
|
2084 |
//i now contains the max. |
2085 |
switch (i) |
2086 |
{ |
2087 |
case 0: p = GMP_INTS_supply_nan_string(2); |
2088 |
break; |
2089 |
case 1: p = GMP_INTS_supply_nan_string(3); |
2090 |
break; |
2091 |
case 2: p = GMP_INTS_supply_nan_string(2); |
2092 |
break; |
2093 |
case 3: p = GMP_INTS_supply_nan_string(3); |
2094 |
break; |
2095 |
default: |
2096 |
assert(0); |
2097 |
break; |
2098 |
} |
2099 |
|
2100 |
rv = Tcl_NewStringObj(p, -1); |
2101 |
Tcl_SetObjResult(interp, rv); |
2102 |
|
2103 |
GMP_INTS_mpz_clear(&arb_arg1); |
2104 |
GMP_INTS_mpz_clear(&arb_arg2); |
2105 |
GMP_INTS_mpz_clear(&arb_result); |
2106 |
|
2107 |
return(TCL_OK); |
2108 |
} |
2109 |
|
2110 |
//Try to convert both strings into arbitrary integers. |
2111 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, gcd_arg1); |
2112 |
GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, gcd_arg2); |
2113 |
|
2114 |
//If there was a parse failure, we have to return an error |
2115 |
//message. It is possible that both arguments failed the parse, |
2116 |
//but only return one in the error message. |
2117 |
if (failure1 || failure2) |
2118 |
{ |
2119 |
rv = Tcl_NewStringObj("arbint intgcd: \"", -1); |
2120 |
if (failure1) |
2121 |
Tcl_AppendToObj(rv, gcd_arg1, -1); |
2122 |
else |
2123 |
Tcl_AppendToObj(rv, gcd_arg2, -1); |
2124 |
|
2125 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
2126 |
Tcl_SetObjResult(interp, rv); |
2127 |
|
2128 |
GMP_INTS_mpz_clear(&arb_arg1); |
2129 |
GMP_INTS_mpz_clear(&arb_arg2); |
2130 |
GMP_INTS_mpz_clear(&arb_result); |
2131 |
|
2132 |
return(TCL_ERROR); |
2133 |
} |
2134 |
|
2135 |
//Calculate the gcd. |
2136 |
GMP_INTS_mpz_gcd(&arb_result, &arb_arg1, &arb_arg2); |
2137 |
|
2138 |
//Figure out the number of characters required for |
2139 |
//the output string. |
2140 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
2141 |
|
2142 |
//Allocate space for the conversion result. |
2143 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
2144 |
assert(string_result != NULL); |
2145 |
|
2146 |
//Make the conversion to a character string. |
2147 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
2148 |
|
2149 |
//Assign the string result to a Tcl object. |
2150 |
rv = Tcl_NewStringObj(string_result, -1); |
2151 |
|
2152 |
//Deallocate the string. |
2153 |
TclpFree(string_result); |
2154 |
|
2155 |
//Deallocate space for the arbitrary-length integers. |
2156 |
GMP_INTS_mpz_clear(&arb_arg1); |
2157 |
GMP_INTS_mpz_clear(&arb_arg2); |
2158 |
GMP_INTS_mpz_clear(&arb_result); |
2159 |
|
2160 |
//Assign the result to be the return value. |
2161 |
Tcl_SetObjResult(interp, rv); |
2162 |
|
2163 |
//Return |
2164 |
return(TCL_OK); |
2165 |
} |
2166 |
} |
2167 |
|
2168 |
|
2169 |
//Handles the "intlcm" subextension. |
2170 |
//08/10/01: Visual inspection OK. |
2171 |
static |
2172 |
int ARBLENINTS_intlcm_handler(ClientData dummy, |
2173 |
Tcl_Interp *interp, |
2174 |
int objc, |
2175 |
Tcl_Obj *objv[]) |
2176 |
{ |
2177 |
Tcl_Obj *rv; |
2178 |
|
2179 |
//We must have two and exactly two additional arguments |
2180 |
//to this function, which are the integers whose |
2181 |
//lcm is to be calculated. |
2182 |
if (objc != 4) |
2183 |
{ |
2184 |
Tcl_WrongNumArgs(interp, |
2185 |
2, |
2186 |
objv, |
2187 |
"sint sint"); |
2188 |
return(TCL_ERROR); |
2189 |
} |
2190 |
else |
2191 |
{ |
2192 |
GMP_INTS_mpz_struct arb_arg1, arb_arg2, gcd, remainder, arb_result; |
2193 |
char *lcm_arg1, *lcm_arg2; |
2194 |
int failure1, failure2; |
2195 |
unsigned chars_reqd; |
2196 |
char *string_result; |
2197 |
int i, j; |
2198 |
|
2199 |
//Allocate space for the arbitrary-length integers. |
2200 |
GMP_INTS_mpz_init(&arb_arg1); |
2201 |
GMP_INTS_mpz_init(&arb_arg2); |
2202 |
GMP_INTS_mpz_init(&gcd); |
2203 |
GMP_INTS_mpz_init(&remainder); |
2204 |
GMP_INTS_mpz_init(&arb_result); |
2205 |
|
2206 |
//Grab pointers to the string representation of |
2207 |
//the input arguments. The storage does not belong to us. |
2208 |
lcm_arg1 = Tcl_GetString(objv[2]); |
2209 |
assert(lcm_arg1 != NULL); |
2210 |
lcm_arg2 = Tcl_GetString(objv[3]); |
2211 |
assert(lcm_arg2 != NULL); |
2212 |
|
2213 |
//Try to interpret either of the strings as one of the NAN tags. |
2214 |
//If it is one, return the appropriate result for |
2215 |
//a binary operation. |
2216 |
i = GMP_INTS_identify_nan_string(lcm_arg1); |
2217 |
j = GMP_INTS_identify_nan_string(lcm_arg2); |
2218 |
|
2219 |
if ((i >= 0) || (j >= 0)) |
2220 |
{ |
2221 |
const char *p; |
2222 |
|
2223 |
//Find the max of i and j. This isn't a scientific way to tag the |
2224 |
//result, but will be OK. Some information is lost no matter what |
2225 |
//we do. |
2226 |
if (i > j) |
2227 |
; |
2228 |
else |
2229 |
i = j; |
2230 |
|
2231 |
//i now contains the max. |
2232 |
switch (i) |
2233 |
{ |
2234 |
case 0: p = GMP_INTS_supply_nan_string(2); |
2235 |
break; |
2236 |
case 1: p = GMP_INTS_supply_nan_string(3); |
2237 |
break; |
2238 |
case 2: p = GMP_INTS_supply_nan_string(2); |
2239 |
break; |
2240 |
case 3: p = GMP_INTS_supply_nan_string(3); |
2241 |
break; |
2242 |
default: |
2243 |
assert(0); |
2244 |
break; |
2245 |
} |
2246 |
|
2247 |
rv = Tcl_NewStringObj(p, -1); |
2248 |
Tcl_SetObjResult(interp, rv); |
2249 |
|
2250 |
GMP_INTS_mpz_clear(&arb_arg1); |
2251 |
GMP_INTS_mpz_clear(&arb_arg2); |
2252 |
GMP_INTS_mpz_clear(&gcd); |
2253 |
GMP_INTS_mpz_clear(&remainder); |
2254 |
GMP_INTS_mpz_clear(&arb_result); |
2255 |
|
2256 |
return(TCL_OK); |
2257 |
} |
2258 |
|
2259 |
//Try to convert both strings into arbitrary integers. |
2260 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, lcm_arg1); |
2261 |
GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, lcm_arg2); |
2262 |
|
2263 |
//If there was a parse failure, we have to return an error |
2264 |
//message. It is possible that both arguments failed the parse, |
2265 |
//but only return one in the error message. |
2266 |
if (failure1 || failure2) |
2267 |
{ |
2268 |
rv = Tcl_NewStringObj("arbint intlcm: \"", -1); |
2269 |
if (failure1) |
2270 |
Tcl_AppendToObj(rv, lcm_arg1, -1); |
2271 |
else |
2272 |
Tcl_AppendToObj(rv, lcm_arg2, -1); |
2273 |
|
2274 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
2275 |
Tcl_SetObjResult(interp, rv); |
2276 |
|
2277 |
GMP_INTS_mpz_clear(&arb_arg1); |
2278 |
GMP_INTS_mpz_clear(&arb_arg2); |
2279 |
GMP_INTS_mpz_clear(&gcd); |
2280 |
GMP_INTS_mpz_clear(&remainder); |
2281 |
GMP_INTS_mpz_clear(&arb_result); |
2282 |
|
2283 |
return(TCL_ERROR); |
2284 |
} |
2285 |
|
2286 |
//Adjust errant arguments. |
2287 |
if (GMP_INTS_mpz_is_neg(&arb_arg1)) |
2288 |
GMP_INTS_mpz_negate(&arb_arg1); |
2289 |
else if (GMP_INTS_mpz_is_zero(&arb_arg1)) |
2290 |
GMP_INTS_mpz_set_ui(&arb_arg1, 1); |
2291 |
if (GMP_INTS_mpz_is_neg(&arb_arg2)) |
2292 |
GMP_INTS_mpz_negate(&arb_arg2); |
2293 |
else if (GMP_INTS_mpz_is_zero(&arb_arg2)) |
2294 |
GMP_INTS_mpz_set_ui(&arb_arg2, 1); |
2295 |
|
2296 |
//Calculate the gcd. |
2297 |
GMP_INTS_mpz_gcd(&gcd, &arb_arg1, &arb_arg2); |
2298 |
|
2299 |
//Calculate the lcm. |
2300 |
GMP_INTS_mpz_mul(&arb_arg1, &arb_arg1, &arb_arg2); |
2301 |
GMP_INTS_mpz_tdiv_qr(&arb_result, &remainder, |
2302 |
&arb_arg1, &gcd); |
2303 |
|
2304 |
//Figure out the number of characters required for |
2305 |
//the output string. |
2306 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
2307 |
|
2308 |
//Allocate space for the conversion result. |
2309 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
2310 |
assert(string_result != NULL); |
2311 |
|
2312 |
//Make the conversion to a character string. |
2313 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
2314 |
|
2315 |
//Assign the string result to a Tcl object. |
2316 |
rv = Tcl_NewStringObj(string_result, -1); |
2317 |
|
2318 |
//Deallocate the string. |
2319 |
TclpFree(string_result); |
2320 |
|
2321 |
//Deallocate space for the arbitrary-length integers. |
2322 |
GMP_INTS_mpz_clear(&arb_arg1); |
2323 |
GMP_INTS_mpz_clear(&arb_arg2); |
2324 |
GMP_INTS_mpz_clear(&gcd); |
2325 |
GMP_INTS_mpz_clear(&remainder); |
2326 |
GMP_INTS_mpz_clear(&arb_result); |
2327 |
|
2328 |
//Assign the result to be the return value. |
2329 |
Tcl_SetObjResult(interp, rv); |
2330 |
|
2331 |
//Return |
2332 |
return(TCL_OK); |
2333 |
} |
2334 |
} |
2335 |
|
2336 |
|
2337 |
//Handles the "intmod" subextension. |
2338 |
//08/06/01: Visual inspection OK. |
2339 |
static |
2340 |
int ARBLENINTS_intmod_handler(ClientData dummy, |
2341 |
Tcl_Interp *interp, |
2342 |
int objc, |
2343 |
Tcl_Obj *objv[]) |
2344 |
{ |
2345 |
Tcl_Obj *rv; |
2346 |
|
2347 |
//We must have two and exactly two additional arguments |
2348 |
//to this function, which are the integers whose |
2349 |
//integer quotient is to be calculated. |
2350 |
if (objc != 4) |
2351 |
{ |
2352 |
Tcl_WrongNumArgs(interp, |
2353 |
2, |
2354 |
objv, |
2355 |
"sint sint"); |
2356 |
return(TCL_ERROR); |
2357 |
} |
2358 |
else |
2359 |
{ |
2360 |
GMP_INTS_mpz_struct arb_dividend, arb_divisor, arb_quotient, arb_remainder; |
2361 |
char *dividend_arg1, *divisor_arg2; |
2362 |
int failure1, failure2; |
2363 |
unsigned chars_reqd; |
2364 |
char *string_result; |
2365 |
int i, j; |
2366 |
|
2367 |
//Allocate space for the arbitrary-length integer arguments and results. |
2368 |
GMP_INTS_mpz_init(&arb_dividend); |
2369 |
GMP_INTS_mpz_init(&arb_divisor); |
2370 |
GMP_INTS_mpz_init(&arb_quotient); |
2371 |
GMP_INTS_mpz_init(&arb_remainder); |
2372 |
|
2373 |
//Grab pointers to the string representation of |
2374 |
//the input arguments. The storage does not belong to us. |
2375 |
dividend_arg1 = Tcl_GetString(objv[2]); |
2376 |
assert(dividend_arg1 != NULL); |
2377 |
divisor_arg2 = Tcl_GetString(objv[3]); |
2378 |
assert(divisor_arg2 != NULL); |
2379 |
|
2380 |
//Try to interpret either of the strings as one of the NAN tags. |
2381 |
//If it is one, return the appropriate result for |
2382 |
//a binary operation. |
2383 |
i = GMP_INTS_identify_nan_string(dividend_arg1); |
2384 |
j = GMP_INTS_identify_nan_string(divisor_arg2); |
2385 |
|
2386 |
if ((i >= 0) || (j >= 0)) |
2387 |
{ |
2388 |
const char *p; |
2389 |
|
2390 |
//Find the max of i and j. This isn't a scientific way to tag the |
2391 |
//result, but will be OK. Some information is lost no matter what |
2392 |
//we do. |
2393 |
if (i > j) |
2394 |
; |
2395 |
else |
2396 |
i = j; |
2397 |
|
2398 |
//i now contains the max. |
2399 |
switch (i) |
2400 |
{ |
2401 |
case 0: p = GMP_INTS_supply_nan_string(2); |
2402 |
break; |
2403 |
case 1: p = GMP_INTS_supply_nan_string(3); |
2404 |
break; |
2405 |
case 2: p = GMP_INTS_supply_nan_string(2); |
2406 |
break; |
2407 |
case 3: p = GMP_INTS_supply_nan_string(3); |
2408 |
break; |
2409 |
default: |
2410 |
assert(0); |
2411 |
break; |
2412 |
} |
2413 |
|
2414 |
rv = Tcl_NewStringObj(p, -1); |
2415 |
Tcl_SetObjResult(interp, rv); |
2416 |
|
2417 |
GMP_INTS_mpz_clear(&arb_dividend); |
2418 |
GMP_INTS_mpz_clear(&arb_divisor); |
2419 |
GMP_INTS_mpz_clear(&arb_quotient); |
2420 |
GMP_INTS_mpz_clear(&arb_remainder); |
2421 |
|
2422 |
return(TCL_OK); |
2423 |
} |
2424 |
|
2425 |
//Try to convert both strings into arbitrary integers. |
2426 |
GMP_INTS_mpz_set_general_int(&arb_dividend, &failure1, dividend_arg1); |
2427 |
GMP_INTS_mpz_set_general_int(&arb_divisor, &failure2, divisor_arg2); |
2428 |
|
2429 |
//If there was a parse failure, we have to return an error |
2430 |
//message. It is possible that both arguments failed the parse, |
2431 |
//but only return one in the error message. |
2432 |
if (failure1 || failure2) |
2433 |
{ |
2434 |
rv = Tcl_NewStringObj("arbint intmod: \"", -1); |
2435 |
if (failure1) |
2436 |
Tcl_AppendToObj(rv, dividend_arg1, -1); |
2437 |
else |
2438 |
Tcl_AppendToObj(rv, divisor_arg2, -1); |
2439 |
|
2440 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
2441 |
Tcl_SetObjResult(interp, rv); |
2442 |
|
2443 |
GMP_INTS_mpz_clear(&arb_dividend); |
2444 |
GMP_INTS_mpz_clear(&arb_divisor); |
2445 |
GMP_INTS_mpz_clear(&arb_quotient); |
2446 |
GMP_INTS_mpz_clear(&arb_remainder); |
2447 |
|
2448 |
return(TCL_ERROR); |
2449 |
} |
2450 |
|
2451 |
//Calculate the quotient and remainder. |
2452 |
GMP_INTS_mpz_tdiv_qr(&arb_quotient, &arb_remainder, &arb_dividend, &arb_divisor); |
2453 |
|
2454 |
//Figure out the number of characters required for |
2455 |
//the output string. |
2456 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_remainder); |
2457 |
|
2458 |
//Allocate space for the conversion result. |
2459 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
2460 |
assert(string_result != NULL); |
2461 |
|
2462 |
//Make the conversion to a character string. |
2463 |
GMP_INTS_mpz_to_string(string_result, &arb_remainder); |
2464 |
|
2465 |
//Assign the string result to a Tcl object. |
2466 |
rv = Tcl_NewStringObj(string_result, -1); |
2467 |
|
2468 |
//Deallocate the string. |
2469 |
TclpFree(string_result); |
2470 |
|
2471 |
//Deallocate space for the arbitrary-length integers. |
2472 |
GMP_INTS_mpz_clear(&arb_dividend); |
2473 |
GMP_INTS_mpz_clear(&arb_divisor); |
2474 |
GMP_INTS_mpz_clear(&arb_quotient); |
2475 |
GMP_INTS_mpz_clear(&arb_remainder); |
2476 |
|
2477 |
//Assign the result to be the return value. |
2478 |
Tcl_SetObjResult(interp, rv); |
2479 |
|
2480 |
//Return |
2481 |
return(TCL_OK); |
2482 |
} |
2483 |
} |
2484 |
|
2485 |
|
2486 |
//Handles the "intmul" subextension. |
2487 |
//08/06/01: Visual inspection OK. |
2488 |
static |
2489 |
int ARBLENINTS_intmul_handler(ClientData dummy, |
2490 |
Tcl_Interp *interp, |
2491 |
int objc, |
2492 |
Tcl_Obj *objv[]) |
2493 |
{ |
2494 |
Tcl_Obj *rv; |
2495 |
|
2496 |
//We must have two and exactly two additional arguments |
2497 |
//to this function, which are the integers whose |
2498 |
//product is to be calculated. |
2499 |
if (objc != 4) |
2500 |
{ |
2501 |
Tcl_WrongNumArgs(interp, |
2502 |
2, |
2503 |
objv, |
2504 |
"sint sint"); |
2505 |
return(TCL_ERROR); |
2506 |
} |
2507 |
else |
2508 |
{ |
2509 |
GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; |
2510 |
char *mul_arg1, *mul_arg2; |
2511 |
int failure1, failure2; |
2512 |
unsigned chars_reqd; |
2513 |
char *string_result; |
2514 |
int i, j; |
2515 |
|
2516 |
//Allocate space for the arbitrary-length integer result. |
2517 |
GMP_INTS_mpz_init(&arb_arg1); |
2518 |
GMP_INTS_mpz_init(&arb_arg2); |
2519 |
GMP_INTS_mpz_init(&arb_result); |
2520 |
|
2521 |
//Grab pointers to the string representation of |
2522 |
//the input arguments. The storage does not belong to us. |
2523 |
mul_arg1 = Tcl_GetString(objv[2]); |
2524 |
assert(mul_arg1 != NULL); |
2525 |
mul_arg2 = Tcl_GetString(objv[3]); |
2526 |
assert(mul_arg2 != NULL); |
2527 |
|
2528 |
//Try to interpret either of the strings as one of the NAN tags. |
2529 |
//If it is one, return the appropriate result for |
2530 |
//a binary operation. |
2531 |
i = GMP_INTS_identify_nan_string(mul_arg1); |
2532 |
j = GMP_INTS_identify_nan_string(mul_arg2); |
2533 |
|
2534 |
if ((i >= 0) || (j >= 0)) |
2535 |
{ |
2536 |
const char *p; |
2537 |
|
2538 |
//Find the max of i and j. This isn't a scientific way to tag the |
2539 |
//result, but will be OK. Some information is lost no matter what |
2540 |
//we do. |
2541 |
if (i > j) |
2542 |
; |
2543 |
else |
2544 |
i = j; |
2545 |
|
2546 |
//i now contains the max. |
2547 |
switch (i) |
2548 |
{ |
2549 |
case 0: p = GMP_INTS_supply_nan_string(2); |
2550 |
break; |
2551 |
case 1: p = GMP_INTS_supply_nan_string(3); |
2552 |
break; |
2553 |
case 2: p = GMP_INTS_supply_nan_string(2); |
2554 |
break; |
2555 |
case 3: p = GMP_INTS_supply_nan_string(3); |
2556 |
break; |
2557 |
default: |
2558 |
assert(0); |
2559 |
break; |
2560 |
} |
2561 |
|
2562 |
rv = Tcl_NewStringObj(p, -1); |
2563 |
Tcl_SetObjResult(interp, rv); |
2564 |
|
2565 |
GMP_INTS_mpz_clear(&arb_arg1); |
2566 |
GMP_INTS_mpz_clear(&arb_arg2); |
2567 |
GMP_INTS_mpz_clear(&arb_result); |
2568 |
|
2569 |
return(TCL_OK); |
2570 |
} |
2571 |
|
2572 |
//Try to convert both strings into arbitrary integers. |
2573 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, mul_arg1); |
2574 |
GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, mul_arg2); |
2575 |
|
2576 |
//If there was a parse failure, we have to return an error |
2577 |
//message. It is possible that both arguments failed the parse, |
2578 |
//but only return one in the error message. |
2579 |
if (failure1 || failure2) |
2580 |
{ |
2581 |
rv = Tcl_NewStringObj("arbint intmul: \"", -1); |
2582 |
if (failure1) |
2583 |
Tcl_AppendToObj(rv, mul_arg1, -1); |
2584 |
else |
2585 |
Tcl_AppendToObj(rv, mul_arg2, -1); |
2586 |
|
2587 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
2588 |
Tcl_SetObjResult(interp, rv); |
2589 |
|
2590 |
GMP_INTS_mpz_clear(&arb_arg1); |
2591 |
GMP_INTS_mpz_clear(&arb_arg2); |
2592 |
GMP_INTS_mpz_clear(&arb_result); |
2593 |
|
2594 |
return(TCL_ERROR); |
2595 |
} |
2596 |
|
2597 |
//Calculate the product. |
2598 |
GMP_INTS_mpz_mul(&arb_result, &arb_arg1, &arb_arg2); |
2599 |
|
2600 |
//Figure out the number of characters required for |
2601 |
//the output string. |
2602 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
2603 |
|
2604 |
//Allocate space for the conversion result. |
2605 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
2606 |
assert(string_result != NULL); |
2607 |
|
2608 |
//Make the conversion to a character string. |
2609 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
2610 |
|
2611 |
//Assign the string result to a Tcl object. |
2612 |
rv = Tcl_NewStringObj(string_result, -1); |
2613 |
|
2614 |
//Deallocate the string. |
2615 |
TclpFree(string_result); |
2616 |
|
2617 |
//Deallocate space for the arbitrary-length integers. |
2618 |
GMP_INTS_mpz_clear(&arb_arg1); |
2619 |
GMP_INTS_mpz_clear(&arb_arg2); |
2620 |
GMP_INTS_mpz_clear(&arb_result); |
2621 |
|
2622 |
//Assign the result to be the return value. |
2623 |
Tcl_SetObjResult(interp, rv); |
2624 |
|
2625 |
//Return |
2626 |
return(TCL_OK); |
2627 |
} |
2628 |
} |
2629 |
|
2630 |
|
2631 |
//Handles the "intsub" subextension. |
2632 |
//08/06/01: Visual inspection OK. |
2633 |
static |
2634 |
int ARBLENINTS_intsub_handler(ClientData dummy, |
2635 |
Tcl_Interp *interp, |
2636 |
int objc, |
2637 |
Tcl_Obj *objv[]) |
2638 |
{ |
2639 |
Tcl_Obj *rv; |
2640 |
|
2641 |
//We must have two and exactly two additional arguments |
2642 |
//to this function, which are the integers whose |
2643 |
//difference is to be calculated. |
2644 |
if (objc != 4) |
2645 |
{ |
2646 |
Tcl_WrongNumArgs(interp, |
2647 |
2, |
2648 |
objv, |
2649 |
"sint sint"); |
2650 |
return(TCL_ERROR); |
2651 |
} |
2652 |
else |
2653 |
{ |
2654 |
GMP_INTS_mpz_struct arb_arg1, arb_arg2, arb_result; |
2655 |
char *sub_arg1, *sub_arg2; |
2656 |
int failure1, failure2; |
2657 |
unsigned chars_reqd; |
2658 |
char *string_result; |
2659 |
int i, j; |
2660 |
|
2661 |
//Allocate space for the arbitrary-length integer result. |
2662 |
GMP_INTS_mpz_init(&arb_arg1); |
2663 |
GMP_INTS_mpz_init(&arb_arg2); |
2664 |
GMP_INTS_mpz_init(&arb_result); |
2665 |
|
2666 |
//Grab pointers to the string representation of |
2667 |
//the input arguments. The storage does not belong to us. |
2668 |
sub_arg1 = Tcl_GetString(objv[2]); |
2669 |
assert(sub_arg1 != NULL); |
2670 |
sub_arg2 = Tcl_GetString(objv[3]); |
2671 |
assert(sub_arg2 != NULL); |
2672 |
|
2673 |
//Try to interpret either of the strings as one of the NAN tags. |
2674 |
//If it is one, return the appropriate result for |
2675 |
//a binary operation. |
2676 |
i = GMP_INTS_identify_nan_string(sub_arg1); |
2677 |
j = GMP_INTS_identify_nan_string(sub_arg2); |
2678 |
|
2679 |
if ((i >= 0) || (j >= 0)) |
2680 |
{ |
2681 |
const char *p; |
2682 |
|
2683 |
//Find the max of i and j. This isn't a scientific way to tag the |
2684 |
//result, but will be OK. Some information is lost no matter what |
2685 |
//we do. |
2686 |
if (i > j) |
2687 |
; |
2688 |
else |
2689 |
i = j; |
2690 |
|
2691 |
//i now contains the max. |
2692 |
switch (i) |
2693 |
{ |
2694 |
case 0: p = GMP_INTS_supply_nan_string(2); |
2695 |
break; |
2696 |
case 1: p = GMP_INTS_supply_nan_string(3); |
2697 |
break; |
2698 |
case 2: p = GMP_INTS_supply_nan_string(2); |
2699 |
break; |
2700 |
case 3: p = GMP_INTS_supply_nan_string(3); |
2701 |
break; |
2702 |
default: |
2703 |
assert(0); |
2704 |
break; |
2705 |
} |
2706 |
|
2707 |
rv = Tcl_NewStringObj(p, -1); |
2708 |
Tcl_SetObjResult(interp, rv); |
2709 |
|
2710 |
GMP_INTS_mpz_clear(&arb_arg1); |
2711 |
GMP_INTS_mpz_clear(&arb_arg2); |
2712 |
GMP_INTS_mpz_clear(&arb_result); |
2713 |
|
2714 |
return(TCL_OK); |
2715 |
} |
2716 |
|
2717 |
//Try to convert both strings into arbitrary integers. |
2718 |
GMP_INTS_mpz_set_general_int(&arb_arg1, &failure1, sub_arg1); |
2719 |
GMP_INTS_mpz_set_general_int(&arb_arg2, &failure2, sub_arg2); |
2720 |
|
2721 |
//If there was a parse failure, we have to return an error |
2722 |
//message. It is possible that both arguments failed the parse, |
2723 |
//but only return one in the error message. |
2724 |
if (failure1 || failure2) |
2725 |
{ |
2726 |
rv = Tcl_NewStringObj("arbint intsub: \"", -1); |
2727 |
if (failure1) |
2728 |
Tcl_AppendToObj(rv, sub_arg1, -1); |
2729 |
else |
2730 |
Tcl_AppendToObj(rv, sub_arg2, -1); |
2731 |
|
2732 |
Tcl_AppendToObj(rv, "\" is not a recognized signed integer.", -1); |
2733 |
Tcl_SetObjResult(interp, rv); |
2734 |
|
2735 |
GMP_INTS_mpz_clear(&arb_arg1); |
2736 |
GMP_INTS_mpz_clear(&arb_arg2); |
2737 |
GMP_INTS_mpz_clear(&arb_result); |
2738 |
|
2739 |
return(TCL_ERROR); |
2740 |
} |
2741 |
|
2742 |
//Calculate the difference. |
2743 |
GMP_INTS_mpz_sub(&arb_result, &arb_arg1, &arb_arg2); |
2744 |
|
2745 |
//Figure out the number of characters required for |
2746 |
//the output string. |
2747 |
chars_reqd = GMP_INTS_mpz_size_in_base_10(&arb_result); |
2748 |
|
2749 |
//Allocate space for the conversion result. |
2750 |
string_result = TclpAlloc(sizeof(char) * chars_reqd); |
2751 |
assert(string_result != NULL); |
2752 |
|
2753 |
//Make the conversion to a character string. |
2754 |
GMP_INTS_mpz_to_string(string_result, &arb_result); |
2755 |
|
2756 |
//Assign the string result to a Tcl object. |
2757 |
rv = Tcl_NewStringObj(string_result, -1); |
2758 |
|
2759 |
//Deallocate the string. |
2760 |
TclpFree(string_result); |
2761 |
|
2762 |
//Deallocate space for the arbitrary-length integers. |
2763 |
GMP_INTS_mpz_clear(&arb_arg1); |
2764 |
GMP_INTS_mpz_clear(&arb_arg2); |
2765 |
GMP_INTS_mpz_clear(&arb_result); |
2766 |
|
2767 |
//Assign the result to be the return value. |
2768 |
Tcl_SetObjResult(interp, rv); |
2769 |
|
2770 |
//Return |
2771 |
return(TCL_OK); |
2772 |
} |
2773 |
} |
2774 |
|
2775 |
|
2776 |
//Handles the "iseflag" subextension. |
2777 |
//07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this |
2778 |
//from memory an intuition as far as how to set return results and so forth. |
2779 |
static |
2780 |
int ARBLENINTS_iseflag_handler(ClientData dummy, |
2781 |
Tcl_Interp *interp, |
2782 |
int objc, |
2783 |
Tcl_Obj *objv[]) |
2784 |
{ |
2785 |
Tcl_Obj *rv; |
2786 |
|
2787 |
//We must have one and exactly one additional argument |
2788 |
//to this function, which is the string we want to |
2789 |
//classify. |
2790 |
if (objc != 3) |
2791 |
{ |
2792 |
Tcl_WrongNumArgs(interp, |
2793 |
2, |
2794 |
objv, |
2795 |
"stringarg"); |
2796 |
return(TCL_ERROR); |
2797 |
} |
2798 |
else |
2799 |
{ |
2800 |
char *string_arg; |
2801 |
|
2802 |
//Grab a pointer to the string representation of |
2803 |
//the input argument. The storage does not belong to us. |
2804 |
string_arg = Tcl_GetString(objv[2]); |
2805 |
assert(string_arg != NULL); |
2806 |
|
2807 |
//Try to parse it out. We will definitely get one of |
2808 |
//the return values. |
2809 |
if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_POS_STRING)) |
2810 |
{ |
2811 |
rv = Tcl_NewStringObj("1", -1); |
2812 |
} |
2813 |
else if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_NEG_STRING)) |
2814 |
{ |
2815 |
rv = Tcl_NewStringObj("2", -1); |
2816 |
} |
2817 |
else if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_TAINT_POS_STRING)) |
2818 |
{ |
2819 |
rv = Tcl_NewStringObj("3", -1); |
2820 |
} |
2821 |
else if (!strcmp(string_arg, GMP_INTS_EF_INTOVF_TAINT_NEG_STRING)) |
2822 |
{ |
2823 |
rv = Tcl_NewStringObj("4", -1); |
2824 |
} |
2825 |
else |
2826 |
{ |
2827 |
rv = Tcl_NewStringObj("0", -1); |
2828 |
} |
2829 |
|
2830 |
//Assign the result to be the return value. |
2831 |
Tcl_SetObjResult(interp, rv); |
2832 |
|
2833 |
//Return |
2834 |
return(TCL_OK); |
2835 |
} |
2836 |
} |
2837 |
|
2838 |
|
2839 |
//08/08/01: Visual inspection OK. |
2840 |
static |
2841 |
int ARBLENINTS_rnadd_handler(ClientData dummy, |
2842 |
Tcl_Interp *interp, |
2843 |
int objc, |
2844 |
Tcl_Obj *objv[]) |
2845 |
{ |
2846 |
Tcl_Obj *rv; |
2847 |
|
2848 |
//We must have exactly two additional arguments |
2849 |
//to this function, which are the rational numbers |
2850 |
//to add. |
2851 |
if (objc != 4) |
2852 |
{ |
2853 |
Tcl_WrongNumArgs(interp, |
2854 |
2, |
2855 |
objv, |
2856 |
"srn srn"); |
2857 |
return(TCL_ERROR); |
2858 |
} |
2859 |
else |
2860 |
{ |
2861 |
char *input_arg; |
2862 |
int failure; |
2863 |
char *string_result; |
2864 |
GMP_RATS_mpq_struct arg1, arg2, result; |
2865 |
|
2866 |
//Allocate space for the rational numbers. |
2867 |
GMP_RATS_mpq_init(&arg1); |
2868 |
GMP_RATS_mpq_init(&arg2); |
2869 |
GMP_RATS_mpq_init(&result); |
2870 |
|
2871 |
//Grab a pointer to the string representation of |
2872 |
//the first input argument. The storage does not belong to us. |
2873 |
input_arg = Tcl_GetString(objv[2]); |
2874 |
assert(input_arg != NULL); |
2875 |
|
2876 |
//Try to parse our first input string as a rational number. |
2877 |
//If we are not successful in this, must abort. |
2878 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
2879 |
&failure, |
2880 |
&arg1); |
2881 |
|
2882 |
if (failure) |
2883 |
{ |
2884 |
rv = Tcl_NewStringObj("arbint rnadd: \"", -1); |
2885 |
Tcl_AppendToObj(rv, input_arg, -1); |
2886 |
|
2887 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
2888 |
Tcl_SetObjResult(interp, rv); |
2889 |
|
2890 |
GMP_RATS_mpq_clear(&arg1); |
2891 |
GMP_RATS_mpq_clear(&arg2); |
2892 |
GMP_RATS_mpq_clear(&result); |
2893 |
|
2894 |
return(TCL_ERROR); |
2895 |
} |
2896 |
|
2897 |
//Grab a pointer to the string representation of |
2898 |
//the second input argument. The storage does not belong to us. |
2899 |
input_arg = Tcl_GetString(objv[3]); |
2900 |
assert(input_arg != NULL); |
2901 |
|
2902 |
//Try to parse our second input string as a rational number. |
2903 |
//If we are not successful in this, must abort. |
2904 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
2905 |
&failure, |
2906 |
&arg2); |
2907 |
|
2908 |
if (failure) |
2909 |
{ |
2910 |
rv = Tcl_NewStringObj("arbint rnadd: \"", -1); |
2911 |
Tcl_AppendToObj(rv, input_arg, -1); |
2912 |
|
2913 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
2914 |
Tcl_SetObjResult(interp, rv); |
2915 |
|
2916 |
GMP_RATS_mpq_clear(&arg1); |
2917 |
GMP_RATS_mpq_clear(&arg2); |
2918 |
GMP_RATS_mpq_clear(&result); |
2919 |
|
2920 |
return(TCL_ERROR); |
2921 |
} |
2922 |
|
2923 |
//Perform the actual addition of the rational numbers. All |
2924 |
//error cases are covered. If either of the inputs has a |
2925 |
//denominator of zero, this will propagate to the result. |
2926 |
GMP_RATS_mpq_add(&result, &arg1, &arg2); |
2927 |
|
2928 |
//If the result has been NAN'd, return the string "NAN". |
2929 |
if (GMP_RATS_mpq_is_nan(&result)) |
2930 |
{ |
2931 |
rv = Tcl_NewStringObj("NAN", -1); |
2932 |
|
2933 |
Tcl_SetObjResult(interp, rv); |
2934 |
|
2935 |
GMP_RATS_mpq_clear(&arg1); |
2936 |
GMP_RATS_mpq_clear(&arg2); |
2937 |
GMP_RATS_mpq_clear(&result); |
2938 |
|
2939 |
return(TCL_OK); |
2940 |
} |
2941 |
|
2942 |
//Allocate space for the string result which we'll form for |
2943 |
//both numerator and denominator. We need the maximum, because we'll only |
2944 |
//do one number at a time. |
2945 |
string_result = TclpAlloc(sizeof(char) |
2946 |
* |
2947 |
INTFUNC_max |
2948 |
( |
2949 |
GMP_INTS_mpz_size_in_base_10(&(result.num)), |
2950 |
GMP_INTS_mpz_size_in_base_10(&(result.den)) |
2951 |
) |
2952 |
); |
2953 |
assert(string_result != NULL); |
2954 |
|
2955 |
//Convert the numerator to a string and set that to be the |
2956 |
//return value. |
2957 |
GMP_INTS_mpz_to_string(string_result, &(result.num)); |
2958 |
rv = Tcl_NewStringObj(string_result, -1); |
2959 |
|
2960 |
//Append the separating slash. |
2961 |
Tcl_AppendToObj(rv, "/", -1); |
2962 |
|
2963 |
//Convert the denominator to a string and append that to the |
2964 |
//return value. |
2965 |
GMP_INTS_mpz_to_string(string_result, &(result.den)); |
2966 |
Tcl_AppendToObj(rv, string_result, -1); |
2967 |
|
2968 |
//Assign the result to be the return value. |
2969 |
Tcl_SetObjResult(interp, rv); |
2970 |
|
2971 |
//Free up all dynamic memory. |
2972 |
TclpFree(string_result); |
2973 |
GMP_RATS_mpq_clear(&arg1); |
2974 |
GMP_RATS_mpq_clear(&arg2); |
2975 |
GMP_RATS_mpq_clear(&result); |
2976 |
|
2977 |
//Return |
2978 |
return(TCL_OK); |
2979 |
} |
2980 |
} |
2981 |
|
2982 |
|
2983 |
//08/16/01: Visual inspection OK. |
2984 |
static |
2985 |
int ARBLENINTS_rncmp_handler(ClientData dummy, |
2986 |
Tcl_Interp *interp, |
2987 |
int objc, |
2988 |
Tcl_Obj *objv[]) |
2989 |
{ |
2990 |
Tcl_Obj *rv; |
2991 |
|
2992 |
//We must have exactly two additional arguments |
2993 |
//to this function, which are the rational numbers |
2994 |
//to compare. |
2995 |
if (objc != 4) |
2996 |
{ |
2997 |
Tcl_WrongNumArgs(interp, |
2998 |
2, |
2999 |
objv, |
3000 |
"srn srn"); |
3001 |
return(TCL_ERROR); |
3002 |
} |
3003 |
else |
3004 |
{ |
3005 |
char *input_arg; |
3006 |
int failure, compare_result; |
3007 |
GMP_RATS_mpq_struct arg1, arg2; |
3008 |
|
3009 |
//Allocate space for the rational numbers. |
3010 |
GMP_RATS_mpq_init(&arg1); |
3011 |
GMP_RATS_mpq_init(&arg2); |
3012 |
|
3013 |
//Grab a pointer to the string representation of |
3014 |
//the first input argument. The storage does not belong to us. |
3015 |
input_arg = Tcl_GetString(objv[2]); |
3016 |
assert(input_arg != NULL); |
3017 |
|
3018 |
//Try to parse our first input string as a rational number. |
3019 |
//If we are not successful in this, must abort. |
3020 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3021 |
&failure, |
3022 |
&arg1); |
3023 |
|
3024 |
if (failure) |
3025 |
{ |
3026 |
rv = Tcl_NewStringObj("arbint rncmp: \"", -1); |
3027 |
Tcl_AppendToObj(rv, input_arg, -1); |
3028 |
|
3029 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3030 |
Tcl_SetObjResult(interp, rv); |
3031 |
|
3032 |
GMP_RATS_mpq_clear(&arg1); |
3033 |
GMP_RATS_mpq_clear(&arg2); |
3034 |
|
3035 |
return(TCL_ERROR); |
3036 |
} |
3037 |
|
3038 |
//Grab a pointer to the string representation of |
3039 |
//the second input argument. The storage does not belong to us. |
3040 |
input_arg = Tcl_GetString(objv[3]); |
3041 |
assert(input_arg != NULL); |
3042 |
|
3043 |
//Try to parse our second input string as a rational number. |
3044 |
//If we are not successful in this, must abort. |
3045 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3046 |
&failure, |
3047 |
&arg2); |
3048 |
|
3049 |
if (failure) |
3050 |
{ |
3051 |
rv = Tcl_NewStringObj("arbint rncmp: \"", -1); |
3052 |
Tcl_AppendToObj(rv, input_arg, -1); |
3053 |
|
3054 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3055 |
Tcl_SetObjResult(interp, rv); |
3056 |
|
3057 |
GMP_RATS_mpq_clear(&arg1); |
3058 |
GMP_RATS_mpq_clear(&arg2); |
3059 |
|
3060 |
return(TCL_ERROR); |
3061 |
} |
3062 |
|
3063 |
//Perform the actual comparison of the rational numbers. All |
3064 |
//error cases are covered. If either of the inputs has a |
3065 |
//denominator of zero, this will propagate to the result. |
3066 |
compare_result = GMP_RATS_mpq_cmp(&arg1, &arg2, &failure); |
3067 |
|
3068 |
//If the failure flag was thrown, we have to throw an error. |
3069 |
//The reason is that if we can't successfully compare the two |
3070 |
//rational numbers, then we have to kill the script--logical |
3071 |
//correctness is not possible. |
3072 |
if (failure) |
3073 |
{ |
3074 |
rv = Tcl_NewStringObj("arbint rncmp: can't compare supplied rational numbers.", -1); |
3075 |
|
3076 |
Tcl_SetObjResult(interp, rv); |
3077 |
|
3078 |
GMP_RATS_mpq_clear(&arg1); |
3079 |
GMP_RATS_mpq_clear(&arg2); |
3080 |
|
3081 |
return(TCL_ERROR); |
3082 |
} |
3083 |
|
3084 |
//Convert the comparison result to a string. |
3085 |
if (compare_result < 0) |
3086 |
rv = Tcl_NewStringObj("-1", -1); |
3087 |
else if (compare_result == 0) |
3088 |
rv = Tcl_NewStringObj("0", -1); |
3089 |
else |
3090 |
rv = Tcl_NewStringObj("1", -1); |
3091 |
|
3092 |
//Assign the result to be the return value. |
3093 |
Tcl_SetObjResult(interp, rv); |
3094 |
|
3095 |
//Free up all dynamic memory. |
3096 |
GMP_RATS_mpq_clear(&arg1); |
3097 |
GMP_RATS_mpq_clear(&arg2); |
3098 |
|
3099 |
//Return |
3100 |
return(TCL_OK); |
3101 |
} |
3102 |
} |
3103 |
|
3104 |
|
3105 |
//08/09/01: Visual inspection OK. |
3106 |
static |
3107 |
int ARBLENINTS_rndiv_handler(ClientData dummy, |
3108 |
Tcl_Interp *interp, |
3109 |
int objc, |
3110 |
Tcl_Obj *objv[]) |
3111 |
{ |
3112 |
Tcl_Obj *rv; |
3113 |
|
3114 |
//We must have exactly two additional arguments |
3115 |
//to this function, which are the rational numbers |
3116 |
//to divide. |
3117 |
if (objc != 4) |
3118 |
{ |
3119 |
Tcl_WrongNumArgs(interp, |
3120 |
2, |
3121 |
objv, |
3122 |
"srn srn"); |
3123 |
return(TCL_ERROR); |
3124 |
} |
3125 |
else |
3126 |
{ |
3127 |
char *input_arg; |
3128 |
int failure; |
3129 |
char *string_result; |
3130 |
GMP_RATS_mpq_struct arg1, arg2, result; |
3131 |
|
3132 |
//Allocate space for the rational numbers. |
3133 |
GMP_RATS_mpq_init(&arg1); |
3134 |
GMP_RATS_mpq_init(&arg2); |
3135 |
GMP_RATS_mpq_init(&result); |
3136 |
|
3137 |
//Grab a pointer to the string representation of |
3138 |
//the first input argument. The storage does not belong to us. |
3139 |
input_arg = Tcl_GetString(objv[2]); |
3140 |
assert(input_arg != NULL); |
3141 |
|
3142 |
//Try to parse our first input string as a rational number. |
3143 |
//If we are not successful in this, must abort. |
3144 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3145 |
&failure, |
3146 |
&arg1); |
3147 |
|
3148 |
if (failure) |
3149 |
{ |
3150 |
rv = Tcl_NewStringObj("arbint rndiv: \"", -1); |
3151 |
Tcl_AppendToObj(rv, input_arg, -1); |
3152 |
|
3153 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3154 |
Tcl_SetObjResult(interp, rv); |
3155 |
|
3156 |
GMP_RATS_mpq_clear(&arg1); |
3157 |
GMP_RATS_mpq_clear(&arg2); |
3158 |
GMP_RATS_mpq_clear(&result); |
3159 |
|
3160 |
return(TCL_ERROR); |
3161 |
} |
3162 |
|
3163 |
//Grab a pointer to the string representation of |
3164 |
//the second input argument. The storage does not belong to us. |
3165 |
input_arg = Tcl_GetString(objv[3]); |
3166 |
assert(input_arg != NULL); |
3167 |
|
3168 |
//Try to parse our second input string as a rational number. |
3169 |
//If we are not successful in this, must abort. |
3170 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3171 |
&failure, |
3172 |
&arg2); |
3173 |
|
3174 |
if (failure) |
3175 |
{ |
3176 |
rv = Tcl_NewStringObj("arbint rndiv: \"", -1); |
3177 |
Tcl_AppendToObj(rv, input_arg, -1); |
3178 |
|
3179 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3180 |
Tcl_SetObjResult(interp, rv); |
3181 |
|
3182 |
GMP_RATS_mpq_clear(&arg1); |
3183 |
GMP_RATS_mpq_clear(&arg2); |
3184 |
GMP_RATS_mpq_clear(&result); |
3185 |
|
3186 |
return(TCL_ERROR); |
3187 |
} |
3188 |
|
3189 |
//Perform the actual division of the rational numbers. All |
3190 |
//error cases are covered. If either of the inputs has a |
3191 |
//denominator of zero, this will propagate to the result. |
3192 |
GMP_RATS_mpq_div(&result, &arg1, &arg2); |
3193 |
|
3194 |
//If the result has been NAN'd, return the string "NAN". |
3195 |
if (GMP_RATS_mpq_is_nan(&result)) |
3196 |
{ |
3197 |
rv = Tcl_NewStringObj("NAN", -1); |
3198 |
|
3199 |
Tcl_SetObjResult(interp, rv); |
3200 |
|
3201 |
GMP_RATS_mpq_clear(&arg1); |
3202 |
GMP_RATS_mpq_clear(&arg2); |
3203 |
GMP_RATS_mpq_clear(&result); |
3204 |
|
3205 |
return(TCL_OK); |
3206 |
} |
3207 |
|
3208 |
//Allocate space for the string result which we'll form for |
3209 |
//both numerator and denominator. We need the maximum, because we'll only |
3210 |
//do one number at a time. |
3211 |
string_result = TclpAlloc(sizeof(char) |
3212 |
* |
3213 |
INTFUNC_max |
3214 |
( |
3215 |
GMP_INTS_mpz_size_in_base_10(&(result.num)), |
3216 |
GMP_INTS_mpz_size_in_base_10(&(result.den)) |
3217 |
) |
3218 |
); |
3219 |
assert(string_result != NULL); |
3220 |
|
3221 |
//Convert the numerator to a string and set that to be the |
3222 |
//return value. |
3223 |
GMP_INTS_mpz_to_string(string_result, &(result.num)); |
3224 |
rv = Tcl_NewStringObj(string_result, -1); |
3225 |
|
3226 |
//Append the separating slash. |
3227 |
Tcl_AppendToObj(rv, "/", -1); |
3228 |
|
3229 |
//Convert the denominator to a string and append that to the |
3230 |
//return value. |
3231 |
GMP_INTS_mpz_to_string(string_result, &(result.den)); |
3232 |
Tcl_AppendToObj(rv, string_result, -1); |
3233 |
|
3234 |
//Assign the result to be the return value. |
3235 |
Tcl_SetObjResult(interp, rv); |
3236 |
|
3237 |
//Free up all dynamic memory. |
3238 |
TclpFree(string_result); |
3239 |
GMP_RATS_mpq_clear(&arg1); |
3240 |
GMP_RATS_mpq_clear(&arg2); |
3241 |
GMP_RATS_mpq_clear(&result); |
3242 |
|
3243 |
//Return |
3244 |
return(TCL_OK); |
3245 |
} |
3246 |
} |
3247 |
|
3248 |
|
3249 |
//08/09/01: Visual inspection OK. |
3250 |
static |
3251 |
int ARBLENINTS_rnmul_handler(ClientData dummy, |
3252 |
Tcl_Interp *interp, |
3253 |
int objc, |
3254 |
Tcl_Obj *objv[]) |
3255 |
{ |
3256 |
Tcl_Obj *rv; |
3257 |
|
3258 |
//We must have exactly two additional arguments |
3259 |
//to this function, which are the rational numbers |
3260 |
//to add. |
3261 |
if (objc != 4) |
3262 |
{ |
3263 |
Tcl_WrongNumArgs(interp, |
3264 |
2, |
3265 |
objv, |
3266 |
"srn srn"); |
3267 |
return(TCL_ERROR); |
3268 |
} |
3269 |
else |
3270 |
{ |
3271 |
char *input_arg; |
3272 |
int failure; |
3273 |
char *string_result; |
3274 |
GMP_RATS_mpq_struct arg1, arg2, result; |
3275 |
|
3276 |
//Allocate space for the rational numbers. |
3277 |
GMP_RATS_mpq_init(&arg1); |
3278 |
GMP_RATS_mpq_init(&arg2); |
3279 |
GMP_RATS_mpq_init(&result); |
3280 |
|
3281 |
//Grab a pointer to the string representation of |
3282 |
//the first input argument. The storage does not belong to us. |
3283 |
input_arg = Tcl_GetString(objv[2]); |
3284 |
assert(input_arg != NULL); |
3285 |
|
3286 |
//Try to parse our first input string as a rational number. |
3287 |
//If we are not successful in this, must abort. |
3288 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3289 |
&failure, |
3290 |
&arg1); |
3291 |
|
3292 |
if (failure) |
3293 |
{ |
3294 |
rv = Tcl_NewStringObj("arbint rnmul: \"", -1); |
3295 |
Tcl_AppendToObj(rv, input_arg, -1); |
3296 |
|
3297 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3298 |
Tcl_SetObjResult(interp, rv); |
3299 |
|
3300 |
GMP_RATS_mpq_clear(&arg1); |
3301 |
GMP_RATS_mpq_clear(&arg2); |
3302 |
GMP_RATS_mpq_clear(&result); |
3303 |
|
3304 |
return(TCL_ERROR); |
3305 |
} |
3306 |
|
3307 |
//Grab a pointer to the string representation of |
3308 |
//the second input argument. The storage does not belong to us. |
3309 |
input_arg = Tcl_GetString(objv[3]); |
3310 |
assert(input_arg != NULL); |
3311 |
|
3312 |
//Try to parse our second input string as a rational number. |
3313 |
//If we are not successful in this, must abort. |
3314 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3315 |
&failure, |
3316 |
&arg2); |
3317 |
|
3318 |
if (failure) |
3319 |
{ |
3320 |
rv = Tcl_NewStringObj("arbint rnmul: \"", -1); |
3321 |
Tcl_AppendToObj(rv, input_arg, -1); |
3322 |
|
3323 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3324 |
Tcl_SetObjResult(interp, rv); |
3325 |
|
3326 |
GMP_RATS_mpq_clear(&arg1); |
3327 |
GMP_RATS_mpq_clear(&arg2); |
3328 |
GMP_RATS_mpq_clear(&result); |
3329 |
|
3330 |
return(TCL_ERROR); |
3331 |
} |
3332 |
|
3333 |
//Perform the actual multiplication of the rational numbers. All |
3334 |
//error cases are covered. If either of the inputs has a |
3335 |
//denominator of zero, this will propagate to the result. |
3336 |
GMP_RATS_mpq_mul(&result, &arg1, &arg2); |
3337 |
|
3338 |
//If the result has been NAN'd, return the string "NAN". |
3339 |
if (GMP_RATS_mpq_is_nan(&result)) |
3340 |
{ |
3341 |
rv = Tcl_NewStringObj("NAN", -1); |
3342 |
|
3343 |
Tcl_SetObjResult(interp, rv); |
3344 |
|
3345 |
GMP_RATS_mpq_clear(&arg1); |
3346 |
GMP_RATS_mpq_clear(&arg2); |
3347 |
GMP_RATS_mpq_clear(&result); |
3348 |
|
3349 |
return(TCL_OK); |
3350 |
} |
3351 |
|
3352 |
//Allocate space for the string result which we'll form for |
3353 |
//both numerator and denominator. We need the maximum, because we'll only |
3354 |
//do one number at a time. |
3355 |
string_result = TclpAlloc(sizeof(char) |
3356 |
* |
3357 |
INTFUNC_max |
3358 |
( |
3359 |
GMP_INTS_mpz_size_in_base_10(&(result.num)), |
3360 |
GMP_INTS_mpz_size_in_base_10(&(result.den)) |
3361 |
) |
3362 |
); |
3363 |
assert(string_result != NULL); |
3364 |
|
3365 |
//Convert the numerator to a string and set that to be the |
3366 |
//return value. |
3367 |
GMP_INTS_mpz_to_string(string_result, &(result.num)); |
3368 |
rv = Tcl_NewStringObj(string_result, -1); |
3369 |
|
3370 |
//Append the separating slash. |
3371 |
Tcl_AppendToObj(rv, "/", -1); |
3372 |
|
3373 |
//Convert the denominator to a string and append that to the |
3374 |
//return value. |
3375 |
GMP_INTS_mpz_to_string(string_result, &(result.den)); |
3376 |
Tcl_AppendToObj(rv, string_result, -1); |
3377 |
|
3378 |
//Assign the result to be the return value. |
3379 |
Tcl_SetObjResult(interp, rv); |
3380 |
|
3381 |
//Free up all dynamic memory. |
3382 |
TclpFree(string_result); |
3383 |
GMP_RATS_mpq_clear(&arg1); |
3384 |
GMP_RATS_mpq_clear(&arg2); |
3385 |
GMP_RATS_mpq_clear(&result); |
3386 |
|
3387 |
//Return |
3388 |
return(TCL_OK); |
3389 |
} |
3390 |
} |
3391 |
|
3392 |
|
3393 |
//08/09/01: Visual inspection OK. |
3394 |
static |
3395 |
int ARBLENINTS_rnred_handler(ClientData dummy, |
3396 |
Tcl_Interp *interp, |
3397 |
int objc, |
3398 |
Tcl_Obj *objv[]) |
3399 |
{ |
3400 |
Tcl_Obj *rv; |
3401 |
|
3402 |
//We must have exactly one additional argument |
3403 |
//to this function, which is the rational number |
3404 |
//to provide the fully reduced form of. |
3405 |
if (objc != 3) |
3406 |
{ |
3407 |
Tcl_WrongNumArgs(interp, |
3408 |
2, |
3409 |
objv, |
3410 |
"srn"); |
3411 |
return(TCL_ERROR); |
3412 |
} |
3413 |
else |
3414 |
{ |
3415 |
char *input_arg; |
3416 |
int failure; |
3417 |
char *string_result; |
3418 |
GMP_RATS_mpq_struct rn; |
3419 |
|
3420 |
//We will need a rational number to hold the return value |
3421 |
//from the parsing function. Allocate that now. |
3422 |
GMP_RATS_mpq_init(&rn); |
3423 |
|
3424 |
//Grab a pointer to the string representation of |
3425 |
//the input argument. The storage does not belong to us. |
3426 |
input_arg = Tcl_GetString(objv[2]); |
3427 |
assert(input_arg != NULL); |
3428 |
|
3429 |
//Try to parse our input string as a rational number. |
3430 |
//If we are not successful in this, must abort. |
3431 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3432 |
&failure, |
3433 |
&rn); |
3434 |
|
3435 |
if (failure) |
3436 |
{ |
3437 |
rv = Tcl_NewStringObj("arbint rnred: \"", -1); |
3438 |
Tcl_AppendToObj(rv, input_arg, -1); |
3439 |
|
3440 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3441 |
Tcl_SetObjResult(interp, rv); |
3442 |
|
3443 |
GMP_RATS_mpq_clear(&rn); |
3444 |
|
3445 |
return(TCL_ERROR); |
3446 |
} |
3447 |
|
3448 |
//Normalize the rational number. This takes care of the |
3449 |
//sign and also of the coprimality of numerator and |
3450 |
//denominator. |
3451 |
GMP_RATS_mpq_normalize(&rn); |
3452 |
|
3453 |
//Allocate space for the string result which we'll form for |
3454 |
//both numbers. We need the maximum, because we'll only |
3455 |
//do one number at a time. |
3456 |
string_result = TclpAlloc(sizeof(char) |
3457 |
* |
3458 |
INTFUNC_max |
3459 |
( |
3460 |
GMP_INTS_mpz_size_in_base_10(&(rn.num)), |
3461 |
GMP_INTS_mpz_size_in_base_10(&(rn.den)) |
3462 |
) |
3463 |
); |
3464 |
assert(string_result != NULL); |
3465 |
|
3466 |
//Convert the numerator to a string and set that to be the |
3467 |
//return value. |
3468 |
GMP_INTS_mpz_to_string(string_result, &(rn.num)); |
3469 |
rv = Tcl_NewStringObj(string_result, -1); |
3470 |
|
3471 |
//Append the separating slash. |
3472 |
Tcl_AppendToObj(rv, "/", -1); |
3473 |
|
3474 |
//Convert the denominator to a string and append that to the |
3475 |
//return value. |
3476 |
GMP_INTS_mpz_to_string(string_result, &(rn.den)); |
3477 |
Tcl_AppendToObj(rv, string_result, -1); |
3478 |
|
3479 |
//Assign the result to be the return value. |
3480 |
Tcl_SetObjResult(interp, rv); |
3481 |
|
3482 |
//Free up all dynamic memory. |
3483 |
TclpFree(string_result); |
3484 |
GMP_RATS_mpq_clear(&rn); |
3485 |
|
3486 |
//Return |
3487 |
return(TCL_OK); |
3488 |
} |
3489 |
} |
3490 |
|
3491 |
|
3492 |
//08/08/01: Visual inspection OK. |
3493 |
static |
3494 |
int ARBLENINTS_rnsub_handler(ClientData dummy, |
3495 |
Tcl_Interp *interp, |
3496 |
int objc, |
3497 |
Tcl_Obj *objv[]) |
3498 |
{ |
3499 |
Tcl_Obj *rv; |
3500 |
|
3501 |
//We must have exactly two additional arguments |
3502 |
//to this function, which are the rational numbers |
3503 |
//to subtract. |
3504 |
if (objc != 4) |
3505 |
{ |
3506 |
Tcl_WrongNumArgs(interp, |
3507 |
2, |
3508 |
objv, |
3509 |
"srn srn"); |
3510 |
return(TCL_ERROR); |
3511 |
} |
3512 |
else |
3513 |
{ |
3514 |
char *input_arg; |
3515 |
int failure; |
3516 |
char *string_result; |
3517 |
GMP_RATS_mpq_struct arg1, arg2, result; |
3518 |
|
3519 |
//Allocate space for the rational numbers. |
3520 |
GMP_RATS_mpq_init(&arg1); |
3521 |
GMP_RATS_mpq_init(&arg2); |
3522 |
GMP_RATS_mpq_init(&result); |
3523 |
|
3524 |
//Grab a pointer to the string representation of |
3525 |
//the first input argument. The storage does not belong to us. |
3526 |
input_arg = Tcl_GetString(objv[2]); |
3527 |
assert(input_arg != NULL); |
3528 |
|
3529 |
//Try to parse our first input string as a rational number. |
3530 |
//If we are not successful in this, must abort. |
3531 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3532 |
&failure, |
3533 |
&arg1); |
3534 |
|
3535 |
if (failure) |
3536 |
{ |
3537 |
rv = Tcl_NewStringObj("arbint rnsub: \"", -1); |
3538 |
Tcl_AppendToObj(rv, input_arg, -1); |
3539 |
|
3540 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3541 |
Tcl_SetObjResult(interp, rv); |
3542 |
|
3543 |
GMP_RATS_mpq_clear(&arg1); |
3544 |
GMP_RATS_mpq_clear(&arg2); |
3545 |
GMP_RATS_mpq_clear(&result); |
3546 |
|
3547 |
return(TCL_ERROR); |
3548 |
} |
3549 |
|
3550 |
//Grab a pointer to the string representation of |
3551 |
//the second input argument. The storage does not belong to us. |
3552 |
input_arg = Tcl_GetString(objv[3]); |
3553 |
assert(input_arg != NULL); |
3554 |
|
3555 |
//Try to parse our second input string as a rational number. |
3556 |
//If we are not successful in this, must abort. |
3557 |
GMP_RATS_mpq_set_all_format_rat_num(input_arg, |
3558 |
&failure, |
3559 |
&arg2); |
3560 |
|
3561 |
if (failure) |
3562 |
{ |
3563 |
rv = Tcl_NewStringObj("arbint rnsub: \"", -1); |
3564 |
Tcl_AppendToObj(rv, input_arg, -1); |
3565 |
|
3566 |
Tcl_AppendToObj(rv, "\" is not a recognized rational number.", -1); |
3567 |
Tcl_SetObjResult(interp, rv); |
3568 |
|
3569 |
GMP_RATS_mpq_clear(&arg1); |
3570 |
GMP_RATS_mpq_clear(&arg2); |
3571 |
GMP_RATS_mpq_clear(&result); |
3572 |
|
3573 |
return(TCL_ERROR); |
3574 |
} |
3575 |
|
3576 |
//Perform the actual subtraction of the rational numbers. All |
3577 |
//error cases are covered. If either of the inputs has a |
3578 |
//denominator of zero, this will propagate to the result. |
3579 |
GMP_RATS_mpq_sub(&result, &arg1, &arg2); |
3580 |
|
3581 |
//If the result has been NAN'd, return the string "NAN". |
3582 |
if (GMP_RATS_mpq_is_nan(&result)) |
3583 |
{ |
3584 |
rv = Tcl_NewStringObj("NAN", -1); |
3585 |
|
3586 |
Tcl_SetObjResult(interp, rv); |
3587 |
|
3588 |
GMP_RATS_mpq_clear(&arg1); |
3589 |
GMP_RATS_mpq_clear(&arg2); |
3590 |
GMP_RATS_mpq_clear(&result); |
3591 |
|
3592 |
return(TCL_OK); |
3593 |
} |
3594 |
|
3595 |
//Allocate space for the string result which we'll form for |
3596 |
//both numerator and denominator. We need the maximum, because we'll only |
3597 |
//do one number at a time. |
3598 |
string_result = TclpAlloc(sizeof(char) |
3599 |
* |
3600 |
INTFUNC_max |
3601 |
( |
3602 |
GMP_INTS_mpz_size_in_base_10(&(result.num)), |
3603 |
GMP_INTS_mpz_size_in_base_10(&(result.den)) |
3604 |
) |
3605 |
); |
3606 |
assert(string_result != NULL); |
3607 |
|
3608 |
//Convert the numerator to a string and set that to be the |
3609 |
//return value. |
3610 |
GMP_INTS_mpz_to_string(string_result, &(result.num)); |
3611 |
rv = Tcl_NewStringObj(string_result, -1); |
3612 |
|
3613 |
//Append the separating slash. |
3614 |
Tcl_AppendToObj(rv, "/", -1); |
3615 |
|
3616 |
//Convert the denominator to a string and append that to the |
3617 |
//return value. |
3618 |
GMP_INTS_mpz_to_string(string_result, &(result.den)); |
3619 |
Tcl_AppendToObj(rv, string_result, -1); |
3620 |
|
3621 |
//Assign the result to be the return value. |
3622 |
Tcl_SetObjResult(interp, rv); |
3623 |
|
3624 |
//Free up all dynamic memory. |
3625 |
TclpFree(string_result); |
3626 |
GMP_RATS_mpq_clear(&arg1); |
3627 |
GMP_RATS_mpq_clear(&arg2); |
3628 |
GMP_RATS_mpq_clear(&result); |
3629 |
|
3630 |
//Return |
3631 |
return(TCL_OK); |
3632 |
} |
3633 |
} |
3634 |
|
3635 |
|
3636 |
//This is the search data table of possible subcommands |
3637 |
//for the "arbint" extension. These must be kept |
3638 |
//in alphabetical order, because a binary search is done |
3639 |
//on this table in order to find an entry. If this table |
3640 |
//falls out of alphabetical order, the binary search may |
3641 |
//fail when in fact the entry exists. |
3642 |
// |
3643 |
//In a lot of cases below, this table is set up to accept |
3644 |
//short forms. This is purely undocumented, and I won't put |
3645 |
//it in any documentation. In a lot of cases, these table |
3646 |
//entries cover common mistakes where people forget the "int". |
3647 |
// |
3648 |
static struct EXTNINIT_subextn_bsearch_record_struct |
3649 |
ARBLENINTS_subextn_tbl[] = |
3650 |
{ |
3651 |
{ "brap", ARBLENINTS_cfbrapab_handler }, |
3652 |
{ "cfbrapab", ARBLENINTS_cfbrapab_handler }, |
3653 |
{ "cfratnum", ARBLENINTS_cfratnum_handler }, |
3654 |
{ "cmp", ARBLENINTS_intcmp_handler }, |
3655 |
{ "commanate", ARBLENINTS_commanate_handler }, |
3656 |
{ "compare", ARBLENINTS_intcmp_handler }, |
3657 |
{ "const", ARBLENINTS_const_handler }, |
3658 |
{ "decommanate", ARBLENINTS_decommanate_handler }, |
3659 |
{ "div", ARBLENINTS_intdiv_handler }, |
3660 |
{ "divide", ARBLENINTS_intdiv_handler }, |
3661 |
{ "exp", ARBLENINTS_intexp_handler }, |
3662 |
{ "fac", ARBLENINTS_intfac_handler }, |
3663 |
{ "factorial", ARBLENINTS_intfac_handler }, |
3664 |
{ "gcd", ARBLENINTS_intgcd_handler }, |
3665 |
{ "intadd", ARBLENINTS_intadd_handler }, |
3666 |
{ "intcmp", ARBLENINTS_intcmp_handler }, |
3667 |
{ "intdiv", ARBLENINTS_intdiv_handler }, |
3668 |
{ "intexp", ARBLENINTS_intexp_handler }, |
3669 |
{ "intfac", ARBLENINTS_intfac_handler }, |
3670 |
{ "intgcd", ARBLENINTS_intgcd_handler }, |
3671 |
{ "intlcm", ARBLENINTS_intlcm_handler }, |
3672 |
{ "intmod", ARBLENINTS_intmod_handler }, |
3673 |
{ "intmul", ARBLENINTS_intmul_handler }, |
3674 |
{ "intsub", ARBLENINTS_intsub_handler }, |
3675 |
{ "iseflag", ARBLENINTS_iseflag_handler }, |
3676 |
{ "lcm", ARBLENINTS_intlcm_handler }, |
3677 |
{ "mod", ARBLENINTS_intmod_handler }, |
3678 |
{ "mul", ARBLENINTS_intmul_handler }, |
3679 |
{ "multiply", ARBLENINTS_intmul_handler }, |
3680 |
{ "rnadd", ARBLENINTS_rnadd_handler }, |
3681 |
{ "rncmp", ARBLENINTS_rncmp_handler }, |
3682 |
{ "rndiv", ARBLENINTS_rndiv_handler }, |
3683 |
{ "rnmul", ARBLENINTS_rnmul_handler }, |
3684 |
{ "rnred", ARBLENINTS_rnred_handler }, |
3685 |
{ "rnsub", ARBLENINTS_rnsub_handler }, |
3686 |
{ "times", ARBLENINTS_intmul_handler }, |
3687 |
}; |
3688 |
|
3689 |
|
3690 |
//Procedure called when the "arbint" command is encountered in a Tcl script. |
3691 |
//07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this |
3692 |
//from memory an intuition as far as how to set return results and so forth. |
3693 |
int ARBLENINTS_arbint_extn_command(ClientData dummy, |
3694 |
Tcl_Interp *interp, |
3695 |
int objc, |
3696 |
Tcl_Obj *objv[]) |
3697 |
{ |
3698 |
char *subcommand; |
3699 |
//Pointer to subcommand string. |
3700 |
int tbl_entry; |
3701 |
//Index into the subcommand lookup table, or -1 |
3702 |
//if no match. |
3703 |
Tcl_Obj *rv; |
3704 |
//The return result (a string) if there is an error. |
3705 |
//In the normal execution case, one of the functions |
3706 |
//above supplies the return object. |
3707 |
|
3708 |
if (objc < 2) |
3709 |
{ |
3710 |
//It isn't possible to have an object count of less than |
3711 |
//2, because you must have at least the command name |
3712 |
//plus a subcommand. The best way to handle this is |
3713 |
//to indicate wrong number of arguments. |
3714 |
Tcl_WrongNumArgs(interp, |
3715 |
1, |
3716 |
objv, |
3717 |
"option ?args?"); |
3718 |
return(TCL_ERROR); |
3719 |
} |
3720 |
else |
3721 |
{ |
3722 |
//A potentially appropriate number of arguments has been |
3723 |
//specified. Try to look up the subcommand. |
3724 |
|
3725 |
subcommand = Tcl_GetString(objv[1]); |
3726 |
//Grab the string representation of the subcommand. |
3727 |
//This is constant, belongs to Tcl, and cannot be |
3728 |
//modified. |
3729 |
|
3730 |
tbl_entry = EXTNINIT_subextension_bsearch( |
3731 |
ARBLENINTS_subextn_tbl, |
3732 |
sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]), |
3733 |
subcommand); |
3734 |
assert(tbl_entry < (int)(sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]))); |
3735 |
|
3736 |
//If the integer returned is zero or positive, should |
3737 |
//run the subfunction. If negative, this is an error and |
3738 |
//should generate meaningful message. A meaningful message |
3739 |
//would definitely consist of all valid subcommands. |
3740 |
if (tbl_entry < 0) |
3741 |
{ |
3742 |
//This is an error path. |
3743 |
rv = Tcl_NewStringObj("arbint: bad option \"", -1); |
3744 |
subcommand = Tcl_GetString(objv[1]); |
3745 |
Tcl_AppendToObj(rv, subcommand, -1); |
3746 |
Tcl_AppendToObj(rv, "\": valid options are ", -1); |
3747 |
|
3748 |
for (tbl_entry=0; |
3749 |
tbl_entry < sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]); |
3750 |
tbl_entry++) |
3751 |
{ |
3752 |
if ((sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]) != 1) |
3753 |
&& (tbl_entry == sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]) - 1)) |
3754 |
Tcl_AppendToObj(rv, "and ", -1); |
3755 |
Tcl_AppendToObj(rv, ARBLENINTS_subextn_tbl[tbl_entry].name, -1); |
3756 |
if (tbl_entry == sizeof(ARBLENINTS_subextn_tbl)/sizeof(ARBLENINTS_subextn_tbl[0]) - 1) |
3757 |
Tcl_AppendToObj(rv, ".", -1); |
3758 |
else |
3759 |
Tcl_AppendToObj(rv, ", ", -1); |
3760 |
} |
3761 |
|
3762 |
//Now, set the return value to be the object with our |
3763 |
//meaningful string message. |
3764 |
Tcl_SetObjResult(interp, rv); |
3765 |
|
3766 |
return(TCL_ERROR); |
3767 |
} |
3768 |
else |
3769 |
{ |
3770 |
//Call the function pointer. Called function will |
3771 |
//set the string return value. |
3772 |
return((*ARBLENINTS_subextn_tbl[tbl_entry].fptr) |
3773 |
(dummy, interp, objc, objv)); |
3774 |
} |
3775 |
} |
3776 |
} |
3777 |
|
3778 |
|
3779 |
//Performs initial registration to the hash table. |
3780 |
//07/29/01: Visual inspection OK. Have not located my Tcl book, am doing this |
3781 |
//from memory an intuition as far as how to set return results and so forth. |
3782 |
void ARBLENINTS_arbint_extn_init(Tcl_Interp *interp) |
3783 |
{ |
3784 |
//Register a command named "crc32". |
3785 |
Tcl_CreateObjCommand(interp, |
3786 |
"arbint", |
3787 |
(Tcl_ObjCmdProc *)ARBLENINTS_arbint_extn_command, |
3788 |
NULL, |
3789 |
NULL); |
3790 |
} |
3791 |
|
3792 |
|
3793 |
|
3794 |
//Returns version control string for file. |
3795 |
// |
3796 |
const char *ARBLENINTS_cvcinfo(void) |
3797 |
{ |
3798 |
return ("$Header$"); |
3799 |
} |
3800 |
|
3801 |
|
3802 |
//Returns version control string for associated .H file. |
3803 |
// |
3804 |
const char *ARBLENINTS_hvcinfo(void) |
3805 |
{ |
3806 |
return (ARBLENINTS_H_VERSION); |
3807 |
} |
3808 |
|
3809 |
//End of arblenints.c. |