1 |
/* $Header$ */
|
2 |
|
3 |
/*
|
4 |
* tkCanvArc.c --
|
5 |
*
|
6 |
* This file implements arc items for canvas widgets.
|
7 |
*
|
8 |
* Copyright (c) 1992-1994 The Regents of the University of California.
|
9 |
* Copyright (c) 1994-1997 Sun Microsystems, Inc.
|
10 |
*
|
11 |
* See the file "license.terms" for information on usage and redistribution
|
12 |
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
|
13 |
*
|
14 |
* RCS: @(#) $Id: tkcanvarc.c,v 1.1.1.1 2001/06/13 04:55:11 dtashley Exp $
|
15 |
*/
|
16 |
|
17 |
#include <stdio.h>
|
18 |
#include "tkPort.h"
|
19 |
#include "tkInt.h"
|
20 |
#include "tkCanvas.h"
|
21 |
/*
|
22 |
* The structure below defines the record for each arc item.
|
23 |
*/
|
24 |
|
25 |
typedef enum {
|
26 |
PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE
|
27 |
} Style;
|
28 |
|
29 |
typedef struct ArcItem {
|
30 |
Tk_Item header; /* Generic stuff that's the same for all
|
31 |
* types. MUST BE FIRST IN STRUCTURE. */
|
32 |
Tk_Outline outline; /* Outline structure */
|
33 |
double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding
|
34 |
* box for oval of which arc is a piece. */
|
35 |
double start; /* Angle at which arc begins, in degrees
|
36 |
* between 0 and 360. */
|
37 |
double extent; /* Extent of arc (angular distance from
|
38 |
* start to end of arc) in degrees between
|
39 |
* -360 and 360. */
|
40 |
double *outlinePtr; /* Points to (x,y) coordinates for points
|
41 |
* that define one or two closed polygons
|
42 |
* representing the portion of the outline
|
43 |
* that isn't part of the arc (the V-shape
|
44 |
* for a pie slice or a line-like segment
|
45 |
* for a chord). Malloc'ed. */
|
46 |
int numOutlinePoints; /* Number of points at outlinePtr. Zero
|
47 |
* means no space allocated. */
|
48 |
Tk_TSOffset tsoffset;
|
49 |
XColor *fillColor; /* Color for filling arc (used for drawing
|
50 |
* outline too when style is "arc"). NULL
|
51 |
* means don't fill arc. */
|
52 |
XColor *activeFillColor; /* Color for filling arc (used for drawing
|
53 |
* outline too when style is "arc" and state
|
54 |
* is "active"). NULL means use fillColor. */
|
55 |
XColor *disabledFillColor; /* Color for filling arc (used for drawing
|
56 |
* outline too when style is "arc" and state
|
57 |
* is "disabled". NULL means use fillColor */
|
58 |
Pixmap fillStipple; /* Stipple bitmap for filling item. */
|
59 |
Pixmap activeFillStipple; /* Stipple bitmap for filling item if state
|
60 |
* is active. */
|
61 |
Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state
|
62 |
* is disabled. */
|
63 |
Style style; /* How to draw arc: arc, chord, or pieslice. */
|
64 |
GC fillGC; /* Graphics context for filling item. */
|
65 |
double center1[2]; /* Coordinates of center of arc outline at
|
66 |
* start (see ComputeArcOutline). */
|
67 |
double center2[2]; /* Coordinates of center of arc outline at
|
68 |
* start+extent (see ComputeArcOutline). */
|
69 |
} ArcItem;
|
70 |
|
71 |
/*
|
72 |
* The definitions below define the sizes of the polygons used to
|
73 |
* display outline information for various styles of arcs:
|
74 |
*/
|
75 |
|
76 |
#define CHORD_OUTLINE_PTS 7
|
77 |
#define PIE_OUTLINE1_PTS 6
|
78 |
#define PIE_OUTLINE2_PTS 7
|
79 |
|
80 |
/*
|
81 |
* Information used for parsing configuration specs:
|
82 |
*/
|
83 |
|
84 |
static int StyleParseProc _ANSI_ARGS_((
|
85 |
ClientData clientData, Tcl_Interp *interp,
|
86 |
Tk_Window tkwin, CONST char *value,
|
87 |
char *widgRec, int offset));
|
88 |
static char * StylePrintProc _ANSI_ARGS_((
|
89 |
ClientData clientData, Tk_Window tkwin,
|
90 |
char *widgRec, int offset,
|
91 |
Tcl_FreeProc **freeProcPtr));
|
92 |
|
93 |
static Tk_CustomOption stateOption = {
|
94 |
(Tk_OptionParseProc *) TkStateParseProc,
|
95 |
TkStatePrintProc, (ClientData) 2
|
96 |
};
|
97 |
static Tk_CustomOption styleOption = {
|
98 |
(Tk_OptionParseProc *) StyleParseProc,
|
99 |
StylePrintProc, (ClientData) NULL
|
100 |
};
|
101 |
static Tk_CustomOption tagsOption = {
|
102 |
(Tk_OptionParseProc *) Tk_CanvasTagsParseProc,
|
103 |
Tk_CanvasTagsPrintProc, (ClientData) NULL
|
104 |
};
|
105 |
static Tk_CustomOption dashOption = {
|
106 |
(Tk_OptionParseProc *) TkCanvasDashParseProc,
|
107 |
TkCanvasDashPrintProc, (ClientData) NULL
|
108 |
};
|
109 |
static Tk_CustomOption offsetOption = {
|
110 |
(Tk_OptionParseProc *) TkOffsetParseProc,
|
111 |
TkOffsetPrintProc, (ClientData) (TK_OFFSET_RELATIVE)
|
112 |
};
|
113 |
static Tk_CustomOption pixelOption = {
|
114 |
(Tk_OptionParseProc *) TkPixelParseProc,
|
115 |
TkPixelPrintProc, (ClientData) NULL
|
116 |
};
|
117 |
|
118 |
static Tk_ConfigSpec configSpecs[] = {
|
119 |
{TK_CONFIG_CUSTOM, "-activedash", (char *) NULL, (char *) NULL,
|
120 |
(char *) NULL, Tk_Offset(ArcItem, outline.activeDash),
|
121 |
TK_CONFIG_NULL_OK, &dashOption},
|
122 |
{TK_CONFIG_COLOR, "-activefill", (char *) NULL, (char *) NULL,
|
123 |
(char *) NULL, Tk_Offset(ArcItem, activeFillColor),
|
124 |
TK_CONFIG_NULL_OK},
|
125 |
{TK_CONFIG_COLOR, "-activeoutline", (char *) NULL, (char *) NULL,
|
126 |
(char *) NULL, Tk_Offset(ArcItem, outline.activeColor),
|
127 |
TK_CONFIG_NULL_OK},
|
128 |
{TK_CONFIG_BITMAP, "-activeoutlinestipple", (char *) NULL, (char *) NULL,
|
129 |
(char *) NULL, Tk_Offset(ArcItem, outline.activeStipple),
|
130 |
TK_CONFIG_NULL_OK},
|
131 |
{TK_CONFIG_BITMAP, "-activestipple", (char *) NULL, (char *) NULL,
|
132 |
(char *) NULL, Tk_Offset(ArcItem, activeFillStipple),
|
133 |
TK_CONFIG_NULL_OK},
|
134 |
{TK_CONFIG_CUSTOM, "-activewidth", (char *) NULL, (char *) NULL,
|
135 |
"0.0", Tk_Offset(ArcItem, outline.activeWidth),
|
136 |
TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
|
137 |
{TK_CONFIG_CUSTOM, "-dash", (char *) NULL, (char *) NULL,
|
138 |
(char *) NULL, Tk_Offset(ArcItem, outline.dash),
|
139 |
TK_CONFIG_NULL_OK, &dashOption},
|
140 |
{TK_CONFIG_PIXELS, "-dashoffset", (char *) NULL, (char *) NULL,
|
141 |
"0", Tk_Offset(ArcItem, outline.offset), TK_CONFIG_DONT_SET_DEFAULT},
|
142 |
{TK_CONFIG_CUSTOM, "-disableddash", (char *) NULL, (char *) NULL,
|
143 |
(char *) NULL, Tk_Offset(ArcItem, outline.disabledDash),
|
144 |
TK_CONFIG_NULL_OK, &dashOption},
|
145 |
{TK_CONFIG_COLOR, "-disabledfill", (char *) NULL, (char *) NULL,
|
146 |
(char *) NULL, Tk_Offset(ArcItem, disabledFillColor),
|
147 |
TK_CONFIG_NULL_OK},
|
148 |
{TK_CONFIG_COLOR, "-disabledoutline", (char *) NULL, (char *) NULL,
|
149 |
(char *) NULL, Tk_Offset(ArcItem, outline.disabledColor),
|
150 |
TK_CONFIG_NULL_OK},
|
151 |
{TK_CONFIG_BITMAP, "-disabledoutlinestipple", (char *) NULL, (char *) NULL,
|
152 |
(char *) NULL, Tk_Offset(ArcItem, outline.disabledStipple),
|
153 |
TK_CONFIG_NULL_OK},
|
154 |
{TK_CONFIG_BITMAP, "-disabledstipple", (char *) NULL, (char *) NULL,
|
155 |
(char *) NULL, Tk_Offset(ArcItem, disabledFillStipple),
|
156 |
TK_CONFIG_NULL_OK},
|
157 |
{TK_CONFIG_CUSTOM, "-disabledwidth", (char *) NULL, (char *) NULL,
|
158 |
"0.0", Tk_Offset(ArcItem, outline.disabledWidth),
|
159 |
TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
|
160 |
{TK_CONFIG_DOUBLE, "-extent", (char *) NULL, (char *) NULL,
|
161 |
"90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT},
|
162 |
{TK_CONFIG_COLOR, "-fill", (char *) NULL, (char *) NULL,
|
163 |
(char *) NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK},
|
164 |
{TK_CONFIG_CUSTOM, "-offset", (char *) NULL, (char *) NULL,
|
165 |
"0,0", Tk_Offset(ArcItem, tsoffset),
|
166 |
TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
|
167 |
{TK_CONFIG_COLOR, "-outline", (char *) NULL, (char *) NULL,
|
168 |
"black", Tk_Offset(ArcItem, outline.color), TK_CONFIG_NULL_OK},
|
169 |
{TK_CONFIG_CUSTOM, "-outlineoffset", (char *) NULL, (char *) NULL,
|
170 |
"0,0", Tk_Offset(ArcItem, outline.tsoffset),
|
171 |
TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
|
172 |
{TK_CONFIG_BITMAP, "-outlinestipple", (char *) NULL, (char *) NULL,
|
173 |
(char *) NULL, Tk_Offset(ArcItem, outline.stipple),
|
174 |
TK_CONFIG_NULL_OK},
|
175 |
{TK_CONFIG_DOUBLE, "-start", (char *) NULL, (char *) NULL,
|
176 |
"0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT},
|
177 |
{TK_CONFIG_CUSTOM, "-state", (char *) NULL, (char *) NULL,
|
178 |
(char *) NULL, Tk_Offset(Tk_Item, state), TK_CONFIG_NULL_OK,
|
179 |
&stateOption},
|
180 |
{TK_CONFIG_BITMAP, "-stipple", (char *) NULL, (char *) NULL,
|
181 |
(char *) NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK},
|
182 |
{TK_CONFIG_CUSTOM, "-style", (char *) NULL, (char *) NULL,
|
183 |
(char *) NULL, Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT,
|
184 |
&styleOption},
|
185 |
{TK_CONFIG_CUSTOM, "-tags", (char *) NULL, (char *) NULL,
|
186 |
(char *) NULL, 0, TK_CONFIG_NULL_OK, &tagsOption},
|
187 |
{TK_CONFIG_CUSTOM, "-width", (char *) NULL, (char *) NULL,
|
188 |
"1.0", Tk_Offset(ArcItem, outline.width), TK_CONFIG_DONT_SET_DEFAULT,
|
189 |
&pixelOption},
|
190 |
{TK_CONFIG_END, (char *) NULL, (char *) NULL, (char *) NULL,
|
191 |
(char *) NULL, 0, 0}
|
192 |
};
|
193 |
|
194 |
/*
|
195 |
* Prototypes for procedures defined in this file:
|
196 |
*/
|
197 |
|
198 |
static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas canvas,
|
199 |
ArcItem *arcPtr));
|
200 |
static int ConfigureArc _ANSI_ARGS_((Tcl_Interp *interp,
|
201 |
Tk_Canvas canvas, Tk_Item *itemPtr, int argc,
|
202 |
Tcl_Obj *CONST argv[], int flags));
|
203 |
static int CreateArc _ANSI_ARGS_((Tcl_Interp *interp,
|
204 |
Tk_Canvas canvas, struct Tk_Item *itemPtr,
|
205 |
int argc, Tcl_Obj *CONST argv[]));
|
206 |
static void DeleteArc _ANSI_ARGS_((Tk_Canvas canvas,
|
207 |
Tk_Item *itemPtr, Display *display));
|
208 |
static void DisplayArc _ANSI_ARGS_((Tk_Canvas canvas,
|
209 |
Tk_Item *itemPtr, Display *display, Drawable dst,
|
210 |
int x, int y, int width, int height));
|
211 |
static int ArcCoords _ANSI_ARGS_((Tcl_Interp *interp,
|
212 |
Tk_Canvas canvas, Tk_Item *itemPtr, int argc,
|
213 |
Tcl_Obj *CONST argv[]));
|
214 |
static int ArcToArea _ANSI_ARGS_((Tk_Canvas canvas,
|
215 |
Tk_Item *itemPtr, double *rectPtr));
|
216 |
static double ArcToPoint _ANSI_ARGS_((Tk_Canvas canvas,
|
217 |
Tk_Item *itemPtr, double *coordPtr));
|
218 |
static int ArcToPostscript _ANSI_ARGS_((Tcl_Interp *interp,
|
219 |
Tk_Canvas canvas, Tk_Item *itemPtr, int prepass));
|
220 |
static void ScaleArc _ANSI_ARGS_((Tk_Canvas canvas,
|
221 |
Tk_Item *itemPtr, double originX, double originY,
|
222 |
double scaleX, double scaleY));
|
223 |
static void TranslateArc _ANSI_ARGS_((Tk_Canvas canvas,
|
224 |
Tk_Item *itemPtr, double deltaX, double deltaY));
|
225 |
static int AngleInRange _ANSI_ARGS_((double x, double y,
|
226 |
double start, double extent));
|
227 |
static void ComputeArcOutline _ANSI_ARGS_((Tk_Canvas canvas,
|
228 |
ArcItem *arcPtr));
|
229 |
static int HorizLineToArc _ANSI_ARGS_((double x1, double x2,
|
230 |
double y, double rx, double ry,
|
231 |
double start, double extent));
|
232 |
static int VertLineToArc _ANSI_ARGS_((double x, double y1,
|
233 |
double y2, double rx, double ry,
|
234 |
double start, double extent));
|
235 |
|
236 |
/*
|
237 |
* The structures below defines the arc item types by means of procedures
|
238 |
* that can be invoked by generic item code.
|
239 |
*/
|
240 |
|
241 |
Tk_ItemType tkArcType = {
|
242 |
"arc", /* name */
|
243 |
sizeof(ArcItem), /* itemSize */
|
244 |
CreateArc, /* createProc */
|
245 |
configSpecs, /* configSpecs */
|
246 |
ConfigureArc, /* configureProc */
|
247 |
ArcCoords, /* coordProc */
|
248 |
DeleteArc, /* deleteProc */
|
249 |
DisplayArc, /* displayProc */
|
250 |
TK_CONFIG_OBJS, /* flags */
|
251 |
ArcToPoint, /* pointProc */
|
252 |
ArcToArea, /* areaProc */
|
253 |
ArcToPostscript, /* postscriptProc */
|
254 |
ScaleArc, /* scaleProc */
|
255 |
TranslateArc, /* translateProc */
|
256 |
(Tk_ItemIndexProc *) NULL, /* indexProc */
|
257 |
(Tk_ItemCursorProc *) NULL, /* icursorProc */
|
258 |
(Tk_ItemSelectionProc *) NULL, /* selectionProc */
|
259 |
(Tk_ItemInsertProc *) NULL, /* insertProc */
|
260 |
(Tk_ItemDCharsProc *) NULL, /* dTextProc */
|
261 |
(Tk_ItemType *) NULL, /* nextPtr */
|
262 |
};
|
263 |
|
264 |
#ifndef PI
|
265 |
# define PI 3.14159265358979323846
|
266 |
#endif
|
267 |
|
268 |
|
269 |
/*
|
270 |
*--------------------------------------------------------------
|
271 |
*
|
272 |
* CreateArc --
|
273 |
*
|
274 |
* This procedure is invoked to create a new arc item in
|
275 |
* a canvas.
|
276 |
*
|
277 |
* Results:
|
278 |
* A standard Tcl return value. If an error occurred in
|
279 |
* creating the item, then an error message is left in
|
280 |
* the interp's result; in this case itemPtr is
|
281 |
* left uninitialized, so it can be safely freed by the
|
282 |
* caller.
|
283 |
*
|
284 |
* Side effects:
|
285 |
* A new arc item is created.
|
286 |
*
|
287 |
*--------------------------------------------------------------
|
288 |
*/
|
289 |
|
290 |
static int
|
291 |
CreateArc(interp, canvas, itemPtr, argc, argv)
|
292 |
Tcl_Interp *interp; /* Interpreter for error reporting. */
|
293 |
Tk_Canvas canvas; /* Canvas to hold new item. */
|
294 |
Tk_Item *itemPtr; /* Record to hold new item; header
|
295 |
* has been initialized by caller. */
|
296 |
int argc; /* Number of arguments in argv. */
|
297 |
Tcl_Obj *CONST argv[]; /* Arguments describing arc. */
|
298 |
{
|
299 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
300 |
int i;
|
301 |
|
302 |
if (argc==1) {
|
303 |
i = 1;
|
304 |
} else {
|
305 |
char *arg = Tcl_GetStringFromObj(argv[1], NULL);
|
306 |
if ((argc>1) && (arg[0] == '-')
|
307 |
&& (arg[1] >= 'a') && (arg[1] <= 'z')) {
|
308 |
i = 1;
|
309 |
} else {
|
310 |
i = 4;
|
311 |
}
|
312 |
}
|
313 |
if (argc < i) {
|
314 |
Tcl_AppendResult(interp, "wrong # args: should be \"",
|
315 |
Tk_PathName(Tk_CanvasTkwin(canvas)), " create ",
|
316 |
itemPtr->typePtr->name, " x1 y1 x2 y2 ?options?\"",
|
317 |
(char *) NULL);
|
318 |
return TCL_ERROR;
|
319 |
}
|
320 |
|
321 |
/*
|
322 |
* Carry out initialization that is needed in order to clean
|
323 |
* up after errors during the the remainder of this procedure.
|
324 |
*/
|
325 |
|
326 |
Tk_CreateOutline(&(arcPtr->outline));
|
327 |
arcPtr->start = 0;
|
328 |
arcPtr->extent = 90;
|
329 |
arcPtr->outlinePtr = NULL;
|
330 |
arcPtr->numOutlinePoints = 0;
|
331 |
arcPtr->tsoffset.flags = 0;
|
332 |
arcPtr->tsoffset.xoffset = 0;
|
333 |
arcPtr->tsoffset.yoffset = 0;
|
334 |
arcPtr->fillColor = NULL;
|
335 |
arcPtr->activeFillColor = NULL;
|
336 |
arcPtr->disabledFillColor = NULL;
|
337 |
arcPtr->fillStipple = None;
|
338 |
arcPtr->activeFillStipple = None;
|
339 |
arcPtr->disabledFillStipple = None;
|
340 |
arcPtr->style = PIESLICE_STYLE;
|
341 |
arcPtr->fillGC = None;
|
342 |
|
343 |
/*
|
344 |
* Process the arguments to fill in the item record.
|
345 |
*/
|
346 |
|
347 |
if ((ArcCoords(interp, canvas, itemPtr, i, argv) != TCL_OK)) {
|
348 |
goto error;
|
349 |
}
|
350 |
if (ConfigureArc(interp, canvas, itemPtr, argc-4, argv+4, 0) == TCL_OK) {
|
351 |
return TCL_OK;
|
352 |
}
|
353 |
error:
|
354 |
DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas)));
|
355 |
return TCL_ERROR;
|
356 |
}
|
357 |
|
358 |
/*
|
359 |
*--------------------------------------------------------------
|
360 |
*
|
361 |
* ArcCoords --
|
362 |
*
|
363 |
* This procedure is invoked to process the "coords" widget
|
364 |
* command on arcs. See the user documentation for details
|
365 |
* on what it does.
|
366 |
*
|
367 |
* Results:
|
368 |
* Returns TCL_OK or TCL_ERROR, and sets the interp's result.
|
369 |
*
|
370 |
* Side effects:
|
371 |
* The coordinates for the given item may be changed.
|
372 |
*
|
373 |
*--------------------------------------------------------------
|
374 |
*/
|
375 |
|
376 |
static int
|
377 |
ArcCoords(interp, canvas, itemPtr, argc, argv)
|
378 |
Tcl_Interp *interp; /* Used for error reporting. */
|
379 |
Tk_Canvas canvas; /* Canvas containing item. */
|
380 |
Tk_Item *itemPtr; /* Item whose coordinates are to be
|
381 |
* read or modified. */
|
382 |
int argc; /* Number of coordinates supplied in
|
383 |
* argv. */
|
384 |
Tcl_Obj *CONST argv[]; /* Array of coordinates: x1, y1,
|
385 |
* x2, y2, ... */
|
386 |
{
|
387 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
388 |
|
389 |
if (argc == 0) {
|
390 |
Tcl_Obj *obj = Tcl_NewObj();
|
391 |
Tcl_Obj *subobj = Tcl_NewDoubleObj(arcPtr->bbox[0]);
|
392 |
Tcl_ListObjAppendElement(interp, obj, subobj);
|
393 |
subobj = Tcl_NewDoubleObj(arcPtr->bbox[1]);
|
394 |
Tcl_ListObjAppendElement(interp, obj, subobj);
|
395 |
subobj = Tcl_NewDoubleObj(arcPtr->bbox[2]);
|
396 |
Tcl_ListObjAppendElement(interp, obj, subobj);
|
397 |
subobj = Tcl_NewDoubleObj(arcPtr->bbox[3]);
|
398 |
Tcl_ListObjAppendElement(interp, obj, subobj);
|
399 |
Tcl_SetObjResult(interp, obj);
|
400 |
} else if ((argc == 1)||(argc == 4)) {
|
401 |
if (argc==1) {
|
402 |
if (Tcl_ListObjGetElements(interp, argv[0], &argc,
|
403 |
(Tcl_Obj ***) &argv) != TCL_OK) {
|
404 |
return TCL_ERROR;
|
405 |
} else if (argc != 4) {
|
406 |
char buf[64 + TCL_INTEGER_SPACE];
|
407 |
|
408 |
sprintf(buf, "wrong # coordinates: expected 4, got %d", argc);
|
409 |
Tcl_SetResult(interp, buf, TCL_VOLATILE);
|
410 |
return TCL_ERROR;
|
411 |
}
|
412 |
}
|
413 |
if ((Tk_CanvasGetCoordFromObj(interp, canvas, argv[0],
|
414 |
&arcPtr->bbox[0]) != TCL_OK)
|
415 |
|| (Tk_CanvasGetCoordFromObj(interp, canvas, argv[1],
|
416 |
&arcPtr->bbox[1]) != TCL_OK)
|
417 |
|| (Tk_CanvasGetCoordFromObj(interp, canvas, argv[2],
|
418 |
&arcPtr->bbox[2]) != TCL_OK)
|
419 |
|| (Tk_CanvasGetCoordFromObj(interp, canvas, argv[3],
|
420 |
&arcPtr->bbox[3]) != TCL_OK)) {
|
421 |
return TCL_ERROR;
|
422 |
}
|
423 |
ComputeArcBbox(canvas, arcPtr);
|
424 |
} else {
|
425 |
char buf[64 + TCL_INTEGER_SPACE];
|
426 |
|
427 |
sprintf(buf, "wrong # coordinates: expected 0 or 4, got %d", argc);
|
428 |
Tcl_SetResult(interp, buf, TCL_VOLATILE);
|
429 |
return TCL_ERROR;
|
430 |
}
|
431 |
return TCL_OK;
|
432 |
}
|
433 |
|
434 |
/*
|
435 |
*--------------------------------------------------------------
|
436 |
*
|
437 |
* ConfigureArc --
|
438 |
*
|
439 |
* This procedure is invoked to configure various aspects
|
440 |
* of a arc item, such as its outline and fill colors.
|
441 |
*
|
442 |
* Results:
|
443 |
* A standard Tcl result code. If an error occurs, then
|
444 |
* an error message is left in the interp's result.
|
445 |
*
|
446 |
* Side effects:
|
447 |
* Configuration information, such as colors and stipple
|
448 |
* patterns, may be set for itemPtr.
|
449 |
*
|
450 |
*--------------------------------------------------------------
|
451 |
*/
|
452 |
|
453 |
static int
|
454 |
ConfigureArc(interp, canvas, itemPtr, argc, argv, flags)
|
455 |
Tcl_Interp *interp; /* Used for error reporting. */
|
456 |
Tk_Canvas canvas; /* Canvas containing itemPtr. */
|
457 |
Tk_Item *itemPtr; /* Arc item to reconfigure. */
|
458 |
int argc; /* Number of elements in argv. */
|
459 |
Tcl_Obj *CONST argv[]; /* Arguments describing things to configure. */
|
460 |
int flags; /* Flags to pass to Tk_ConfigureWidget. */
|
461 |
{
|
462 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
463 |
XGCValues gcValues;
|
464 |
GC newGC;
|
465 |
unsigned long mask;
|
466 |
int i;
|
467 |
Tk_Window tkwin;
|
468 |
Tk_TSOffset *tsoffset;
|
469 |
XColor *color;
|
470 |
Pixmap stipple;
|
471 |
Tk_State state;
|
472 |
|
473 |
tkwin = Tk_CanvasTkwin(canvas);
|
474 |
if (Tk_ConfigureWidget(interp, tkwin, configSpecs, argc, (char **) argv,
|
475 |
(char *) arcPtr, flags|TK_CONFIG_OBJS) != TCL_OK) {
|
476 |
return TCL_ERROR;
|
477 |
}
|
478 |
|
479 |
state = itemPtr->state;
|
480 |
|
481 |
/*
|
482 |
* A few of the options require additional processing, such as
|
483 |
* style and graphics contexts.
|
484 |
*/
|
485 |
|
486 |
if (arcPtr->outline.activeWidth > arcPtr->outline.width ||
|
487 |
arcPtr->outline.activeDash.number != 0 ||
|
488 |
arcPtr->outline.activeColor != NULL ||
|
489 |
arcPtr->outline.activeStipple != None ||
|
490 |
arcPtr->activeFillColor != NULL ||
|
491 |
arcPtr->activeFillStipple != None) {
|
492 |
itemPtr->redraw_flags |= TK_ITEM_STATE_DEPENDANT;
|
493 |
} else {
|
494 |
itemPtr->redraw_flags &= ~TK_ITEM_STATE_DEPENDANT;
|
495 |
}
|
496 |
|
497 |
tsoffset = &arcPtr->outline.tsoffset;
|
498 |
flags = tsoffset->flags;
|
499 |
if (flags & TK_OFFSET_LEFT) {
|
500 |
tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
|
501 |
} else if (flags & TK_OFFSET_CENTER) {
|
502 |
tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
|
503 |
} else if (flags & TK_OFFSET_RIGHT) {
|
504 |
tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
|
505 |
}
|
506 |
if (flags & TK_OFFSET_TOP) {
|
507 |
tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
|
508 |
} else if (flags & TK_OFFSET_MIDDLE) {
|
509 |
tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
|
510 |
} else if (flags & TK_OFFSET_BOTTOM) {
|
511 |
tsoffset->yoffset = (int) (arcPtr->bbox[2] + 0.5);
|
512 |
}
|
513 |
|
514 |
i = (int) (arcPtr->start/360.0);
|
515 |
arcPtr->start -= i*360.0;
|
516 |
if (arcPtr->start < 0) {
|
517 |
arcPtr->start += 360.0;
|
518 |
}
|
519 |
i = (int) (arcPtr->extent/360.0);
|
520 |
arcPtr->extent -= i*360.0;
|
521 |
|
522 |
mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr,
|
523 |
&(arcPtr->outline));
|
524 |
if (mask) {
|
525 |
gcValues.cap_style = CapButt;
|
526 |
mask |= GCCapStyle;
|
527 |
newGC = Tk_GetGC(tkwin, mask, &gcValues);
|
528 |
} else {
|
529 |
newGC = None;
|
530 |
}
|
531 |
if (arcPtr->outline.gc != None) {
|
532 |
Tk_FreeGC(Tk_Display(tkwin), arcPtr->outline.gc);
|
533 |
}
|
534 |
arcPtr->outline.gc = newGC;
|
535 |
|
536 |
if(state == TK_STATE_NULL) {
|
537 |
state = ((TkCanvas *)canvas)->canvas_state;
|
538 |
}
|
539 |
if (state==TK_STATE_HIDDEN) {
|
540 |
ComputeArcBbox(canvas, arcPtr);
|
541 |
return TCL_OK;
|
542 |
}
|
543 |
|
544 |
color = arcPtr->fillColor;
|
545 |
stipple = arcPtr->fillStipple;
|
546 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
|
547 |
if (arcPtr->activeFillColor!=NULL) {
|
548 |
color = arcPtr->activeFillColor;
|
549 |
}
|
550 |
if (arcPtr->activeFillStipple!=None) {
|
551 |
stipple = arcPtr->activeFillStipple;
|
552 |
}
|
553 |
} else if (state==TK_STATE_DISABLED) {
|
554 |
if (arcPtr->disabledFillColor!=NULL) {
|
555 |
color = arcPtr->disabledFillColor;
|
556 |
}
|
557 |
if (arcPtr->disabledFillStipple!=None) {
|
558 |
stipple = arcPtr->disabledFillStipple;
|
559 |
}
|
560 |
}
|
561 |
|
562 |
if (arcPtr->style == ARC_STYLE) {
|
563 |
newGC = None;
|
564 |
} else if (color == NULL) {
|
565 |
newGC = None;
|
566 |
} else {
|
567 |
gcValues.foreground = color->pixel;
|
568 |
if (arcPtr->style == CHORD_STYLE) {
|
569 |
gcValues.arc_mode = ArcChord;
|
570 |
} else {
|
571 |
gcValues.arc_mode = ArcPieSlice;
|
572 |
}
|
573 |
mask = GCForeground|GCArcMode;
|
574 |
if (stipple != None) {
|
575 |
gcValues.stipple = stipple;
|
576 |
gcValues.fill_style = FillStippled;
|
577 |
mask |= GCStipple|GCFillStyle;
|
578 |
}
|
579 |
newGC = Tk_GetGC(tkwin, mask, &gcValues);
|
580 |
}
|
581 |
if (arcPtr->fillGC != None) {
|
582 |
Tk_FreeGC(Tk_Display(tkwin), arcPtr->fillGC);
|
583 |
}
|
584 |
arcPtr->fillGC = newGC;
|
585 |
|
586 |
tsoffset = &arcPtr->tsoffset;
|
587 |
flags = tsoffset->flags;
|
588 |
if (flags & TK_OFFSET_LEFT) {
|
589 |
tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
|
590 |
} else if (flags & TK_OFFSET_CENTER) {
|
591 |
tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
|
592 |
} else if (flags & TK_OFFSET_RIGHT) {
|
593 |
tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
|
594 |
}
|
595 |
if (flags & TK_OFFSET_TOP) {
|
596 |
tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
|
597 |
} else if (flags & TK_OFFSET_MIDDLE) {
|
598 |
tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
|
599 |
} else if (flags & TK_OFFSET_BOTTOM) {
|
600 |
tsoffset->yoffset = (int) (arcPtr->bbox[3] + 0.5);
|
601 |
}
|
602 |
|
603 |
ComputeArcBbox(canvas, arcPtr);
|
604 |
return TCL_OK;
|
605 |
}
|
606 |
|
607 |
/*
|
608 |
*--------------------------------------------------------------
|
609 |
*
|
610 |
* DeleteArc --
|
611 |
*
|
612 |
* This procedure is called to clean up the data structure
|
613 |
* associated with a arc item.
|
614 |
*
|
615 |
* Results:
|
616 |
* None.
|
617 |
*
|
618 |
* Side effects:
|
619 |
* Resources associated with itemPtr are released.
|
620 |
*
|
621 |
*--------------------------------------------------------------
|
622 |
*/
|
623 |
|
624 |
static void
|
625 |
DeleteArc(canvas, itemPtr, display)
|
626 |
Tk_Canvas canvas; /* Info about overall canvas. */
|
627 |
Tk_Item *itemPtr; /* Item that is being deleted. */
|
628 |
Display *display; /* Display containing window for
|
629 |
* canvas. */
|
630 |
{
|
631 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
632 |
|
633 |
Tk_DeleteOutline(display, &(arcPtr->outline));
|
634 |
if (arcPtr->numOutlinePoints != 0) {
|
635 |
ckfree((char *) arcPtr->outlinePtr);
|
636 |
}
|
637 |
if (arcPtr->fillColor != NULL) {
|
638 |
Tk_FreeColor(arcPtr->fillColor);
|
639 |
}
|
640 |
if (arcPtr->activeFillColor != NULL) {
|
641 |
Tk_FreeColor(arcPtr->activeFillColor);
|
642 |
}
|
643 |
if (arcPtr->disabledFillColor != NULL) {
|
644 |
Tk_FreeColor(arcPtr->disabledFillColor);
|
645 |
}
|
646 |
if (arcPtr->fillStipple != None) {
|
647 |
Tk_FreeBitmap(display, arcPtr->fillStipple);
|
648 |
}
|
649 |
if (arcPtr->activeFillStipple != None) {
|
650 |
Tk_FreeBitmap(display, arcPtr->activeFillStipple);
|
651 |
}
|
652 |
if (arcPtr->disabledFillStipple != None) {
|
653 |
Tk_FreeBitmap(display, arcPtr->disabledFillStipple);
|
654 |
}
|
655 |
if (arcPtr->fillGC != None) {
|
656 |
Tk_FreeGC(display, arcPtr->fillGC);
|
657 |
}
|
658 |
}
|
659 |
|
660 |
/*
|
661 |
*--------------------------------------------------------------
|
662 |
*
|
663 |
* ComputeArcBbox --
|
664 |
*
|
665 |
* This procedure is invoked to compute the bounding box of
|
666 |
* all the pixels that may be drawn as part of an arc.
|
667 |
*
|
668 |
* Results:
|
669 |
* None.
|
670 |
*
|
671 |
* Side effects:
|
672 |
* The fields x1, y1, x2, and y2 are updated in the header
|
673 |
* for itemPtr.
|
674 |
*
|
675 |
*--------------------------------------------------------------
|
676 |
*/
|
677 |
|
678 |
/* ARGSUSED */
|
679 |
static void
|
680 |
ComputeArcBbox(canvas, arcPtr)
|
681 |
Tk_Canvas canvas; /* Canvas that contains item. */
|
682 |
ArcItem *arcPtr; /* Item whose bbox is to be
|
683 |
* recomputed. */
|
684 |
{
|
685 |
double tmp, center[2], point[2];
|
686 |
double width;
|
687 |
Tk_State state = arcPtr->header.state;
|
688 |
|
689 |
if(state == TK_STATE_NULL) {
|
690 |
state = ((TkCanvas *)canvas)->canvas_state;
|
691 |
}
|
692 |
|
693 |
width = arcPtr->outline.width;
|
694 |
if (width < 1.0) {
|
695 |
width = 1.0;
|
696 |
}
|
697 |
if (state==TK_STATE_HIDDEN) {
|
698 |
arcPtr->header.x1 = arcPtr->header.x2 =
|
699 |
arcPtr->header.y1 = arcPtr->header.y2 = -1;
|
700 |
return;
|
701 |
} else if (((TkCanvas *)canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
|
702 |
if (arcPtr->outline.activeWidth>width) {
|
703 |
width = arcPtr->outline.activeWidth;
|
704 |
}
|
705 |
} else if (state==TK_STATE_DISABLED) {
|
706 |
if (arcPtr->outline.disabledWidth>0) {
|
707 |
width = arcPtr->outline.disabledWidth;
|
708 |
}
|
709 |
}
|
710 |
|
711 |
/*
|
712 |
* Make sure that the first coordinates are the lowest ones.
|
713 |
*/
|
714 |
|
715 |
if (arcPtr->bbox[1] > arcPtr->bbox[3]) {
|
716 |
double tmp;
|
717 |
tmp = arcPtr->bbox[3];
|
718 |
arcPtr->bbox[3] = arcPtr->bbox[1];
|
719 |
arcPtr->bbox[1] = tmp;
|
720 |
}
|
721 |
if (arcPtr->bbox[0] > arcPtr->bbox[2]) {
|
722 |
double tmp;
|
723 |
tmp = arcPtr->bbox[2];
|
724 |
arcPtr->bbox[2] = arcPtr->bbox[0];
|
725 |
arcPtr->bbox[0] = tmp;
|
726 |
}
|
727 |
|
728 |
ComputeArcOutline(canvas,arcPtr);
|
729 |
|
730 |
/*
|
731 |
* To compute the bounding box, start with the the bbox formed
|
732 |
* by the two endpoints of the arc. Then add in the center of
|
733 |
* the arc's oval (if relevant) and the 3-o'clock, 6-o'clock,
|
734 |
* 9-o'clock, and 12-o'clock positions, if they are relevant.
|
735 |
*/
|
736 |
|
737 |
arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0];
|
738 |
arcPtr->header.y1 = arcPtr->header.y2 = (int) arcPtr->center1[1];
|
739 |
TkIncludePoint((Tk_Item *) arcPtr, arcPtr->center2);
|
740 |
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2;
|
741 |
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2;
|
742 |
if (arcPtr->style == PIESLICE_STYLE) {
|
743 |
TkIncludePoint((Tk_Item *) arcPtr, center);
|
744 |
}
|
745 |
|
746 |
tmp = -arcPtr->start;
|
747 |
if (tmp < 0) {
|
748 |
tmp += 360.0;
|
749 |
}
|
750 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
751 |
point[0] = arcPtr->bbox[2];
|
752 |
point[1] = center[1];
|
753 |
TkIncludePoint((Tk_Item *) arcPtr, point);
|
754 |
}
|
755 |
tmp = 90.0 - arcPtr->start;
|
756 |
if (tmp < 0) {
|
757 |
tmp += 360.0;
|
758 |
}
|
759 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
760 |
point[0] = center[0];
|
761 |
point[1] = arcPtr->bbox[1];
|
762 |
TkIncludePoint((Tk_Item *) arcPtr, point);
|
763 |
}
|
764 |
tmp = 180.0 - arcPtr->start;
|
765 |
if (tmp < 0) {
|
766 |
tmp += 360.0;
|
767 |
}
|
768 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
769 |
point[0] = arcPtr->bbox[0];
|
770 |
point[1] = center[1];
|
771 |
TkIncludePoint((Tk_Item *) arcPtr, point);
|
772 |
}
|
773 |
tmp = 270.0 - arcPtr->start;
|
774 |
if (tmp < 0) {
|
775 |
tmp += 360.0;
|
776 |
}
|
777 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
778 |
point[0] = center[0];
|
779 |
point[1] = arcPtr->bbox[3];
|
780 |
TkIncludePoint((Tk_Item *) arcPtr, point);
|
781 |
}
|
782 |
|
783 |
/*
|
784 |
* Lastly, expand by the width of the arc (if the arc's outline is
|
785 |
* being drawn) and add one extra pixel just for safety.
|
786 |
*/
|
787 |
|
788 |
if (arcPtr->outline.gc == None) {
|
789 |
tmp = 1;
|
790 |
} else {
|
791 |
tmp = (int) ((width + 1.0)/2.0 + 1);
|
792 |
}
|
793 |
arcPtr->header.x1 -= (int) tmp;
|
794 |
arcPtr->header.y1 -= (int) tmp;
|
795 |
arcPtr->header.x2 += (int) tmp;
|
796 |
arcPtr->header.y2 += (int) tmp;
|
797 |
}
|
798 |
|
799 |
/*
|
800 |
*--------------------------------------------------------------
|
801 |
*
|
802 |
* DisplayArc --
|
803 |
*
|
804 |
* This procedure is invoked to draw an arc item in a given
|
805 |
* drawable.
|
806 |
*
|
807 |
* Results:
|
808 |
* None.
|
809 |
*
|
810 |
* Side effects:
|
811 |
* ItemPtr is drawn in drawable using the transformation
|
812 |
* information in canvas.
|
813 |
*
|
814 |
*--------------------------------------------------------------
|
815 |
*/
|
816 |
|
817 |
static void
|
818 |
DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
|
819 |
Tk_Canvas canvas; /* Canvas that contains item. */
|
820 |
Tk_Item *itemPtr; /* Item to be displayed. */
|
821 |
Display *display; /* Display on which to draw item. */
|
822 |
Drawable drawable; /* Pixmap or window in which to draw
|
823 |
* item. */
|
824 |
int x, y, width, height; /* Describes region of canvas that
|
825 |
* must be redisplayed (not used). */
|
826 |
{
|
827 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
828 |
short x1, y1, x2, y2;
|
829 |
int start, extent, dashnumber;
|
830 |
double lineWidth;
|
831 |
Tk_State state = itemPtr->state;
|
832 |
Pixmap stipple;
|
833 |
|
834 |
if(state == TK_STATE_NULL) {
|
835 |
state = ((TkCanvas *)canvas)->canvas_state;
|
836 |
}
|
837 |
lineWidth = arcPtr->outline.width;
|
838 |
if (lineWidth < 1.0) {
|
839 |
lineWidth = 1.0;
|
840 |
}
|
841 |
dashnumber = arcPtr->outline.dash.number;
|
842 |
stipple = arcPtr->fillStipple;
|
843 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
|
844 |
if (arcPtr->outline.activeWidth>lineWidth) {
|
845 |
lineWidth = arcPtr->outline.activeWidth;
|
846 |
}
|
847 |
if (arcPtr->outline.activeDash.number != 0) {
|
848 |
dashnumber = arcPtr->outline.activeDash.number;
|
849 |
}
|
850 |
if (arcPtr->activeFillStipple != None) {
|
851 |
stipple = arcPtr->activeFillStipple;
|
852 |
}
|
853 |
} else if (state==TK_STATE_DISABLED) {
|
854 |
if (arcPtr->outline.disabledWidth > 0) {
|
855 |
lineWidth = arcPtr->outline.disabledWidth;
|
856 |
}
|
857 |
if (arcPtr->outline.disabledDash.number != 0) {
|
858 |
dashnumber = arcPtr->outline.disabledDash.number;
|
859 |
}
|
860 |
if (arcPtr->disabledFillStipple != None) {
|
861 |
stipple = arcPtr->disabledFillStipple;
|
862 |
}
|
863 |
}
|
864 |
|
865 |
/*
|
866 |
* Compute the screen coordinates of the bounding box for the item,
|
867 |
* plus integer values for the angles.
|
868 |
*/
|
869 |
|
870 |
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1],
|
871 |
&x1, &y1);
|
872 |
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[2], arcPtr->bbox[3],
|
873 |
&x2, &y2);
|
874 |
if (x2 <= x1) {
|
875 |
x2 = x1+1;
|
876 |
}
|
877 |
if (y2 <= y1) {
|
878 |
y2 = y1+1;
|
879 |
}
|
880 |
start = (int) ((64*arcPtr->start) + 0.5);
|
881 |
extent = (int) ((64*arcPtr->extent) + 0.5);
|
882 |
|
883 |
/*
|
884 |
* Display filled arc first (if wanted), then outline. If the extent
|
885 |
* is zero then don't invoke XFillArc or XDrawArc, since this causes
|
886 |
* some window servers to crash and should be a no-op anyway.
|
887 |
*/
|
888 |
|
889 |
if ((arcPtr->fillGC != None) && (extent != 0)) {
|
890 |
if (stipple != None) {
|
891 |
int w=0; int h=0;
|
892 |
Tk_TSOffset *tsoffset = &arcPtr->tsoffset;
|
893 |
int flags = tsoffset->flags;
|
894 |
if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) {
|
895 |
Tk_SizeOfBitmap(display, stipple, &w, &h);
|
896 |
if (flags & TK_OFFSET_CENTER) {
|
897 |
w /= 2;
|
898 |
} else {
|
899 |
w = 0;
|
900 |
}
|
901 |
if (flags & TK_OFFSET_MIDDLE) {
|
902 |
h /= 2;
|
903 |
} else {
|
904 |
h = 0;
|
905 |
}
|
906 |
}
|
907 |
tsoffset->xoffset -= w;
|
908 |
tsoffset->yoffset -= h;
|
909 |
Tk_CanvasSetOffset(canvas, arcPtr->fillGC, tsoffset);
|
910 |
if (tsoffset) {
|
911 |
tsoffset->xoffset += w;
|
912 |
tsoffset->yoffset += h;
|
913 |
}
|
914 |
}
|
915 |
XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (unsigned) (x2-x1),
|
916 |
(unsigned) (y2-y1), start, extent);
|
917 |
if (stipple != None) {
|
918 |
XSetTSOrigin(display, arcPtr->fillGC, 0, 0);
|
919 |
}
|
920 |
}
|
921 |
if (arcPtr->outline.gc != None) {
|
922 |
Tk_ChangeOutlineGC(canvas, itemPtr, &(arcPtr->outline));
|
923 |
|
924 |
if (extent != 0) {
|
925 |
XDrawArc(display, drawable, arcPtr->outline.gc, x1, y1,
|
926 |
(unsigned) (x2-x1), (unsigned) (y2-y1), start, extent);
|
927 |
}
|
928 |
|
929 |
/*
|
930 |
* If the outline width is very thin, don't use polygons to draw
|
931 |
* the linear parts of the outline (this often results in nothing
|
932 |
* being displayed); just draw lines instead. The same is done if
|
933 |
* the outline is dashed, because then polygons don't work.
|
934 |
*/
|
935 |
|
936 |
if (lineWidth < 1.5 || dashnumber != 0) {
|
937 |
Tk_CanvasDrawableCoords(canvas, arcPtr->center1[0],
|
938 |
arcPtr->center1[1], &x1, &y1);
|
939 |
Tk_CanvasDrawableCoords(canvas, arcPtr->center2[0],
|
940 |
arcPtr->center2[1], &x2, &y2);
|
941 |
|
942 |
if (arcPtr->style == CHORD_STYLE) {
|
943 |
XDrawLine(display, drawable, arcPtr->outline.gc,
|
944 |
x1, y1, x2, y2);
|
945 |
} else if (arcPtr->style == PIESLICE_STYLE) {
|
946 |
short cx, cy;
|
947 |
|
948 |
Tk_CanvasDrawableCoords(canvas,
|
949 |
(arcPtr->bbox[0] + arcPtr->bbox[2])/2.0,
|
950 |
(arcPtr->bbox[1] + arcPtr->bbox[3])/2.0, &cx, &cy);
|
951 |
XDrawLine(display, drawable, arcPtr->outline.gc,
|
952 |
cx, cy, x1, y1);
|
953 |
XDrawLine(display, drawable, arcPtr->outline.gc,
|
954 |
cx, cy, x2, y2);
|
955 |
}
|
956 |
} else {
|
957 |
if (arcPtr->style == CHORD_STYLE) {
|
958 |
TkFillPolygon(canvas, arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
959 |
display, drawable, arcPtr->outline.gc, None);
|
960 |
} else if (arcPtr->style == PIESLICE_STYLE) {
|
961 |
TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
962 |
display, drawable, arcPtr->outline.gc, None);
|
963 |
TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
964 |
PIE_OUTLINE2_PTS, display, drawable, arcPtr->outline.gc,
|
965 |
None);
|
966 |
}
|
967 |
}
|
968 |
|
969 |
Tk_ResetOutlineGC(canvas, itemPtr, &(arcPtr->outline));
|
970 |
}
|
971 |
}
|
972 |
|
973 |
/*
|
974 |
*--------------------------------------------------------------
|
975 |
*
|
976 |
* ArcToPoint --
|
977 |
*
|
978 |
* Computes the distance from a given point to a given
|
979 |
* arc, in canvas units.
|
980 |
*
|
981 |
* Results:
|
982 |
* The return value is 0 if the point whose x and y coordinates
|
983 |
* are coordPtr[0] and coordPtr[1] is inside the arc. If the
|
984 |
* point isn't inside the arc then the return value is the
|
985 |
* distance from the point to the arc. If itemPtr is filled,
|
986 |
* then anywhere in the interior is considered "inside"; if
|
987 |
* itemPtr isn't filled, then "inside" means only the area
|
988 |
* occupied by the outline.
|
989 |
*
|
990 |
* Side effects:
|
991 |
* None.
|
992 |
*
|
993 |
*--------------------------------------------------------------
|
994 |
*/
|
995 |
|
996 |
/* ARGSUSED */
|
997 |
static double
|
998 |
ArcToPoint(canvas, itemPtr, pointPtr)
|
999 |
Tk_Canvas canvas; /* Canvas containing item. */
|
1000 |
Tk_Item *itemPtr; /* Item to check against point. */
|
1001 |
double *pointPtr; /* Pointer to x and y coordinates. */
|
1002 |
{
|
1003 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1004 |
double vertex[2], pointAngle, diff, dist, newDist;
|
1005 |
double poly[8], polyDist, width, t1, t2;
|
1006 |
int filled, angleInRange;
|
1007 |
Tk_State state = itemPtr->state;
|
1008 |
|
1009 |
if(state == TK_STATE_NULL) {
|
1010 |
state = ((TkCanvas *)canvas)->canvas_state;
|
1011 |
}
|
1012 |
|
1013 |
width = (double) arcPtr->outline.width;
|
1014 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
|
1015 |
if (arcPtr->outline.activeWidth>width) {
|
1016 |
width = (double) arcPtr->outline.activeWidth;
|
1017 |
}
|
1018 |
} else if (state == TK_STATE_DISABLED) {
|
1019 |
if (arcPtr->outline.disabledWidth>0) {
|
1020 |
width = (double) arcPtr->outline.disabledWidth;
|
1021 |
}
|
1022 |
}
|
1023 |
|
1024 |
/*
|
1025 |
* See if the point is within the angular range of the arc.
|
1026 |
* Remember, X angles are backwards from the way we'd normally
|
1027 |
* think of them. Also, compensate for any eccentricity of
|
1028 |
* the oval.
|
1029 |
*/
|
1030 |
|
1031 |
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
1032 |
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
1033 |
t1 = arcPtr->bbox[3] - arcPtr->bbox[1];
|
1034 |
if (t1 != 0.0) {
|
1035 |
t1 = (pointPtr[1] - vertex[1]) / t1;
|
1036 |
}
|
1037 |
t2 = arcPtr->bbox[2] - arcPtr->bbox[0];
|
1038 |
if (t2 != 0.0) {
|
1039 |
t2 = (pointPtr[0] - vertex[0]) / t2;
|
1040 |
}
|
1041 |
if ((t1 == 0.0) && (t2 == 0.0)) {
|
1042 |
pointAngle = 0;
|
1043 |
} else {
|
1044 |
pointAngle = -atan2(t1, t2)*180/PI;
|
1045 |
}
|
1046 |
diff = pointAngle - arcPtr->start;
|
1047 |
diff -= ((int) (diff/360.0) * 360.0);
|
1048 |
if (diff < 0) {
|
1049 |
diff += 360.0;
|
1050 |
}
|
1051 |
angleInRange = (diff <= arcPtr->extent) ||
|
1052 |
((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent));
|
1053 |
|
1054 |
/*
|
1055 |
* Now perform different tests depending on what kind of arc
|
1056 |
* we're dealing with.
|
1057 |
*/
|
1058 |
|
1059 |
if (arcPtr->style == ARC_STYLE) {
|
1060 |
if (angleInRange) {
|
1061 |
return TkOvalToPoint(arcPtr->bbox, width,
|
1062 |
0, pointPtr);
|
1063 |
}
|
1064 |
dist = hypot(pointPtr[0] - arcPtr->center1[0],
|
1065 |
pointPtr[1] - arcPtr->center1[1]);
|
1066 |
newDist = hypot(pointPtr[0] - arcPtr->center2[0],
|
1067 |
pointPtr[1] - arcPtr->center2[1]);
|
1068 |
if (newDist < dist) {
|
1069 |
return newDist;
|
1070 |
}
|
1071 |
return dist;
|
1072 |
}
|
1073 |
|
1074 |
if ((arcPtr->fillGC != None) || (arcPtr->outline.gc == None)) {
|
1075 |
filled = 1;
|
1076 |
} else {
|
1077 |
filled = 0;
|
1078 |
}
|
1079 |
if (arcPtr->outline.gc == None) {
|
1080 |
width = 0.0;
|
1081 |
}
|
1082 |
|
1083 |
if (arcPtr->style == PIESLICE_STYLE) {
|
1084 |
if (width > 1.0) {
|
1085 |
dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
1086 |
pointPtr);
|
1087 |
newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
1088 |
PIE_OUTLINE2_PTS, pointPtr);
|
1089 |
} else {
|
1090 |
dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr);
|
1091 |
newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr);
|
1092 |
}
|
1093 |
if (newDist < dist) {
|
1094 |
dist = newDist;
|
1095 |
}
|
1096 |
if (angleInRange) {
|
1097 |
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
|
1098 |
if (newDist < dist) {
|
1099 |
dist = newDist;
|
1100 |
}
|
1101 |
}
|
1102 |
return dist;
|
1103 |
}
|
1104 |
|
1105 |
/*
|
1106 |
* This is a chord-style arc. We have to deal specially with the
|
1107 |
* triangular piece that represents the difference between a
|
1108 |
* chord-style arc and a pie-slice arc (for small angles this piece
|
1109 |
* is excluded here where it would be included for pie slices;
|
1110 |
* for large angles the piece is included here but would be
|
1111 |
* excluded for pie slices).
|
1112 |
*/
|
1113 |
|
1114 |
if (width > 1.0) {
|
1115 |
dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
1116 |
pointPtr);
|
1117 |
} else {
|
1118 |
dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr);
|
1119 |
}
|
1120 |
poly[0] = poly[6] = vertex[0];
|
1121 |
poly[1] = poly[7] = vertex[1];
|
1122 |
poly[2] = arcPtr->center1[0];
|
1123 |
poly[3] = arcPtr->center1[1];
|
1124 |
poly[4] = arcPtr->center2[0];
|
1125 |
poly[5] = arcPtr->center2[1];
|
1126 |
polyDist = TkPolygonToPoint(poly, 4, pointPtr);
|
1127 |
if (angleInRange) {
|
1128 |
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)
|
1129 |
|| (polyDist > 0.0)) {
|
1130 |
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
|
1131 |
if (newDist < dist) {
|
1132 |
dist = newDist;
|
1133 |
}
|
1134 |
}
|
1135 |
} else {
|
1136 |
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) {
|
1137 |
if (filled && (polyDist < dist)) {
|
1138 |
dist = polyDist;
|
1139 |
}
|
1140 |
}
|
1141 |
}
|
1142 |
return dist;
|
1143 |
}
|
1144 |
|
1145 |
/*
|
1146 |
*--------------------------------------------------------------
|
1147 |
*
|
1148 |
* ArcToArea --
|
1149 |
*
|
1150 |
* This procedure is called to determine whether an item
|
1151 |
* lies entirely inside, entirely outside, or overlapping
|
1152 |
* a given area.
|
1153 |
*
|
1154 |
* Results:
|
1155 |
* -1 is returned if the item is entirely outside the area
|
1156 |
* given by rectPtr, 0 if it overlaps, and 1 if it is entirely
|
1157 |
* inside the given area.
|
1158 |
*
|
1159 |
* Side effects:
|
1160 |
* None.
|
1161 |
*
|
1162 |
*--------------------------------------------------------------
|
1163 |
*/
|
1164 |
|
1165 |
/* ARGSUSED */
|
1166 |
static int
|
1167 |
ArcToArea(canvas, itemPtr, rectPtr)
|
1168 |
Tk_Canvas canvas; /* Canvas containing item. */
|
1169 |
Tk_Item *itemPtr; /* Item to check against arc. */
|
1170 |
double *rectPtr; /* Pointer to array of four coordinates
|
1171 |
* (x1, y1, x2, y2) describing rectangular
|
1172 |
* area. */
|
1173 |
{
|
1174 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1175 |
double rx, ry; /* Radii for transformed oval: these define
|
1176 |
* an oval centered at the origin. */
|
1177 |
double tRect[4]; /* Transformed version of x1, y1, x2, y2,
|
1178 |
* for coord. system where arc is centered
|
1179 |
* on the origin. */
|
1180 |
double center[2], width, angle, tmp;
|
1181 |
double points[20], *pointPtr;
|
1182 |
int numPoints, filled;
|
1183 |
int inside; /* Non-zero means every test so far suggests
|
1184 |
* that arc is inside rectangle. 0 means
|
1185 |
* every test so far shows arc to be outside
|
1186 |
* of rectangle. */
|
1187 |
int newInside;
|
1188 |
Tk_State state = itemPtr->state;
|
1189 |
|
1190 |
if(state == TK_STATE_NULL) {
|
1191 |
state = ((TkCanvas *)canvas)->canvas_state;
|
1192 |
}
|
1193 |
width = (double) arcPtr->outline.width;
|
1194 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
|
1195 |
if (arcPtr->outline.activeWidth>width) {
|
1196 |
width = (double) arcPtr->outline.activeWidth;
|
1197 |
}
|
1198 |
} else if (state==TK_STATE_DISABLED) {
|
1199 |
if (arcPtr->outline.disabledWidth>0) {
|
1200 |
width = (double) arcPtr->outline.disabledWidth;
|
1201 |
}
|
1202 |
}
|
1203 |
|
1204 |
if ((arcPtr->fillGC != None) || (arcPtr->outline.gc == None)) {
|
1205 |
filled = 1;
|
1206 |
} else {
|
1207 |
filled = 0;
|
1208 |
}
|
1209 |
if (arcPtr->outline.gc == None) {
|
1210 |
width = 0.0;
|
1211 |
}
|
1212 |
|
1213 |
/*
|
1214 |
* Transform both the arc and the rectangle so that the arc's oval
|
1215 |
* is centered on the origin.
|
1216 |
*/
|
1217 |
|
1218 |
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
1219 |
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
1220 |
tRect[0] = rectPtr[0] - center[0];
|
1221 |
tRect[1] = rectPtr[1] - center[1];
|
1222 |
tRect[2] = rectPtr[2] - center[0];
|
1223 |
tRect[3] = rectPtr[3] - center[1];
|
1224 |
rx = arcPtr->bbox[2] - center[0] + width/2.0;
|
1225 |
ry = arcPtr->bbox[3] - center[1] + width/2.0;
|
1226 |
|
1227 |
/*
|
1228 |
* Find the extreme points of the arc and see whether these are all
|
1229 |
* inside the rectangle (in which case we're done), partly in and
|
1230 |
* partly out (in which case we're done), or all outside (in which
|
1231 |
* case we have more work to do). The extreme points include the
|
1232 |
* following, which are checked in order:
|
1233 |
*
|
1234 |
* 1. The outside points of the arc, corresponding to start and
|
1235 |
* extent.
|
1236 |
* 2. The center of the arc (but only in pie-slice mode).
|
1237 |
* 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc
|
1238 |
* includes those angles).
|
1239 |
*/
|
1240 |
|
1241 |
pointPtr = points;
|
1242 |
angle = -arcPtr->start*(PI/180.0);
|
1243 |
pointPtr[0] = rx*cos(angle);
|
1244 |
pointPtr[1] = ry*sin(angle);
|
1245 |
angle += -arcPtr->extent*(PI/180.0);
|
1246 |
pointPtr[2] = rx*cos(angle);
|
1247 |
pointPtr[3] = ry*sin(angle);
|
1248 |
numPoints = 2;
|
1249 |
pointPtr += 4;
|
1250 |
|
1251 |
if ((arcPtr->style == PIESLICE_STYLE) && (arcPtr->extent < 180.0)) {
|
1252 |
pointPtr[0] = 0.0;
|
1253 |
pointPtr[1] = 0.0;
|
1254 |
numPoints++;
|
1255 |
pointPtr += 2;
|
1256 |
}
|
1257 |
|
1258 |
tmp = -arcPtr->start;
|
1259 |
if (tmp < 0) {
|
1260 |
tmp += 360.0;
|
1261 |
}
|
1262 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
1263 |
pointPtr[0] = rx;
|
1264 |
pointPtr[1] = 0.0;
|
1265 |
numPoints++;
|
1266 |
pointPtr += 2;
|
1267 |
}
|
1268 |
tmp = 90.0 - arcPtr->start;
|
1269 |
if (tmp < 0) {
|
1270 |
tmp += 360.0;
|
1271 |
}
|
1272 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
1273 |
pointPtr[0] = 0.0;
|
1274 |
pointPtr[1] = -ry;
|
1275 |
numPoints++;
|
1276 |
pointPtr += 2;
|
1277 |
}
|
1278 |
tmp = 180.0 - arcPtr->start;
|
1279 |
if (tmp < 0) {
|
1280 |
tmp += 360.0;
|
1281 |
}
|
1282 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
1283 |
pointPtr[0] = -rx;
|
1284 |
pointPtr[1] = 0.0;
|
1285 |
numPoints++;
|
1286 |
pointPtr += 2;
|
1287 |
}
|
1288 |
tmp = 270.0 - arcPtr->start;
|
1289 |
if (tmp < 0) {
|
1290 |
tmp += 360.0;
|
1291 |
}
|
1292 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
|
1293 |
pointPtr[0] = 0.0;
|
1294 |
pointPtr[1] = ry;
|
1295 |
numPoints++;
|
1296 |
}
|
1297 |
|
1298 |
/*
|
1299 |
* Now that we've located the extreme points, loop through them all
|
1300 |
* to see which are inside the rectangle.
|
1301 |
*/
|
1302 |
|
1303 |
inside = (points[0] > tRect[0]) && (points[0] < tRect[2])
|
1304 |
&& (points[1] > tRect[1]) && (points[1] < tRect[3]);
|
1305 |
for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) {
|
1306 |
newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2])
|
1307 |
&& (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]);
|
1308 |
if (newInside != inside) {
|
1309 |
return 0;
|
1310 |
}
|
1311 |
}
|
1312 |
|
1313 |
if (inside) {
|
1314 |
return 1;
|
1315 |
}
|
1316 |
|
1317 |
/*
|
1318 |
* So far, oval appears to be outside rectangle, but can't yet tell
|
1319 |
* for sure. Next, test each of the four sides of the rectangle
|
1320 |
* against the bounding region for the arc. If any intersections
|
1321 |
* are found, then return "overlapping". First, test against the
|
1322 |
* polygon(s) forming the sides of a chord or pie-slice.
|
1323 |
*/
|
1324 |
|
1325 |
if (arcPtr->style == PIESLICE_STYLE) {
|
1326 |
if (width >= 1.0) {
|
1327 |
if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
|
1328 |
rectPtr) != -1) {
|
1329 |
return 0;
|
1330 |
}
|
1331 |
if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
1332 |
PIE_OUTLINE2_PTS, rectPtr) != -1) {
|
1333 |
return 0;
|
1334 |
}
|
1335 |
} else {
|
1336 |
if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) ||
|
1337 |
(TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) {
|
1338 |
return 0;
|
1339 |
}
|
1340 |
}
|
1341 |
} else if (arcPtr->style == CHORD_STYLE) {
|
1342 |
if (width >= 1.0) {
|
1343 |
if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
|
1344 |
rectPtr) != -1) {
|
1345 |
return 0;
|
1346 |
}
|
1347 |
} else {
|
1348 |
if (TkLineToArea(arcPtr->center1, arcPtr->center2,
|
1349 |
rectPtr) != -1) {
|
1350 |
return 0;
|
1351 |
}
|
1352 |
}
|
1353 |
}
|
1354 |
|
1355 |
/*
|
1356 |
* Next check for overlap between each of the four sides and the
|
1357 |
* outer perimiter of the arc. If the arc isn't filled, then also
|
1358 |
* check the inner perimeter of the arc.
|
1359 |
*/
|
1360 |
|
1361 |
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
|
1362 |
arcPtr->extent)
|
1363 |
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
|
1364 |
arcPtr->start, arcPtr->extent)
|
1365 |
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
|
1366 |
arcPtr->start, arcPtr->extent)
|
1367 |
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
|
1368 |
arcPtr->start, arcPtr->extent)) {
|
1369 |
return 0;
|
1370 |
}
|
1371 |
if ((width > 1.0) && !filled) {
|
1372 |
rx -= width;
|
1373 |
ry -= width;
|
1374 |
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
|
1375 |
arcPtr->extent)
|
1376 |
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
|
1377 |
arcPtr->start, arcPtr->extent)
|
1378 |
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
|
1379 |
arcPtr->start, arcPtr->extent)
|
1380 |
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
|
1381 |
arcPtr->start, arcPtr->extent)) {
|
1382 |
return 0;
|
1383 |
}
|
1384 |
}
|
1385 |
|
1386 |
/*
|
1387 |
* The arc still appears to be totally disjoint from the rectangle,
|
1388 |
* but it's also possible that the rectangle is totally inside the arc.
|
1389 |
* Do one last check, which is to check one point of the rectangle
|
1390 |
* to see if it's inside the arc. If it is, we've got overlap. If
|
1391 |
* it isn't, the arc's really outside the rectangle.
|
1392 |
*/
|
1393 |
|
1394 |
if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) {
|
1395 |
return 0;
|
1396 |
}
|
1397 |
return -1;
|
1398 |
}
|
1399 |
|
1400 |
/*
|
1401 |
*--------------------------------------------------------------
|
1402 |
*
|
1403 |
* ScaleArc --
|
1404 |
*
|
1405 |
* This procedure is invoked to rescale an arc item.
|
1406 |
*
|
1407 |
* Results:
|
1408 |
* None.
|
1409 |
*
|
1410 |
* Side effects:
|
1411 |
* The arc referred to by itemPtr is rescaled so that the
|
1412 |
* following transformation is applied to all point
|
1413 |
* coordinates:
|
1414 |
* x' = originX + scaleX*(x-originX)
|
1415 |
* y' = originY + scaleY*(y-originY)
|
1416 |
*
|
1417 |
*--------------------------------------------------------------
|
1418 |
*/
|
1419 |
|
1420 |
static void
|
1421 |
ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY)
|
1422 |
Tk_Canvas canvas; /* Canvas containing arc. */
|
1423 |
Tk_Item *itemPtr; /* Arc to be scaled. */
|
1424 |
double originX, originY; /* Origin about which to scale rect. */
|
1425 |
double scaleX; /* Amount to scale in X direction. */
|
1426 |
double scaleY; /* Amount to scale in Y direction. */
|
1427 |
{
|
1428 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1429 |
|
1430 |
arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX);
|
1431 |
arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY);
|
1432 |
arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX);
|
1433 |
arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY);
|
1434 |
ComputeArcBbox(canvas, arcPtr);
|
1435 |
}
|
1436 |
|
1437 |
/*
|
1438 |
*--------------------------------------------------------------
|
1439 |
*
|
1440 |
* TranslateArc --
|
1441 |
*
|
1442 |
* This procedure is called to move an arc by a given amount.
|
1443 |
*
|
1444 |
* Results:
|
1445 |
* None.
|
1446 |
*
|
1447 |
* Side effects:
|
1448 |
* The position of the arc is offset by (xDelta, yDelta), and
|
1449 |
* the bounding box is updated in the generic part of the item
|
1450 |
* structure.
|
1451 |
*
|
1452 |
*--------------------------------------------------------------
|
1453 |
*/
|
1454 |
|
1455 |
static void
|
1456 |
TranslateArc(canvas, itemPtr, deltaX, deltaY)
|
1457 |
Tk_Canvas canvas; /* Canvas containing item. */
|
1458 |
Tk_Item *itemPtr; /* Item that is being moved. */
|
1459 |
double deltaX, deltaY; /* Amount by which item is to be
|
1460 |
* moved. */
|
1461 |
{
|
1462 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1463 |
|
1464 |
arcPtr->bbox[0] += deltaX;
|
1465 |
arcPtr->bbox[1] += deltaY;
|
1466 |
arcPtr->bbox[2] += deltaX;
|
1467 |
arcPtr->bbox[3] += deltaY;
|
1468 |
ComputeArcBbox(canvas, arcPtr);
|
1469 |
}
|
1470 |
|
1471 |
/*
|
1472 |
*--------------------------------------------------------------
|
1473 |
*
|
1474 |
* ComputeArcOutline --
|
1475 |
*
|
1476 |
* This procedure creates a polygon describing everything in
|
1477 |
* the outline for an arc except what's in the curved part.
|
1478 |
* For a "pie slice" arc this is a V-shaped chunk, and for
|
1479 |
* a "chord" arc this is a linear chunk (with cutaway corners).
|
1480 |
* For "arc" arcs, this stuff isn't relevant.
|
1481 |
*
|
1482 |
* Results:
|
1483 |
* None.
|
1484 |
*
|
1485 |
* Side effects:
|
1486 |
* The information at arcPtr->outlinePtr gets modified, and
|
1487 |
* storage for arcPtr->outlinePtr may be allocated or freed.
|
1488 |
*
|
1489 |
*--------------------------------------------------------------
|
1490 |
*/
|
1491 |
|
1492 |
static void
|
1493 |
ComputeArcOutline(canvas,arcPtr)
|
1494 |
Tk_Canvas canvas; /* Information about overall canvas. */
|
1495 |
ArcItem *arcPtr; /* Information about arc. */
|
1496 |
{
|
1497 |
double sin1, cos1, sin2, cos2, angle, width, halfWidth;
|
1498 |
double boxWidth, boxHeight;
|
1499 |
double vertex[2], corner1[2], corner2[2];
|
1500 |
double *outlinePtr;
|
1501 |
Tk_State state = arcPtr->header.state;
|
1502 |
|
1503 |
|
1504 |
/*
|
1505 |
* Make sure that the outlinePtr array is large enough to hold
|
1506 |
* either a chord or pie-slice outline.
|
1507 |
*/
|
1508 |
|
1509 |
if (arcPtr->numOutlinePoints == 0) {
|
1510 |
arcPtr->outlinePtr = (double *) ckalloc((unsigned)
|
1511 |
(26 * sizeof(double)));
|
1512 |
arcPtr->numOutlinePoints = 22;
|
1513 |
}
|
1514 |
outlinePtr = arcPtr->outlinePtr;
|
1515 |
|
1516 |
if(state == TK_STATE_NULL) {
|
1517 |
state = ((TkCanvas *)canvas)->canvas_state;
|
1518 |
}
|
1519 |
|
1520 |
/*
|
1521 |
* First compute the two points that lie at the centers of
|
1522 |
* the ends of the curved arc segment, which are marked with
|
1523 |
* X's in the figure below:
|
1524 |
*
|
1525 |
*
|
1526 |
* * * *
|
1527 |
* * *
|
1528 |
* * * * *
|
1529 |
* * * * *
|
1530 |
* * * * *
|
1531 |
* X * * X
|
1532 |
*
|
1533 |
* The code is tricky because the arc can be ovular in shape.
|
1534 |
* It computes the position for a unit circle, and then
|
1535 |
* scales to fit the shape of the arc's bounding box.
|
1536 |
*
|
1537 |
* Also, watch out because angles go counter-clockwise like you
|
1538 |
* might expect, but the y-coordinate system is inverted. To
|
1539 |
* handle this, just negate the angles in all the computations.
|
1540 |
*/
|
1541 |
|
1542 |
boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0];
|
1543 |
boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1];
|
1544 |
angle = -arcPtr->start*PI/180.0;
|
1545 |
sin1 = sin(angle);
|
1546 |
cos1 = cos(angle);
|
1547 |
angle -= arcPtr->extent*PI/180.0;
|
1548 |
sin2 = sin(angle);
|
1549 |
cos2 = cos(angle);
|
1550 |
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
|
1551 |
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
|
1552 |
arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0;
|
1553 |
arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0;
|
1554 |
arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0;
|
1555 |
arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0;
|
1556 |
|
1557 |
/*
|
1558 |
* Next compute the "outermost corners" of the arc, which are
|
1559 |
* marked with X's in the figure below:
|
1560 |
*
|
1561 |
* * * *
|
1562 |
* * *
|
1563 |
* * * * *
|
1564 |
* * * * *
|
1565 |
* X * * X
|
1566 |
* * *
|
1567 |
*
|
1568 |
* The code below is tricky because it has to handle eccentricity
|
1569 |
* in the shape of the oval. The key in the code below is to
|
1570 |
* realize that the slope of the line from arcPtr->center1 to corner1
|
1571 |
* is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2
|
1572 |
* and corner2. These formulas can be computed from the formula for
|
1573 |
* the oval.
|
1574 |
*/
|
1575 |
|
1576 |
width = arcPtr->outline.width;
|
1577 |
if (((TkCanvas *)canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
|
1578 |
if (arcPtr->outline.activeWidth>arcPtr->outline.width) {
|
1579 |
width = arcPtr->outline.activeWidth;
|
1580 |
}
|
1581 |
} else if (state==TK_STATE_DISABLED) {
|
1582 |
if (arcPtr->outline.disabledWidth>arcPtr->outline.width) {
|
1583 |
width = arcPtr->outline.disabledWidth;
|
1584 |
}
|
1585 |
}
|
1586 |
halfWidth = width/2.0;
|
1587 |
|
1588 |
if (((boxWidth*sin1) == 0.0) && ((boxHeight*cos1) == 0.0)) {
|
1589 |
angle = 0.0;
|
1590 |
} else {
|
1591 |
angle = atan2(boxWidth*sin1, boxHeight*cos1);
|
1592 |
}
|
1593 |
corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth;
|
1594 |
corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth;
|
1595 |
if (((boxWidth*sin2) == 0.0) && ((boxHeight*cos2) == 0.0)) {
|
1596 |
angle = 0.0;
|
1597 |
} else {
|
1598 |
angle = atan2(boxWidth*sin2, boxHeight*cos2);
|
1599 |
}
|
1600 |
corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth;
|
1601 |
corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth;
|
1602 |
|
1603 |
/*
|
1604 |
* For a chord outline, generate a six-sided polygon with three
|
1605 |
* points for each end of the chord. The first and third points
|
1606 |
* for each end are butt points generated on either side of the
|
1607 |
* center point. The second point is the corner point.
|
1608 |
*/
|
1609 |
|
1610 |
if (arcPtr->style == CHORD_STYLE) {
|
1611 |
outlinePtr[0] = outlinePtr[12] = corner1[0];
|
1612 |
outlinePtr[1] = outlinePtr[13] = corner1[1];
|
1613 |
TkGetButtPoints(arcPtr->center2, arcPtr->center1,
|
1614 |
width, 0, outlinePtr+10, outlinePtr+2);
|
1615 |
outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2]
|
1616 |
- arcPtr->center1[0];
|
1617 |
outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3]
|
1618 |
- arcPtr->center1[1];
|
1619 |
outlinePtr[6] = corner2[0];
|
1620 |
outlinePtr[7] = corner2[1];
|
1621 |
outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10]
|
1622 |
- arcPtr->center1[0];
|
1623 |
outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11]
|
1624 |
- arcPtr->center1[1];
|
1625 |
} else if (arcPtr->style == PIESLICE_STYLE) {
|
1626 |
/*
|
1627 |
* For pie slices, generate two polygons, one for each side
|
1628 |
* of the pie slice. The first arm has a shape like this,
|
1629 |
* where the center of the oval is X, arcPtr->center1 is at Y, and
|
1630 |
* corner1 is at Z:
|
1631 |
*
|
1632 |
* _____________________
|
1633 |
* | \
|
1634 |
* | \
|
1635 |
* X Y Z
|
1636 |
* | /
|
1637 |
* |_____________________/
|
1638 |
*
|
1639 |
*/
|
1640 |
|
1641 |
TkGetButtPoints(arcPtr->center1, vertex, width, 0,
|
1642 |
outlinePtr, outlinePtr+2);
|
1643 |
outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0];
|
1644 |
outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1];
|
1645 |
outlinePtr[6] = corner1[0];
|
1646 |
outlinePtr[7] = corner1[1];
|
1647 |
outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0];
|
1648 |
outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1];
|
1649 |
outlinePtr[10] = outlinePtr[0];
|
1650 |
outlinePtr[11] = outlinePtr[1];
|
1651 |
|
1652 |
/*
|
1653 |
* The second arm has a shape like this:
|
1654 |
*
|
1655 |
*
|
1656 |
* ______________________
|
1657 |
* / \
|
1658 |
* / \
|
1659 |
* Z Y X /
|
1660 |
* \ /
|
1661 |
* \______________________/
|
1662 |
*
|
1663 |
* Similar to above X is the center of the oval/circle, Y is
|
1664 |
* arcPtr->center2, and Z is corner2. The extra jog out to the left
|
1665 |
* of X is needed in or to produce a butted joint with the
|
1666 |
* first arm; the corner to the right of X is one of the
|
1667 |
* first two points of the first arm, depending on extent.
|
1668 |
*/
|
1669 |
|
1670 |
TkGetButtPoints(arcPtr->center2, vertex, width, 0,
|
1671 |
outlinePtr+12, outlinePtr+16);
|
1672 |
if ((arcPtr->extent > 180) ||
|
1673 |
((arcPtr->extent < 0) && (arcPtr->extent > -180))) {
|
1674 |
outlinePtr[14] = outlinePtr[0];
|
1675 |
outlinePtr[15] = outlinePtr[1];
|
1676 |
} else {
|
1677 |
outlinePtr[14] = outlinePtr[2];
|
1678 |
outlinePtr[15] = outlinePtr[3];
|
1679 |
}
|
1680 |
outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0];
|
1681 |
outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1];
|
1682 |
outlinePtr[20] = corner2[0];
|
1683 |
outlinePtr[21] = corner2[1];
|
1684 |
outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0];
|
1685 |
outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1];
|
1686 |
outlinePtr[24] = outlinePtr[12];
|
1687 |
outlinePtr[25] = outlinePtr[13];
|
1688 |
}
|
1689 |
}
|
1690 |
|
1691 |
/*
|
1692 |
*--------------------------------------------------------------
|
1693 |
*
|
1694 |
* HorizLineToArc --
|
1695 |
*
|
1696 |
* Determines whether a horizontal line segment intersects
|
1697 |
* a given arc.
|
1698 |
*
|
1699 |
* Results:
|
1700 |
* The return value is 1 if the given line intersects the
|
1701 |
* infinitely-thin arc section defined by rx, ry, start,
|
1702 |
* and extent, and 0 otherwise. Only the perimeter of the
|
1703 |
* arc is checked: interior areas (e.g. pie-slice or chord)
|
1704 |
* are not checked.
|
1705 |
*
|
1706 |
* Side effects:
|
1707 |
* None.
|
1708 |
*
|
1709 |
*--------------------------------------------------------------
|
1710 |
*/
|
1711 |
|
1712 |
static int
|
1713 |
HorizLineToArc(x1, x2, y, rx, ry, start, extent)
|
1714 |
double x1, x2; /* X-coords of endpoints of line segment.
|
1715 |
* X1 must be <= x2. */
|
1716 |
double y; /* Y-coordinate of line segment. */
|
1717 |
double rx, ry; /* These x- and y-radii define an oval
|
1718 |
* centered at the origin. */
|
1719 |
double start, extent; /* Angles that define extent of arc, in
|
1720 |
* the standard fashion for this module. */
|
1721 |
{
|
1722 |
double tmp;
|
1723 |
double tx, ty; /* Coordinates of intersection point in
|
1724 |
* transformed coordinate system. */
|
1725 |
double x;
|
1726 |
|
1727 |
/*
|
1728 |
* Compute the x-coordinate of one possible intersection point
|
1729 |
* between the arc and the line. Use a transformed coordinate
|
1730 |
* system where the oval is a unit circle centered at the origin.
|
1731 |
* Then scale back to get actual x-coordinate.
|
1732 |
*/
|
1733 |
|
1734 |
ty = y/ry;
|
1735 |
tmp = 1 - ty*ty;
|
1736 |
if (tmp < 0) {
|
1737 |
return 0;
|
1738 |
}
|
1739 |
tx = sqrt(tmp);
|
1740 |
x = tx*rx;
|
1741 |
|
1742 |
/*
|
1743 |
* Test both intersection points.
|
1744 |
*/
|
1745 |
|
1746 |
if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) {
|
1747 |
return 1;
|
1748 |
}
|
1749 |
if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) {
|
1750 |
return 1;
|
1751 |
}
|
1752 |
return 0;
|
1753 |
}
|
1754 |
|
1755 |
/*
|
1756 |
*--------------------------------------------------------------
|
1757 |
*
|
1758 |
* VertLineToArc --
|
1759 |
*
|
1760 |
* Determines whether a vertical line segment intersects
|
1761 |
* a given arc.
|
1762 |
*
|
1763 |
* Results:
|
1764 |
* The return value is 1 if the given line intersects the
|
1765 |
* infinitely-thin arc section defined by rx, ry, start,
|
1766 |
* and extent, and 0 otherwise. Only the perimeter of the
|
1767 |
* arc is checked: interior areas (e.g. pie-slice or chord)
|
1768 |
* are not checked.
|
1769 |
*
|
1770 |
* Side effects:
|
1771 |
* None.
|
1772 |
*
|
1773 |
*--------------------------------------------------------------
|
1774 |
*/
|
1775 |
|
1776 |
static int
|
1777 |
VertLineToArc(x, y1, y2, rx, ry, start, extent)
|
1778 |
double x; /* X-coordinate of line segment. */
|
1779 |
double y1, y2; /* Y-coords of endpoints of line segment.
|
1780 |
* Y1 must be <= y2. */
|
1781 |
double rx, ry; /* These x- and y-radii define an oval
|
1782 |
* centered at the origin. */
|
1783 |
double start, extent; /* Angles that define extent of arc, in
|
1784 |
* the standard fashion for this module. */
|
1785 |
{
|
1786 |
double tmp;
|
1787 |
double tx, ty; /* Coordinates of intersection point in
|
1788 |
* transformed coordinate system. */
|
1789 |
double y;
|
1790 |
|
1791 |
/*
|
1792 |
* Compute the y-coordinate of one possible intersection point
|
1793 |
* between the arc and the line. Use a transformed coordinate
|
1794 |
* system where the oval is a unit circle centered at the origin.
|
1795 |
* Then scale back to get actual y-coordinate.
|
1796 |
*/
|
1797 |
|
1798 |
tx = x/rx;
|
1799 |
tmp = 1 - tx*tx;
|
1800 |
if (tmp < 0) {
|
1801 |
return 0;
|
1802 |
}
|
1803 |
ty = sqrt(tmp);
|
1804 |
y = ty*ry;
|
1805 |
|
1806 |
/*
|
1807 |
* Test both intersection points.
|
1808 |
*/
|
1809 |
|
1810 |
if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) {
|
1811 |
return 1;
|
1812 |
}
|
1813 |
if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) {
|
1814 |
return 1;
|
1815 |
}
|
1816 |
return 0;
|
1817 |
}
|
1818 |
|
1819 |
/*
|
1820 |
*--------------------------------------------------------------
|
1821 |
*
|
1822 |
* AngleInRange --
|
1823 |
*
|
1824 |
* Determine whether the angle from the origin to a given
|
1825 |
* point is within a given range.
|
1826 |
*
|
1827 |
* Results:
|
1828 |
* The return value is 1 if the angle from (0,0) to (x,y)
|
1829 |
* is in the range given by start and extent, where angles
|
1830 |
* are interpreted in the standard way for ovals (meaning
|
1831 |
* backwards from normal interpretation). Otherwise the
|
1832 |
* return value is 0.
|
1833 |
*
|
1834 |
* Side effects:
|
1835 |
* None.
|
1836 |
*
|
1837 |
*--------------------------------------------------------------
|
1838 |
*/
|
1839 |
|
1840 |
static int
|
1841 |
AngleInRange(x, y, start, extent)
|
1842 |
double x, y; /* Coordinate of point; angle measured
|
1843 |
* from origin to here, relative to x-axis. */
|
1844 |
double start; /* First angle, degrees, >=0, <=360. */
|
1845 |
double extent; /* Size of arc in degrees >=-360, <=360. */
|
1846 |
{
|
1847 |
double diff;
|
1848 |
|
1849 |
if ((x == 0.0) && (y == 0.0)) {
|
1850 |
return 1;
|
1851 |
}
|
1852 |
diff = -atan2(y, x);
|
1853 |
diff = diff*(180.0/PI) - start;
|
1854 |
while (diff > 360.0) {
|
1855 |
diff -= 360.0;
|
1856 |
}
|
1857 |
while (diff < 0.0) {
|
1858 |
diff += 360.0;
|
1859 |
}
|
1860 |
if (extent >= 0) {
|
1861 |
return diff <= extent;
|
1862 |
}
|
1863 |
return (diff-360.0) >= extent;
|
1864 |
}
|
1865 |
|
1866 |
/*
|
1867 |
*--------------------------------------------------------------
|
1868 |
*
|
1869 |
* ArcToPostscript --
|
1870 |
*
|
1871 |
* This procedure is called to generate Postscript for
|
1872 |
* arc items.
|
1873 |
*
|
1874 |
* Results:
|
1875 |
* The return value is a standard Tcl result. If an error
|
1876 |
* occurs in generating Postscript then an error message is
|
1877 |
* left in the interp's result, replacing whatever used
|
1878 |
* to be there. If no error occurs, then Postscript for the
|
1879 |
* item is appended to the result.
|
1880 |
*
|
1881 |
* Side effects:
|
1882 |
* None.
|
1883 |
*
|
1884 |
*--------------------------------------------------------------
|
1885 |
*/
|
1886 |
|
1887 |
static int
|
1888 |
ArcToPostscript(interp, canvas, itemPtr, prepass)
|
1889 |
Tcl_Interp *interp; /* Leave Postscript or error message
|
1890 |
* here. */
|
1891 |
Tk_Canvas canvas; /* Information about overall canvas. */
|
1892 |
Tk_Item *itemPtr; /* Item for which Postscript is
|
1893 |
* wanted. */
|
1894 |
int prepass; /* 1 means this is a prepass to
|
1895 |
* collect font information; 0 means
|
1896 |
* final Postscript is being created. */
|
1897 |
{
|
1898 |
ArcItem *arcPtr = (ArcItem *) itemPtr;
|
1899 |
char buffer[400];
|
1900 |
double y1, y2, ang1, ang2;
|
1901 |
XColor *color;
|
1902 |
Pixmap stipple;
|
1903 |
XColor *fillColor;
|
1904 |
Pixmap fillStipple;
|
1905 |
Tk_State state = itemPtr->state;
|
1906 |
|
1907 |
y1 = Tk_CanvasPsY(canvas, arcPtr->bbox[1]);
|
1908 |
y2 = Tk_CanvasPsY(canvas, arcPtr->bbox[3]);
|
1909 |
ang1 = arcPtr->start;
|
1910 |
ang2 = ang1 + arcPtr->extent;
|
1911 |
if (ang2 < ang1) {
|
1912 |
ang1 = ang2;
|
1913 |
ang2 = arcPtr->start;
|
1914 |
}
|
1915 |
|
1916 |
if(state == TK_STATE_NULL) {
|
1917 |
state = ((TkCanvas *)canvas)->canvas_state;
|
1918 |
}
|
1919 |
color = arcPtr->outline.color;
|
1920 |
stipple = arcPtr->outline.stipple;
|
1921 |
fillColor = arcPtr->fillColor;
|
1922 |
fillStipple = arcPtr->fillStipple;
|
1923 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) {
|
1924 |
if (arcPtr->outline.activeColor!=NULL) {
|
1925 |
color = arcPtr->outline.activeColor;
|
1926 |
}
|
1927 |
if (arcPtr->outline.activeStipple!=None) {
|
1928 |
stipple = arcPtr->outline.activeStipple;
|
1929 |
}
|
1930 |
if (arcPtr->activeFillColor!=NULL) {
|
1931 |
fillColor = arcPtr->activeFillColor;
|
1932 |
}
|
1933 |
if (arcPtr->activeFillStipple!=None) {
|
1934 |
fillStipple = arcPtr->activeFillStipple;
|
1935 |
}
|
1936 |
} else if (state==TK_STATE_DISABLED) {
|
1937 |
if (arcPtr->outline.disabledColor!=NULL) {
|
1938 |
color = arcPtr->outline.disabledColor;
|
1939 |
}
|
1940 |
if (arcPtr->outline.disabledStipple!=None) {
|
1941 |
stipple = arcPtr->outline.disabledStipple;
|
1942 |
}
|
1943 |
if (arcPtr->disabledFillColor!=NULL) {
|
1944 |
fillColor = arcPtr->disabledFillColor;
|
1945 |
}
|
1946 |
if (arcPtr->disabledFillStipple!=None) {
|
1947 |
fillStipple = arcPtr->disabledFillStipple;
|
1948 |
}
|
1949 |
}
|
1950 |
|
1951 |
/*
|
1952 |
* If the arc is filled, output Postscript for the interior region
|
1953 |
* of the arc.
|
1954 |
*/
|
1955 |
|
1956 |
if (arcPtr->fillGC != None) {
|
1957 |
sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n",
|
1958 |
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
|
1959 |
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
|
1960 |
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1961 |
if (arcPtr->style == CHORD_STYLE) {
|
1962 |
sprintf(buffer, "0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
|
1963 |
ang1, ang2);
|
1964 |
} else {
|
1965 |
sprintf(buffer,
|
1966 |
"0 0 moveto 0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
|
1967 |
ang1, ang2);
|
1968 |
}
|
1969 |
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1970 |
if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) {
|
1971 |
return TCL_ERROR;
|
1972 |
};
|
1973 |
if (fillStipple != None) {
|
1974 |
Tcl_AppendResult(interp, "clip ", (char *) NULL);
|
1975 |
if (Tk_CanvasPsStipple(interp, canvas, fillStipple)
|
1976 |
!= TCL_OK) {
|
1977 |
return TCL_ERROR;
|
1978 |
}
|
1979 |
if (arcPtr->outline.gc != None) {
|
1980 |
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL);
|
1981 |
}
|
1982 |
} else {
|
1983 |
Tcl_AppendResult(interp, "fill\n", (char *) NULL);
|
1984 |
}
|
1985 |
}
|
1986 |
|
1987 |
/*
|
1988 |
* If there's an outline for the arc, draw it.
|
1989 |
*/
|
1990 |
|
1991 |
if (arcPtr->outline.gc != None) {
|
1992 |
sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n",
|
1993 |
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
|
1994 |
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
|
1995 |
Tcl_AppendResult(interp, buffer, (char *) NULL);
|
1996 |
sprintf(buffer, "0 0 1 %.15g %.15g", ang1, ang2);
|
1997 |
Tcl_AppendResult(interp, buffer,
|
1998 |
" arc\nsetmatrix\n0 setlinecap\n", (char *) NULL);
|
1999 |
if (Tk_CanvasPsOutline(canvas, itemPtr,
|
2000 |
&(arcPtr->outline)) != TCL_OK) {
|
2001 |
return TCL_ERROR;
|
2002 |
}
|
2003 |
if (arcPtr->style != ARC_STYLE) {
|
2004 |
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL);
|
2005 |
if (arcPtr->style == CHORD_STYLE) {
|
2006 |
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
|
2007 |
CHORD_OUTLINE_PTS);
|
2008 |
} else {
|
2009 |
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
|
2010 |
PIE_OUTLINE1_PTS);
|
2011 |
if (Tk_CanvasPsColor(interp, canvas, color)
|
2012 |
!= TCL_OK) {
|
2013 |
return TCL_ERROR;
|
2014 |
}
|
2015 |
if (stipple != None) {
|
2016 |
Tcl_AppendResult(interp, "clip ", (char *) NULL);
|
2017 |
if (Tk_CanvasPsStipple(interp, canvas,
|
2018 |
stipple) != TCL_OK) {
|
2019 |
return TCL_ERROR;
|
2020 |
}
|
2021 |
} else {
|
2022 |
Tcl_AppendResult(interp, "fill\n", (char *) NULL);
|
2023 |
}
|
2024 |
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL);
|
2025 |
Tk_CanvasPsPath(interp, canvas,
|
2026 |
arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
|
2027 |
PIE_OUTLINE2_PTS);
|
2028 |
}
|
2029 |
if (Tk_CanvasPsColor(interp, canvas, color)
|
2030 |
!= TCL_OK) {
|
2031 |
return TCL_ERROR;
|
2032 |
}
|
2033 |
if (stipple != None) {
|
2034 |
Tcl_AppendResult(interp, "clip ", (char *) NULL);
|
2035 |
if (Tk_CanvasPsStipple(interp, canvas,
|
2036 |
stipple) != TCL_OK) {
|
2037 |
return TCL_ERROR;
|
2038 |
}
|
2039 |
} else {
|
2040 |
Tcl_AppendResult(interp, "fill\n", (char *) NULL);
|
2041 |
}
|
2042 |
}
|
2043 |
}
|
2044 |
|
2045 |
return TCL_OK;
|
2046 |
}
|
2047 |
|
2048 |
/*
|
2049 |
*--------------------------------------------------------------
|
2050 |
*
|
2051 |
* StyleParseProc --
|
2052 |
*
|
2053 |
* This procedure is invoked during option processing to handle
|
2054 |
* the "-style" option.
|
2055 |
*
|
2056 |
* Results:
|
2057 |
* A standard Tcl return value.
|
2058 |
*
|
2059 |
* Side effects:
|
2060 |
* The state for a given item gets replaced by the state
|
2061 |
* indicated in the value argument.
|
2062 |
*
|
2063 |
*--------------------------------------------------------------
|
2064 |
*/
|
2065 |
|
2066 |
static int
|
2067 |
StyleParseProc(clientData, interp, tkwin, value, widgRec, offset)
|
2068 |
ClientData clientData; /* some flags.*/
|
2069 |
Tcl_Interp *interp; /* Used for reporting errors. */
|
2070 |
Tk_Window tkwin; /* Window containing canvas widget. */
|
2071 |
CONST char *value; /* Value of option. */
|
2072 |
char *widgRec; /* Pointer to record for item. */
|
2073 |
int offset; /* Offset into item. */
|
2074 |
{
|
2075 |
int c;
|
2076 |
size_t length;
|
2077 |
|
2078 |
register Style *stylePtr = (Style *) (widgRec + offset);
|
2079 |
|
2080 |
if(value == NULL || *value == 0) {
|
2081 |
*stylePtr = PIESLICE_STYLE;
|
2082 |
return TCL_OK;
|
2083 |
}
|
2084 |
|
2085 |
c = value[0];
|
2086 |
length = strlen(value);
|
2087 |
|
2088 |
if ((c == 'a') && (strncmp(value, "arc", length) == 0)) {
|
2089 |
*stylePtr = ARC_STYLE;
|
2090 |
return TCL_OK;
|
2091 |
}
|
2092 |
if ((c == 'c') && (strncmp(value, "chord", length) == 0)) {
|
2093 |
*stylePtr = CHORD_STYLE;
|
2094 |
return TCL_OK;
|
2095 |
}
|
2096 |
if ((c == 'p') && (strncmp(value, "pieslice", length) == 0)) {
|
2097 |
*stylePtr = PIESLICE_STYLE;
|
2098 |
return TCL_OK;
|
2099 |
}
|
2100 |
|
2101 |
Tcl_AppendResult(interp, "bad -style option \"",
|
2102 |
value, "\": must be arc, chord, or pieslice",
|
2103 |
(char *) NULL);
|
2104 |
*stylePtr = PIESLICE_STYLE;
|
2105 |
return TCL_ERROR;
|
2106 |
}
|
2107 |
|
2108 |
/*
|
2109 |
*--------------------------------------------------------------
|
2110 |
*
|
2111 |
* StylePrintProc --
|
2112 |
*
|
2113 |
* This procedure is invoked by the Tk configuration code
|
2114 |
* to produce a printable string for the "-style"
|
2115 |
* configuration option.
|
2116 |
*
|
2117 |
* Results:
|
2118 |
* The return value is a string describing the state for
|
2119 |
* the item referred to by "widgRec". In addition, *freeProcPtr
|
2120 |
* is filled in with the address of a procedure to call to free
|
2121 |
* the result string when it's no longer needed (or NULL to
|
2122 |
* indicate that the string doesn't need to be freed).
|
2123 |
*
|
2124 |
* Side effects:
|
2125 |
* None.
|
2126 |
*
|
2127 |
*--------------------------------------------------------------
|
2128 |
*/
|
2129 |
|
2130 |
static char *
|
2131 |
StylePrintProc(clientData, tkwin, widgRec, offset, freeProcPtr)
|
2132 |
ClientData clientData; /* Ignored. */
|
2133 |
Tk_Window tkwin; /* Ignored. */
|
2134 |
char *widgRec; /* Pointer to record for item. */
|
2135 |
int offset; /* Offset into item. */
|
2136 |
Tcl_FreeProc **freeProcPtr; /* Pointer to variable to fill in with
|
2137 |
* information about how to reclaim
|
2138 |
* storage for return string. */
|
2139 |
{
|
2140 |
register Style *stylePtr = (Style *) (widgRec + offset);
|
2141 |
|
2142 |
if (*stylePtr==ARC_STYLE) {
|
2143 |
return "arc";
|
2144 |
} else if (*stylePtr==CHORD_STYLE) {
|
2145 |
return "chord";
|
2146 |
} else {
|
2147 |
return "pieslice";
|
2148 |
}
|
2149 |
}
|
2150 |
|
2151 |
/* End of tkcanvarc.c */
|