1 |
/* $Header$ */ |
2 |
|
3 |
/* |
4 |
* tkCanvArc.c -- |
5 |
* |
6 |
* This file implements arc items for canvas widgets. |
7 |
* |
8 |
* Copyright (c) 1992-1994 The Regents of the University of California. |
9 |
* Copyright (c) 1994-1997 Sun Microsystems, Inc. |
10 |
* |
11 |
* See the file "license.terms" for information on usage and redistribution |
12 |
* of this file, and for a DISCLAIMER OF ALL WARRANTIES. |
13 |
* |
14 |
* RCS: @(#) $Id: tkcanvarc.c,v 1.1.1.1 2001/06/13 04:55:11 dtashley Exp $ |
15 |
*/ |
16 |
|
17 |
#include <stdio.h> |
18 |
#include "tkPort.h" |
19 |
#include "tkInt.h" |
20 |
#include "tkCanvas.h" |
21 |
/* |
22 |
* The structure below defines the record for each arc item. |
23 |
*/ |
24 |
|
25 |
typedef enum { |
26 |
PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE |
27 |
} Style; |
28 |
|
29 |
typedef struct ArcItem { |
30 |
Tk_Item header; /* Generic stuff that's the same for all |
31 |
* types. MUST BE FIRST IN STRUCTURE. */ |
32 |
Tk_Outline outline; /* Outline structure */ |
33 |
double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding |
34 |
* box for oval of which arc is a piece. */ |
35 |
double start; /* Angle at which arc begins, in degrees |
36 |
* between 0 and 360. */ |
37 |
double extent; /* Extent of arc (angular distance from |
38 |
* start to end of arc) in degrees between |
39 |
* -360 and 360. */ |
40 |
double *outlinePtr; /* Points to (x,y) coordinates for points |
41 |
* that define one or two closed polygons |
42 |
* representing the portion of the outline |
43 |
* that isn't part of the arc (the V-shape |
44 |
* for a pie slice or a line-like segment |
45 |
* for a chord). Malloc'ed. */ |
46 |
int numOutlinePoints; /* Number of points at outlinePtr. Zero |
47 |
* means no space allocated. */ |
48 |
Tk_TSOffset tsoffset; |
49 |
XColor *fillColor; /* Color for filling arc (used for drawing |
50 |
* outline too when style is "arc"). NULL |
51 |
* means don't fill arc. */ |
52 |
XColor *activeFillColor; /* Color for filling arc (used for drawing |
53 |
* outline too when style is "arc" and state |
54 |
* is "active"). NULL means use fillColor. */ |
55 |
XColor *disabledFillColor; /* Color for filling arc (used for drawing |
56 |
* outline too when style is "arc" and state |
57 |
* is "disabled". NULL means use fillColor */ |
58 |
Pixmap fillStipple; /* Stipple bitmap for filling item. */ |
59 |
Pixmap activeFillStipple; /* Stipple bitmap for filling item if state |
60 |
* is active. */ |
61 |
Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state |
62 |
* is disabled. */ |
63 |
Style style; /* How to draw arc: arc, chord, or pieslice. */ |
64 |
GC fillGC; /* Graphics context for filling item. */ |
65 |
double center1[2]; /* Coordinates of center of arc outline at |
66 |
* start (see ComputeArcOutline). */ |
67 |
double center2[2]; /* Coordinates of center of arc outline at |
68 |
* start+extent (see ComputeArcOutline). */ |
69 |
} ArcItem; |
70 |
|
71 |
/* |
72 |
* The definitions below define the sizes of the polygons used to |
73 |
* display outline information for various styles of arcs: |
74 |
*/ |
75 |
|
76 |
#define CHORD_OUTLINE_PTS 7 |
77 |
#define PIE_OUTLINE1_PTS 6 |
78 |
#define PIE_OUTLINE2_PTS 7 |
79 |
|
80 |
/* |
81 |
* Information used for parsing configuration specs: |
82 |
*/ |
83 |
|
84 |
static int StyleParseProc _ANSI_ARGS_(( |
85 |
ClientData clientData, Tcl_Interp *interp, |
86 |
Tk_Window tkwin, CONST char *value, |
87 |
char *widgRec, int offset)); |
88 |
static char * StylePrintProc _ANSI_ARGS_(( |
89 |
ClientData clientData, Tk_Window tkwin, |
90 |
char *widgRec, int offset, |
91 |
Tcl_FreeProc **freeProcPtr)); |
92 |
|
93 |
static Tk_CustomOption stateOption = { |
94 |
(Tk_OptionParseProc *) TkStateParseProc, |
95 |
TkStatePrintProc, (ClientData) 2 |
96 |
}; |
97 |
static Tk_CustomOption styleOption = { |
98 |
(Tk_OptionParseProc *) StyleParseProc, |
99 |
StylePrintProc, (ClientData) NULL |
100 |
}; |
101 |
static Tk_CustomOption tagsOption = { |
102 |
(Tk_OptionParseProc *) Tk_CanvasTagsParseProc, |
103 |
Tk_CanvasTagsPrintProc, (ClientData) NULL |
104 |
}; |
105 |
static Tk_CustomOption dashOption = { |
106 |
(Tk_OptionParseProc *) TkCanvasDashParseProc, |
107 |
TkCanvasDashPrintProc, (ClientData) NULL |
108 |
}; |
109 |
static Tk_CustomOption offsetOption = { |
110 |
(Tk_OptionParseProc *) TkOffsetParseProc, |
111 |
TkOffsetPrintProc, (ClientData) (TK_OFFSET_RELATIVE) |
112 |
}; |
113 |
static Tk_CustomOption pixelOption = { |
114 |
(Tk_OptionParseProc *) TkPixelParseProc, |
115 |
TkPixelPrintProc, (ClientData) NULL |
116 |
}; |
117 |
|
118 |
static Tk_ConfigSpec configSpecs[] = { |
119 |
{TK_CONFIG_CUSTOM, "-activedash", (char *) NULL, (char *) NULL, |
120 |
(char *) NULL, Tk_Offset(ArcItem, outline.activeDash), |
121 |
TK_CONFIG_NULL_OK, &dashOption}, |
122 |
{TK_CONFIG_COLOR, "-activefill", (char *) NULL, (char *) NULL, |
123 |
(char *) NULL, Tk_Offset(ArcItem, activeFillColor), |
124 |
TK_CONFIG_NULL_OK}, |
125 |
{TK_CONFIG_COLOR, "-activeoutline", (char *) NULL, (char *) NULL, |
126 |
(char *) NULL, Tk_Offset(ArcItem, outline.activeColor), |
127 |
TK_CONFIG_NULL_OK}, |
128 |
{TK_CONFIG_BITMAP, "-activeoutlinestipple", (char *) NULL, (char *) NULL, |
129 |
(char *) NULL, Tk_Offset(ArcItem, outline.activeStipple), |
130 |
TK_CONFIG_NULL_OK}, |
131 |
{TK_CONFIG_BITMAP, "-activestipple", (char *) NULL, (char *) NULL, |
132 |
(char *) NULL, Tk_Offset(ArcItem, activeFillStipple), |
133 |
TK_CONFIG_NULL_OK}, |
134 |
{TK_CONFIG_CUSTOM, "-activewidth", (char *) NULL, (char *) NULL, |
135 |
"0.0", Tk_Offset(ArcItem, outline.activeWidth), |
136 |
TK_CONFIG_DONT_SET_DEFAULT, &pixelOption}, |
137 |
{TK_CONFIG_CUSTOM, "-dash", (char *) NULL, (char *) NULL, |
138 |
(char *) NULL, Tk_Offset(ArcItem, outline.dash), |
139 |
TK_CONFIG_NULL_OK, &dashOption}, |
140 |
{TK_CONFIG_PIXELS, "-dashoffset", (char *) NULL, (char *) NULL, |
141 |
"0", Tk_Offset(ArcItem, outline.offset), TK_CONFIG_DONT_SET_DEFAULT}, |
142 |
{TK_CONFIG_CUSTOM, "-disableddash", (char *) NULL, (char *) NULL, |
143 |
(char *) NULL, Tk_Offset(ArcItem, outline.disabledDash), |
144 |
TK_CONFIG_NULL_OK, &dashOption}, |
145 |
{TK_CONFIG_COLOR, "-disabledfill", (char *) NULL, (char *) NULL, |
146 |
(char *) NULL, Tk_Offset(ArcItem, disabledFillColor), |
147 |
TK_CONFIG_NULL_OK}, |
148 |
{TK_CONFIG_COLOR, "-disabledoutline", (char *) NULL, (char *) NULL, |
149 |
(char *) NULL, Tk_Offset(ArcItem, outline.disabledColor), |
150 |
TK_CONFIG_NULL_OK}, |
151 |
{TK_CONFIG_BITMAP, "-disabledoutlinestipple", (char *) NULL, (char *) NULL, |
152 |
(char *) NULL, Tk_Offset(ArcItem, outline.disabledStipple), |
153 |
TK_CONFIG_NULL_OK}, |
154 |
{TK_CONFIG_BITMAP, "-disabledstipple", (char *) NULL, (char *) NULL, |
155 |
(char *) NULL, Tk_Offset(ArcItem, disabledFillStipple), |
156 |
TK_CONFIG_NULL_OK}, |
157 |
{TK_CONFIG_CUSTOM, "-disabledwidth", (char *) NULL, (char *) NULL, |
158 |
"0.0", Tk_Offset(ArcItem, outline.disabledWidth), |
159 |
TK_CONFIG_DONT_SET_DEFAULT, &pixelOption}, |
160 |
{TK_CONFIG_DOUBLE, "-extent", (char *) NULL, (char *) NULL, |
161 |
"90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT}, |
162 |
{TK_CONFIG_COLOR, "-fill", (char *) NULL, (char *) NULL, |
163 |
(char *) NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK}, |
164 |
{TK_CONFIG_CUSTOM, "-offset", (char *) NULL, (char *) NULL, |
165 |
"0,0", Tk_Offset(ArcItem, tsoffset), |
166 |
TK_CONFIG_DONT_SET_DEFAULT, &offsetOption}, |
167 |
{TK_CONFIG_COLOR, "-outline", (char *) NULL, (char *) NULL, |
168 |
"black", Tk_Offset(ArcItem, outline.color), TK_CONFIG_NULL_OK}, |
169 |
{TK_CONFIG_CUSTOM, "-outlineoffset", (char *) NULL, (char *) NULL, |
170 |
"0,0", Tk_Offset(ArcItem, outline.tsoffset), |
171 |
TK_CONFIG_DONT_SET_DEFAULT, &offsetOption}, |
172 |
{TK_CONFIG_BITMAP, "-outlinestipple", (char *) NULL, (char *) NULL, |
173 |
(char *) NULL, Tk_Offset(ArcItem, outline.stipple), |
174 |
TK_CONFIG_NULL_OK}, |
175 |
{TK_CONFIG_DOUBLE, "-start", (char *) NULL, (char *) NULL, |
176 |
"0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT}, |
177 |
{TK_CONFIG_CUSTOM, "-state", (char *) NULL, (char *) NULL, |
178 |
(char *) NULL, Tk_Offset(Tk_Item, state), TK_CONFIG_NULL_OK, |
179 |
&stateOption}, |
180 |
{TK_CONFIG_BITMAP, "-stipple", (char *) NULL, (char *) NULL, |
181 |
(char *) NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK}, |
182 |
{TK_CONFIG_CUSTOM, "-style", (char *) NULL, (char *) NULL, |
183 |
(char *) NULL, Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT, |
184 |
&styleOption}, |
185 |
{TK_CONFIG_CUSTOM, "-tags", (char *) NULL, (char *) NULL, |
186 |
(char *) NULL, 0, TK_CONFIG_NULL_OK, &tagsOption}, |
187 |
{TK_CONFIG_CUSTOM, "-width", (char *) NULL, (char *) NULL, |
188 |
"1.0", Tk_Offset(ArcItem, outline.width), TK_CONFIG_DONT_SET_DEFAULT, |
189 |
&pixelOption}, |
190 |
{TK_CONFIG_END, (char *) NULL, (char *) NULL, (char *) NULL, |
191 |
(char *) NULL, 0, 0} |
192 |
}; |
193 |
|
194 |
/* |
195 |
* Prototypes for procedures defined in this file: |
196 |
*/ |
197 |
|
198 |
static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas canvas, |
199 |
ArcItem *arcPtr)); |
200 |
static int ConfigureArc _ANSI_ARGS_((Tcl_Interp *interp, |
201 |
Tk_Canvas canvas, Tk_Item *itemPtr, int argc, |
202 |
Tcl_Obj *CONST argv[], int flags)); |
203 |
static int CreateArc _ANSI_ARGS_((Tcl_Interp *interp, |
204 |
Tk_Canvas canvas, struct Tk_Item *itemPtr, |
205 |
int argc, Tcl_Obj *CONST argv[])); |
206 |
static void DeleteArc _ANSI_ARGS_((Tk_Canvas canvas, |
207 |
Tk_Item *itemPtr, Display *display)); |
208 |
static void DisplayArc _ANSI_ARGS_((Tk_Canvas canvas, |
209 |
Tk_Item *itemPtr, Display *display, Drawable dst, |
210 |
int x, int y, int width, int height)); |
211 |
static int ArcCoords _ANSI_ARGS_((Tcl_Interp *interp, |
212 |
Tk_Canvas canvas, Tk_Item *itemPtr, int argc, |
213 |
Tcl_Obj *CONST argv[])); |
214 |
static int ArcToArea _ANSI_ARGS_((Tk_Canvas canvas, |
215 |
Tk_Item *itemPtr, double *rectPtr)); |
216 |
static double ArcToPoint _ANSI_ARGS_((Tk_Canvas canvas, |
217 |
Tk_Item *itemPtr, double *coordPtr)); |
218 |
static int ArcToPostscript _ANSI_ARGS_((Tcl_Interp *interp, |
219 |
Tk_Canvas canvas, Tk_Item *itemPtr, int prepass)); |
220 |
static void ScaleArc _ANSI_ARGS_((Tk_Canvas canvas, |
221 |
Tk_Item *itemPtr, double originX, double originY, |
222 |
double scaleX, double scaleY)); |
223 |
static void TranslateArc _ANSI_ARGS_((Tk_Canvas canvas, |
224 |
Tk_Item *itemPtr, double deltaX, double deltaY)); |
225 |
static int AngleInRange _ANSI_ARGS_((double x, double y, |
226 |
double start, double extent)); |
227 |
static void ComputeArcOutline _ANSI_ARGS_((Tk_Canvas canvas, |
228 |
ArcItem *arcPtr)); |
229 |
static int HorizLineToArc _ANSI_ARGS_((double x1, double x2, |
230 |
double y, double rx, double ry, |
231 |
double start, double extent)); |
232 |
static int VertLineToArc _ANSI_ARGS_((double x, double y1, |
233 |
double y2, double rx, double ry, |
234 |
double start, double extent)); |
235 |
|
236 |
/* |
237 |
* The structures below defines the arc item types by means of procedures |
238 |
* that can be invoked by generic item code. |
239 |
*/ |
240 |
|
241 |
Tk_ItemType tkArcType = { |
242 |
"arc", /* name */ |
243 |
sizeof(ArcItem), /* itemSize */ |
244 |
CreateArc, /* createProc */ |
245 |
configSpecs, /* configSpecs */ |
246 |
ConfigureArc, /* configureProc */ |
247 |
ArcCoords, /* coordProc */ |
248 |
DeleteArc, /* deleteProc */ |
249 |
DisplayArc, /* displayProc */ |
250 |
TK_CONFIG_OBJS, /* flags */ |
251 |
ArcToPoint, /* pointProc */ |
252 |
ArcToArea, /* areaProc */ |
253 |
ArcToPostscript, /* postscriptProc */ |
254 |
ScaleArc, /* scaleProc */ |
255 |
TranslateArc, /* translateProc */ |
256 |
(Tk_ItemIndexProc *) NULL, /* indexProc */ |
257 |
(Tk_ItemCursorProc *) NULL, /* icursorProc */ |
258 |
(Tk_ItemSelectionProc *) NULL, /* selectionProc */ |
259 |
(Tk_ItemInsertProc *) NULL, /* insertProc */ |
260 |
(Tk_ItemDCharsProc *) NULL, /* dTextProc */ |
261 |
(Tk_ItemType *) NULL, /* nextPtr */ |
262 |
}; |
263 |
|
264 |
#ifndef PI |
265 |
# define PI 3.14159265358979323846 |
266 |
#endif |
267 |
|
268 |
|
269 |
/* |
270 |
*-------------------------------------------------------------- |
271 |
* |
272 |
* CreateArc -- |
273 |
* |
274 |
* This procedure is invoked to create a new arc item in |
275 |
* a canvas. |
276 |
* |
277 |
* Results: |
278 |
* A standard Tcl return value. If an error occurred in |
279 |
* creating the item, then an error message is left in |
280 |
* the interp's result; in this case itemPtr is |
281 |
* left uninitialized, so it can be safely freed by the |
282 |
* caller. |
283 |
* |
284 |
* Side effects: |
285 |
* A new arc item is created. |
286 |
* |
287 |
*-------------------------------------------------------------- |
288 |
*/ |
289 |
|
290 |
static int |
291 |
CreateArc(interp, canvas, itemPtr, argc, argv) |
292 |
Tcl_Interp *interp; /* Interpreter for error reporting. */ |
293 |
Tk_Canvas canvas; /* Canvas to hold new item. */ |
294 |
Tk_Item *itemPtr; /* Record to hold new item; header |
295 |
* has been initialized by caller. */ |
296 |
int argc; /* Number of arguments in argv. */ |
297 |
Tcl_Obj *CONST argv[]; /* Arguments describing arc. */ |
298 |
{ |
299 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
300 |
int i; |
301 |
|
302 |
if (argc==1) { |
303 |
i = 1; |
304 |
} else { |
305 |
char *arg = Tcl_GetStringFromObj(argv[1], NULL); |
306 |
if ((argc>1) && (arg[0] == '-') |
307 |
&& (arg[1] >= 'a') && (arg[1] <= 'z')) { |
308 |
i = 1; |
309 |
} else { |
310 |
i = 4; |
311 |
} |
312 |
} |
313 |
if (argc < i) { |
314 |
Tcl_AppendResult(interp, "wrong # args: should be \"", |
315 |
Tk_PathName(Tk_CanvasTkwin(canvas)), " create ", |
316 |
itemPtr->typePtr->name, " x1 y1 x2 y2 ?options?\"", |
317 |
(char *) NULL); |
318 |
return TCL_ERROR; |
319 |
} |
320 |
|
321 |
/* |
322 |
* Carry out initialization that is needed in order to clean |
323 |
* up after errors during the the remainder of this procedure. |
324 |
*/ |
325 |
|
326 |
Tk_CreateOutline(&(arcPtr->outline)); |
327 |
arcPtr->start = 0; |
328 |
arcPtr->extent = 90; |
329 |
arcPtr->outlinePtr = NULL; |
330 |
arcPtr->numOutlinePoints = 0; |
331 |
arcPtr->tsoffset.flags = 0; |
332 |
arcPtr->tsoffset.xoffset = 0; |
333 |
arcPtr->tsoffset.yoffset = 0; |
334 |
arcPtr->fillColor = NULL; |
335 |
arcPtr->activeFillColor = NULL; |
336 |
arcPtr->disabledFillColor = NULL; |
337 |
arcPtr->fillStipple = None; |
338 |
arcPtr->activeFillStipple = None; |
339 |
arcPtr->disabledFillStipple = None; |
340 |
arcPtr->style = PIESLICE_STYLE; |
341 |
arcPtr->fillGC = None; |
342 |
|
343 |
/* |
344 |
* Process the arguments to fill in the item record. |
345 |
*/ |
346 |
|
347 |
if ((ArcCoords(interp, canvas, itemPtr, i, argv) != TCL_OK)) { |
348 |
goto error; |
349 |
} |
350 |
if (ConfigureArc(interp, canvas, itemPtr, argc-4, argv+4, 0) == TCL_OK) { |
351 |
return TCL_OK; |
352 |
} |
353 |
error: |
354 |
DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas))); |
355 |
return TCL_ERROR; |
356 |
} |
357 |
|
358 |
/* |
359 |
*-------------------------------------------------------------- |
360 |
* |
361 |
* ArcCoords -- |
362 |
* |
363 |
* This procedure is invoked to process the "coords" widget |
364 |
* command on arcs. See the user documentation for details |
365 |
* on what it does. |
366 |
* |
367 |
* Results: |
368 |
* Returns TCL_OK or TCL_ERROR, and sets the interp's result. |
369 |
* |
370 |
* Side effects: |
371 |
* The coordinates for the given item may be changed. |
372 |
* |
373 |
*-------------------------------------------------------------- |
374 |
*/ |
375 |
|
376 |
static int |
377 |
ArcCoords(interp, canvas, itemPtr, argc, argv) |
378 |
Tcl_Interp *interp; /* Used for error reporting. */ |
379 |
Tk_Canvas canvas; /* Canvas containing item. */ |
380 |
Tk_Item *itemPtr; /* Item whose coordinates are to be |
381 |
* read or modified. */ |
382 |
int argc; /* Number of coordinates supplied in |
383 |
* argv. */ |
384 |
Tcl_Obj *CONST argv[]; /* Array of coordinates: x1, y1, |
385 |
* x2, y2, ... */ |
386 |
{ |
387 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
388 |
|
389 |
if (argc == 0) { |
390 |
Tcl_Obj *obj = Tcl_NewObj(); |
391 |
Tcl_Obj *subobj = Tcl_NewDoubleObj(arcPtr->bbox[0]); |
392 |
Tcl_ListObjAppendElement(interp, obj, subobj); |
393 |
subobj = Tcl_NewDoubleObj(arcPtr->bbox[1]); |
394 |
Tcl_ListObjAppendElement(interp, obj, subobj); |
395 |
subobj = Tcl_NewDoubleObj(arcPtr->bbox[2]); |
396 |
Tcl_ListObjAppendElement(interp, obj, subobj); |
397 |
subobj = Tcl_NewDoubleObj(arcPtr->bbox[3]); |
398 |
Tcl_ListObjAppendElement(interp, obj, subobj); |
399 |
Tcl_SetObjResult(interp, obj); |
400 |
} else if ((argc == 1)||(argc == 4)) { |
401 |
if (argc==1) { |
402 |
if (Tcl_ListObjGetElements(interp, argv[0], &argc, |
403 |
(Tcl_Obj ***) &argv) != TCL_OK) { |
404 |
return TCL_ERROR; |
405 |
} else if (argc != 4) { |
406 |
char buf[64 + TCL_INTEGER_SPACE]; |
407 |
|
408 |
sprintf(buf, "wrong # coordinates: expected 4, got %d", argc); |
409 |
Tcl_SetResult(interp, buf, TCL_VOLATILE); |
410 |
return TCL_ERROR; |
411 |
} |
412 |
} |
413 |
if ((Tk_CanvasGetCoordFromObj(interp, canvas, argv[0], |
414 |
&arcPtr->bbox[0]) != TCL_OK) |
415 |
|| (Tk_CanvasGetCoordFromObj(interp, canvas, argv[1], |
416 |
&arcPtr->bbox[1]) != TCL_OK) |
417 |
|| (Tk_CanvasGetCoordFromObj(interp, canvas, argv[2], |
418 |
&arcPtr->bbox[2]) != TCL_OK) |
419 |
|| (Tk_CanvasGetCoordFromObj(interp, canvas, argv[3], |
420 |
&arcPtr->bbox[3]) != TCL_OK)) { |
421 |
return TCL_ERROR; |
422 |
} |
423 |
ComputeArcBbox(canvas, arcPtr); |
424 |
} else { |
425 |
char buf[64 + TCL_INTEGER_SPACE]; |
426 |
|
427 |
sprintf(buf, "wrong # coordinates: expected 0 or 4, got %d", argc); |
428 |
Tcl_SetResult(interp, buf, TCL_VOLATILE); |
429 |
return TCL_ERROR; |
430 |
} |
431 |
return TCL_OK; |
432 |
} |
433 |
|
434 |
/* |
435 |
*-------------------------------------------------------------- |
436 |
* |
437 |
* ConfigureArc -- |
438 |
* |
439 |
* This procedure is invoked to configure various aspects |
440 |
* of a arc item, such as its outline and fill colors. |
441 |
* |
442 |
* Results: |
443 |
* A standard Tcl result code. If an error occurs, then |
444 |
* an error message is left in the interp's result. |
445 |
* |
446 |
* Side effects: |
447 |
* Configuration information, such as colors and stipple |
448 |
* patterns, may be set for itemPtr. |
449 |
* |
450 |
*-------------------------------------------------------------- |
451 |
*/ |
452 |
|
453 |
static int |
454 |
ConfigureArc(interp, canvas, itemPtr, argc, argv, flags) |
455 |
Tcl_Interp *interp; /* Used for error reporting. */ |
456 |
Tk_Canvas canvas; /* Canvas containing itemPtr. */ |
457 |
Tk_Item *itemPtr; /* Arc item to reconfigure. */ |
458 |
int argc; /* Number of elements in argv. */ |
459 |
Tcl_Obj *CONST argv[]; /* Arguments describing things to configure. */ |
460 |
int flags; /* Flags to pass to Tk_ConfigureWidget. */ |
461 |
{ |
462 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
463 |
XGCValues gcValues; |
464 |
GC newGC; |
465 |
unsigned long mask; |
466 |
int i; |
467 |
Tk_Window tkwin; |
468 |
Tk_TSOffset *tsoffset; |
469 |
XColor *color; |
470 |
Pixmap stipple; |
471 |
Tk_State state; |
472 |
|
473 |
tkwin = Tk_CanvasTkwin(canvas); |
474 |
if (Tk_ConfigureWidget(interp, tkwin, configSpecs, argc, (char **) argv, |
475 |
(char *) arcPtr, flags|TK_CONFIG_OBJS) != TCL_OK) { |
476 |
return TCL_ERROR; |
477 |
} |
478 |
|
479 |
state = itemPtr->state; |
480 |
|
481 |
/* |
482 |
* A few of the options require additional processing, such as |
483 |
* style and graphics contexts. |
484 |
*/ |
485 |
|
486 |
if (arcPtr->outline.activeWidth > arcPtr->outline.width || |
487 |
arcPtr->outline.activeDash.number != 0 || |
488 |
arcPtr->outline.activeColor != NULL || |
489 |
arcPtr->outline.activeStipple != None || |
490 |
arcPtr->activeFillColor != NULL || |
491 |
arcPtr->activeFillStipple != None) { |
492 |
itemPtr->redraw_flags |= TK_ITEM_STATE_DEPENDANT; |
493 |
} else { |
494 |
itemPtr->redraw_flags &= ~TK_ITEM_STATE_DEPENDANT; |
495 |
} |
496 |
|
497 |
tsoffset = &arcPtr->outline.tsoffset; |
498 |
flags = tsoffset->flags; |
499 |
if (flags & TK_OFFSET_LEFT) { |
500 |
tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5); |
501 |
} else if (flags & TK_OFFSET_CENTER) { |
502 |
tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2); |
503 |
} else if (flags & TK_OFFSET_RIGHT) { |
504 |
tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5); |
505 |
} |
506 |
if (flags & TK_OFFSET_TOP) { |
507 |
tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5); |
508 |
} else if (flags & TK_OFFSET_MIDDLE) { |
509 |
tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2); |
510 |
} else if (flags & TK_OFFSET_BOTTOM) { |
511 |
tsoffset->yoffset = (int) (arcPtr->bbox[2] + 0.5); |
512 |
} |
513 |
|
514 |
i = (int) (arcPtr->start/360.0); |
515 |
arcPtr->start -= i*360.0; |
516 |
if (arcPtr->start < 0) { |
517 |
arcPtr->start += 360.0; |
518 |
} |
519 |
i = (int) (arcPtr->extent/360.0); |
520 |
arcPtr->extent -= i*360.0; |
521 |
|
522 |
mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, |
523 |
&(arcPtr->outline)); |
524 |
if (mask) { |
525 |
gcValues.cap_style = CapButt; |
526 |
mask |= GCCapStyle; |
527 |
newGC = Tk_GetGC(tkwin, mask, &gcValues); |
528 |
} else { |
529 |
newGC = None; |
530 |
} |
531 |
if (arcPtr->outline.gc != None) { |
532 |
Tk_FreeGC(Tk_Display(tkwin), arcPtr->outline.gc); |
533 |
} |
534 |
arcPtr->outline.gc = newGC; |
535 |
|
536 |
if(state == TK_STATE_NULL) { |
537 |
state = ((TkCanvas *)canvas)->canvas_state; |
538 |
} |
539 |
if (state==TK_STATE_HIDDEN) { |
540 |
ComputeArcBbox(canvas, arcPtr); |
541 |
return TCL_OK; |
542 |
} |
543 |
|
544 |
color = arcPtr->fillColor; |
545 |
stipple = arcPtr->fillStipple; |
546 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) { |
547 |
if (arcPtr->activeFillColor!=NULL) { |
548 |
color = arcPtr->activeFillColor; |
549 |
} |
550 |
if (arcPtr->activeFillStipple!=None) { |
551 |
stipple = arcPtr->activeFillStipple; |
552 |
} |
553 |
} else if (state==TK_STATE_DISABLED) { |
554 |
if (arcPtr->disabledFillColor!=NULL) { |
555 |
color = arcPtr->disabledFillColor; |
556 |
} |
557 |
if (arcPtr->disabledFillStipple!=None) { |
558 |
stipple = arcPtr->disabledFillStipple; |
559 |
} |
560 |
} |
561 |
|
562 |
if (arcPtr->style == ARC_STYLE) { |
563 |
newGC = None; |
564 |
} else if (color == NULL) { |
565 |
newGC = None; |
566 |
} else { |
567 |
gcValues.foreground = color->pixel; |
568 |
if (arcPtr->style == CHORD_STYLE) { |
569 |
gcValues.arc_mode = ArcChord; |
570 |
} else { |
571 |
gcValues.arc_mode = ArcPieSlice; |
572 |
} |
573 |
mask = GCForeground|GCArcMode; |
574 |
if (stipple != None) { |
575 |
gcValues.stipple = stipple; |
576 |
gcValues.fill_style = FillStippled; |
577 |
mask |= GCStipple|GCFillStyle; |
578 |
} |
579 |
newGC = Tk_GetGC(tkwin, mask, &gcValues); |
580 |
} |
581 |
if (arcPtr->fillGC != None) { |
582 |
Tk_FreeGC(Tk_Display(tkwin), arcPtr->fillGC); |
583 |
} |
584 |
arcPtr->fillGC = newGC; |
585 |
|
586 |
tsoffset = &arcPtr->tsoffset; |
587 |
flags = tsoffset->flags; |
588 |
if (flags & TK_OFFSET_LEFT) { |
589 |
tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5); |
590 |
} else if (flags & TK_OFFSET_CENTER) { |
591 |
tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2); |
592 |
} else if (flags & TK_OFFSET_RIGHT) { |
593 |
tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5); |
594 |
} |
595 |
if (flags & TK_OFFSET_TOP) { |
596 |
tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5); |
597 |
} else if (flags & TK_OFFSET_MIDDLE) { |
598 |
tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2); |
599 |
} else if (flags & TK_OFFSET_BOTTOM) { |
600 |
tsoffset->yoffset = (int) (arcPtr->bbox[3] + 0.5); |
601 |
} |
602 |
|
603 |
ComputeArcBbox(canvas, arcPtr); |
604 |
return TCL_OK; |
605 |
} |
606 |
|
607 |
/* |
608 |
*-------------------------------------------------------------- |
609 |
* |
610 |
* DeleteArc -- |
611 |
* |
612 |
* This procedure is called to clean up the data structure |
613 |
* associated with a arc item. |
614 |
* |
615 |
* Results: |
616 |
* None. |
617 |
* |
618 |
* Side effects: |
619 |
* Resources associated with itemPtr are released. |
620 |
* |
621 |
*-------------------------------------------------------------- |
622 |
*/ |
623 |
|
624 |
static void |
625 |
DeleteArc(canvas, itemPtr, display) |
626 |
Tk_Canvas canvas; /* Info about overall canvas. */ |
627 |
Tk_Item *itemPtr; /* Item that is being deleted. */ |
628 |
Display *display; /* Display containing window for |
629 |
* canvas. */ |
630 |
{ |
631 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
632 |
|
633 |
Tk_DeleteOutline(display, &(arcPtr->outline)); |
634 |
if (arcPtr->numOutlinePoints != 0) { |
635 |
ckfree((char *) arcPtr->outlinePtr); |
636 |
} |
637 |
if (arcPtr->fillColor != NULL) { |
638 |
Tk_FreeColor(arcPtr->fillColor); |
639 |
} |
640 |
if (arcPtr->activeFillColor != NULL) { |
641 |
Tk_FreeColor(arcPtr->activeFillColor); |
642 |
} |
643 |
if (arcPtr->disabledFillColor != NULL) { |
644 |
Tk_FreeColor(arcPtr->disabledFillColor); |
645 |
} |
646 |
if (arcPtr->fillStipple != None) { |
647 |
Tk_FreeBitmap(display, arcPtr->fillStipple); |
648 |
} |
649 |
if (arcPtr->activeFillStipple != None) { |
650 |
Tk_FreeBitmap(display, arcPtr->activeFillStipple); |
651 |
} |
652 |
if (arcPtr->disabledFillStipple != None) { |
653 |
Tk_FreeBitmap(display, arcPtr->disabledFillStipple); |
654 |
} |
655 |
if (arcPtr->fillGC != None) { |
656 |
Tk_FreeGC(display, arcPtr->fillGC); |
657 |
} |
658 |
} |
659 |
|
660 |
/* |
661 |
*-------------------------------------------------------------- |
662 |
* |
663 |
* ComputeArcBbox -- |
664 |
* |
665 |
* This procedure is invoked to compute the bounding box of |
666 |
* all the pixels that may be drawn as part of an arc. |
667 |
* |
668 |
* Results: |
669 |
* None. |
670 |
* |
671 |
* Side effects: |
672 |
* The fields x1, y1, x2, and y2 are updated in the header |
673 |
* for itemPtr. |
674 |
* |
675 |
*-------------------------------------------------------------- |
676 |
*/ |
677 |
|
678 |
/* ARGSUSED */ |
679 |
static void |
680 |
ComputeArcBbox(canvas, arcPtr) |
681 |
Tk_Canvas canvas; /* Canvas that contains item. */ |
682 |
ArcItem *arcPtr; /* Item whose bbox is to be |
683 |
* recomputed. */ |
684 |
{ |
685 |
double tmp, center[2], point[2]; |
686 |
double width; |
687 |
Tk_State state = arcPtr->header.state; |
688 |
|
689 |
if(state == TK_STATE_NULL) { |
690 |
state = ((TkCanvas *)canvas)->canvas_state; |
691 |
} |
692 |
|
693 |
width = arcPtr->outline.width; |
694 |
if (width < 1.0) { |
695 |
width = 1.0; |
696 |
} |
697 |
if (state==TK_STATE_HIDDEN) { |
698 |
arcPtr->header.x1 = arcPtr->header.x2 = |
699 |
arcPtr->header.y1 = arcPtr->header.y2 = -1; |
700 |
return; |
701 |
} else if (((TkCanvas *)canvas)->currentItemPtr == (Tk_Item *) arcPtr) { |
702 |
if (arcPtr->outline.activeWidth>width) { |
703 |
width = arcPtr->outline.activeWidth; |
704 |
} |
705 |
} else if (state==TK_STATE_DISABLED) { |
706 |
if (arcPtr->outline.disabledWidth>0) { |
707 |
width = arcPtr->outline.disabledWidth; |
708 |
} |
709 |
} |
710 |
|
711 |
/* |
712 |
* Make sure that the first coordinates are the lowest ones. |
713 |
*/ |
714 |
|
715 |
if (arcPtr->bbox[1] > arcPtr->bbox[3]) { |
716 |
double tmp; |
717 |
tmp = arcPtr->bbox[3]; |
718 |
arcPtr->bbox[3] = arcPtr->bbox[1]; |
719 |
arcPtr->bbox[1] = tmp; |
720 |
} |
721 |
if (arcPtr->bbox[0] > arcPtr->bbox[2]) { |
722 |
double tmp; |
723 |
tmp = arcPtr->bbox[2]; |
724 |
arcPtr->bbox[2] = arcPtr->bbox[0]; |
725 |
arcPtr->bbox[0] = tmp; |
726 |
} |
727 |
|
728 |
ComputeArcOutline(canvas,arcPtr); |
729 |
|
730 |
/* |
731 |
* To compute the bounding box, start with the the bbox formed |
732 |
* by the two endpoints of the arc. Then add in the center of |
733 |
* the arc's oval (if relevant) and the 3-o'clock, 6-o'clock, |
734 |
* 9-o'clock, and 12-o'clock positions, if they are relevant. |
735 |
*/ |
736 |
|
737 |
arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0]; |
738 |
arcPtr->header.y1 = arcPtr->header.y2 = (int) arcPtr->center1[1]; |
739 |
TkIncludePoint((Tk_Item *) arcPtr, arcPtr->center2); |
740 |
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2; |
741 |
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2; |
742 |
if (arcPtr->style == PIESLICE_STYLE) { |
743 |
TkIncludePoint((Tk_Item *) arcPtr, center); |
744 |
} |
745 |
|
746 |
tmp = -arcPtr->start; |
747 |
if (tmp < 0) { |
748 |
tmp += 360.0; |
749 |
} |
750 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
751 |
point[0] = arcPtr->bbox[2]; |
752 |
point[1] = center[1]; |
753 |
TkIncludePoint((Tk_Item *) arcPtr, point); |
754 |
} |
755 |
tmp = 90.0 - arcPtr->start; |
756 |
if (tmp < 0) { |
757 |
tmp += 360.0; |
758 |
} |
759 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
760 |
point[0] = center[0]; |
761 |
point[1] = arcPtr->bbox[1]; |
762 |
TkIncludePoint((Tk_Item *) arcPtr, point); |
763 |
} |
764 |
tmp = 180.0 - arcPtr->start; |
765 |
if (tmp < 0) { |
766 |
tmp += 360.0; |
767 |
} |
768 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
769 |
point[0] = arcPtr->bbox[0]; |
770 |
point[1] = center[1]; |
771 |
TkIncludePoint((Tk_Item *) arcPtr, point); |
772 |
} |
773 |
tmp = 270.0 - arcPtr->start; |
774 |
if (tmp < 0) { |
775 |
tmp += 360.0; |
776 |
} |
777 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
778 |
point[0] = center[0]; |
779 |
point[1] = arcPtr->bbox[3]; |
780 |
TkIncludePoint((Tk_Item *) arcPtr, point); |
781 |
} |
782 |
|
783 |
/* |
784 |
* Lastly, expand by the width of the arc (if the arc's outline is |
785 |
* being drawn) and add one extra pixel just for safety. |
786 |
*/ |
787 |
|
788 |
if (arcPtr->outline.gc == None) { |
789 |
tmp = 1; |
790 |
} else { |
791 |
tmp = (int) ((width + 1.0)/2.0 + 1); |
792 |
} |
793 |
arcPtr->header.x1 -= (int) tmp; |
794 |
arcPtr->header.y1 -= (int) tmp; |
795 |
arcPtr->header.x2 += (int) tmp; |
796 |
arcPtr->header.y2 += (int) tmp; |
797 |
} |
798 |
|
799 |
/* |
800 |
*-------------------------------------------------------------- |
801 |
* |
802 |
* DisplayArc -- |
803 |
* |
804 |
* This procedure is invoked to draw an arc item in a given |
805 |
* drawable. |
806 |
* |
807 |
* Results: |
808 |
* None. |
809 |
* |
810 |
* Side effects: |
811 |
* ItemPtr is drawn in drawable using the transformation |
812 |
* information in canvas. |
813 |
* |
814 |
*-------------------------------------------------------------- |
815 |
*/ |
816 |
|
817 |
static void |
818 |
DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) |
819 |
Tk_Canvas canvas; /* Canvas that contains item. */ |
820 |
Tk_Item *itemPtr; /* Item to be displayed. */ |
821 |
Display *display; /* Display on which to draw item. */ |
822 |
Drawable drawable; /* Pixmap or window in which to draw |
823 |
* item. */ |
824 |
int x, y, width, height; /* Describes region of canvas that |
825 |
* must be redisplayed (not used). */ |
826 |
{ |
827 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
828 |
short x1, y1, x2, y2; |
829 |
int start, extent, dashnumber; |
830 |
double lineWidth; |
831 |
Tk_State state = itemPtr->state; |
832 |
Pixmap stipple; |
833 |
|
834 |
if(state == TK_STATE_NULL) { |
835 |
state = ((TkCanvas *)canvas)->canvas_state; |
836 |
} |
837 |
lineWidth = arcPtr->outline.width; |
838 |
if (lineWidth < 1.0) { |
839 |
lineWidth = 1.0; |
840 |
} |
841 |
dashnumber = arcPtr->outline.dash.number; |
842 |
stipple = arcPtr->fillStipple; |
843 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) { |
844 |
if (arcPtr->outline.activeWidth>lineWidth) { |
845 |
lineWidth = arcPtr->outline.activeWidth; |
846 |
} |
847 |
if (arcPtr->outline.activeDash.number != 0) { |
848 |
dashnumber = arcPtr->outline.activeDash.number; |
849 |
} |
850 |
if (arcPtr->activeFillStipple != None) { |
851 |
stipple = arcPtr->activeFillStipple; |
852 |
} |
853 |
} else if (state==TK_STATE_DISABLED) { |
854 |
if (arcPtr->outline.disabledWidth > 0) { |
855 |
lineWidth = arcPtr->outline.disabledWidth; |
856 |
} |
857 |
if (arcPtr->outline.disabledDash.number != 0) { |
858 |
dashnumber = arcPtr->outline.disabledDash.number; |
859 |
} |
860 |
if (arcPtr->disabledFillStipple != None) { |
861 |
stipple = arcPtr->disabledFillStipple; |
862 |
} |
863 |
} |
864 |
|
865 |
/* |
866 |
* Compute the screen coordinates of the bounding box for the item, |
867 |
* plus integer values for the angles. |
868 |
*/ |
869 |
|
870 |
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1], |
871 |
&x1, &y1); |
872 |
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[2], arcPtr->bbox[3], |
873 |
&x2, &y2); |
874 |
if (x2 <= x1) { |
875 |
x2 = x1+1; |
876 |
} |
877 |
if (y2 <= y1) { |
878 |
y2 = y1+1; |
879 |
} |
880 |
start = (int) ((64*arcPtr->start) + 0.5); |
881 |
extent = (int) ((64*arcPtr->extent) + 0.5); |
882 |
|
883 |
/* |
884 |
* Display filled arc first (if wanted), then outline. If the extent |
885 |
* is zero then don't invoke XFillArc or XDrawArc, since this causes |
886 |
* some window servers to crash and should be a no-op anyway. |
887 |
*/ |
888 |
|
889 |
if ((arcPtr->fillGC != None) && (extent != 0)) { |
890 |
if (stipple != None) { |
891 |
int w=0; int h=0; |
892 |
Tk_TSOffset *tsoffset = &arcPtr->tsoffset; |
893 |
int flags = tsoffset->flags; |
894 |
if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) { |
895 |
Tk_SizeOfBitmap(display, stipple, &w, &h); |
896 |
if (flags & TK_OFFSET_CENTER) { |
897 |
w /= 2; |
898 |
} else { |
899 |
w = 0; |
900 |
} |
901 |
if (flags & TK_OFFSET_MIDDLE) { |
902 |
h /= 2; |
903 |
} else { |
904 |
h = 0; |
905 |
} |
906 |
} |
907 |
tsoffset->xoffset -= w; |
908 |
tsoffset->yoffset -= h; |
909 |
Tk_CanvasSetOffset(canvas, arcPtr->fillGC, tsoffset); |
910 |
if (tsoffset) { |
911 |
tsoffset->xoffset += w; |
912 |
tsoffset->yoffset += h; |
913 |
} |
914 |
} |
915 |
XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (unsigned) (x2-x1), |
916 |
(unsigned) (y2-y1), start, extent); |
917 |
if (stipple != None) { |
918 |
XSetTSOrigin(display, arcPtr->fillGC, 0, 0); |
919 |
} |
920 |
} |
921 |
if (arcPtr->outline.gc != None) { |
922 |
Tk_ChangeOutlineGC(canvas, itemPtr, &(arcPtr->outline)); |
923 |
|
924 |
if (extent != 0) { |
925 |
XDrawArc(display, drawable, arcPtr->outline.gc, x1, y1, |
926 |
(unsigned) (x2-x1), (unsigned) (y2-y1), start, extent); |
927 |
} |
928 |
|
929 |
/* |
930 |
* If the outline width is very thin, don't use polygons to draw |
931 |
* the linear parts of the outline (this often results in nothing |
932 |
* being displayed); just draw lines instead. The same is done if |
933 |
* the outline is dashed, because then polygons don't work. |
934 |
*/ |
935 |
|
936 |
if (lineWidth < 1.5 || dashnumber != 0) { |
937 |
Tk_CanvasDrawableCoords(canvas, arcPtr->center1[0], |
938 |
arcPtr->center1[1], &x1, &y1); |
939 |
Tk_CanvasDrawableCoords(canvas, arcPtr->center2[0], |
940 |
arcPtr->center2[1], &x2, &y2); |
941 |
|
942 |
if (arcPtr->style == CHORD_STYLE) { |
943 |
XDrawLine(display, drawable, arcPtr->outline.gc, |
944 |
x1, y1, x2, y2); |
945 |
} else if (arcPtr->style == PIESLICE_STYLE) { |
946 |
short cx, cy; |
947 |
|
948 |
Tk_CanvasDrawableCoords(canvas, |
949 |
(arcPtr->bbox[0] + arcPtr->bbox[2])/2.0, |
950 |
(arcPtr->bbox[1] + arcPtr->bbox[3])/2.0, &cx, &cy); |
951 |
XDrawLine(display, drawable, arcPtr->outline.gc, |
952 |
cx, cy, x1, y1); |
953 |
XDrawLine(display, drawable, arcPtr->outline.gc, |
954 |
cx, cy, x2, y2); |
955 |
} |
956 |
} else { |
957 |
if (arcPtr->style == CHORD_STYLE) { |
958 |
TkFillPolygon(canvas, arcPtr->outlinePtr, CHORD_OUTLINE_PTS, |
959 |
display, drawable, arcPtr->outline.gc, None); |
960 |
} else if (arcPtr->style == PIESLICE_STYLE) { |
961 |
TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS, |
962 |
display, drawable, arcPtr->outline.gc, None); |
963 |
TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
964 |
PIE_OUTLINE2_PTS, display, drawable, arcPtr->outline.gc, |
965 |
None); |
966 |
} |
967 |
} |
968 |
|
969 |
Tk_ResetOutlineGC(canvas, itemPtr, &(arcPtr->outline)); |
970 |
} |
971 |
} |
972 |
|
973 |
/* |
974 |
*-------------------------------------------------------------- |
975 |
* |
976 |
* ArcToPoint -- |
977 |
* |
978 |
* Computes the distance from a given point to a given |
979 |
* arc, in canvas units. |
980 |
* |
981 |
* Results: |
982 |
* The return value is 0 if the point whose x and y coordinates |
983 |
* are coordPtr[0] and coordPtr[1] is inside the arc. If the |
984 |
* point isn't inside the arc then the return value is the |
985 |
* distance from the point to the arc. If itemPtr is filled, |
986 |
* then anywhere in the interior is considered "inside"; if |
987 |
* itemPtr isn't filled, then "inside" means only the area |
988 |
* occupied by the outline. |
989 |
* |
990 |
* Side effects: |
991 |
* None. |
992 |
* |
993 |
*-------------------------------------------------------------- |
994 |
*/ |
995 |
|
996 |
/* ARGSUSED */ |
997 |
static double |
998 |
ArcToPoint(canvas, itemPtr, pointPtr) |
999 |
Tk_Canvas canvas; /* Canvas containing item. */ |
1000 |
Tk_Item *itemPtr; /* Item to check against point. */ |
1001 |
double *pointPtr; /* Pointer to x and y coordinates. */ |
1002 |
{ |
1003 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
1004 |
double vertex[2], pointAngle, diff, dist, newDist; |
1005 |
double poly[8], polyDist, width, t1, t2; |
1006 |
int filled, angleInRange; |
1007 |
Tk_State state = itemPtr->state; |
1008 |
|
1009 |
if(state == TK_STATE_NULL) { |
1010 |
state = ((TkCanvas *)canvas)->canvas_state; |
1011 |
} |
1012 |
|
1013 |
width = (double) arcPtr->outline.width; |
1014 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) { |
1015 |
if (arcPtr->outline.activeWidth>width) { |
1016 |
width = (double) arcPtr->outline.activeWidth; |
1017 |
} |
1018 |
} else if (state == TK_STATE_DISABLED) { |
1019 |
if (arcPtr->outline.disabledWidth>0) { |
1020 |
width = (double) arcPtr->outline.disabledWidth; |
1021 |
} |
1022 |
} |
1023 |
|
1024 |
/* |
1025 |
* See if the point is within the angular range of the arc. |
1026 |
* Remember, X angles are backwards from the way we'd normally |
1027 |
* think of them. Also, compensate for any eccentricity of |
1028 |
* the oval. |
1029 |
*/ |
1030 |
|
1031 |
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; |
1032 |
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; |
1033 |
t1 = arcPtr->bbox[3] - arcPtr->bbox[1]; |
1034 |
if (t1 != 0.0) { |
1035 |
t1 = (pointPtr[1] - vertex[1]) / t1; |
1036 |
} |
1037 |
t2 = arcPtr->bbox[2] - arcPtr->bbox[0]; |
1038 |
if (t2 != 0.0) { |
1039 |
t2 = (pointPtr[0] - vertex[0]) / t2; |
1040 |
} |
1041 |
if ((t1 == 0.0) && (t2 == 0.0)) { |
1042 |
pointAngle = 0; |
1043 |
} else { |
1044 |
pointAngle = -atan2(t1, t2)*180/PI; |
1045 |
} |
1046 |
diff = pointAngle - arcPtr->start; |
1047 |
diff -= ((int) (diff/360.0) * 360.0); |
1048 |
if (diff < 0) { |
1049 |
diff += 360.0; |
1050 |
} |
1051 |
angleInRange = (diff <= arcPtr->extent) || |
1052 |
((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent)); |
1053 |
|
1054 |
/* |
1055 |
* Now perform different tests depending on what kind of arc |
1056 |
* we're dealing with. |
1057 |
*/ |
1058 |
|
1059 |
if (arcPtr->style == ARC_STYLE) { |
1060 |
if (angleInRange) { |
1061 |
return TkOvalToPoint(arcPtr->bbox, width, |
1062 |
0, pointPtr); |
1063 |
} |
1064 |
dist = hypot(pointPtr[0] - arcPtr->center1[0], |
1065 |
pointPtr[1] - arcPtr->center1[1]); |
1066 |
newDist = hypot(pointPtr[0] - arcPtr->center2[0], |
1067 |
pointPtr[1] - arcPtr->center2[1]); |
1068 |
if (newDist < dist) { |
1069 |
return newDist; |
1070 |
} |
1071 |
return dist; |
1072 |
} |
1073 |
|
1074 |
if ((arcPtr->fillGC != None) || (arcPtr->outline.gc == None)) { |
1075 |
filled = 1; |
1076 |
} else { |
1077 |
filled = 0; |
1078 |
} |
1079 |
if (arcPtr->outline.gc == None) { |
1080 |
width = 0.0; |
1081 |
} |
1082 |
|
1083 |
if (arcPtr->style == PIESLICE_STYLE) { |
1084 |
if (width > 1.0) { |
1085 |
dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, |
1086 |
pointPtr); |
1087 |
newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
1088 |
PIE_OUTLINE2_PTS, pointPtr); |
1089 |
} else { |
1090 |
dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr); |
1091 |
newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr); |
1092 |
} |
1093 |
if (newDist < dist) { |
1094 |
dist = newDist; |
1095 |
} |
1096 |
if (angleInRange) { |
1097 |
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr); |
1098 |
if (newDist < dist) { |
1099 |
dist = newDist; |
1100 |
} |
1101 |
} |
1102 |
return dist; |
1103 |
} |
1104 |
|
1105 |
/* |
1106 |
* This is a chord-style arc. We have to deal specially with the |
1107 |
* triangular piece that represents the difference between a |
1108 |
* chord-style arc and a pie-slice arc (for small angles this piece |
1109 |
* is excluded here where it would be included for pie slices; |
1110 |
* for large angles the piece is included here but would be |
1111 |
* excluded for pie slices). |
1112 |
*/ |
1113 |
|
1114 |
if (width > 1.0) { |
1115 |
dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, |
1116 |
pointPtr); |
1117 |
} else { |
1118 |
dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr); |
1119 |
} |
1120 |
poly[0] = poly[6] = vertex[0]; |
1121 |
poly[1] = poly[7] = vertex[1]; |
1122 |
poly[2] = arcPtr->center1[0]; |
1123 |
poly[3] = arcPtr->center1[1]; |
1124 |
poly[4] = arcPtr->center2[0]; |
1125 |
poly[5] = arcPtr->center2[1]; |
1126 |
polyDist = TkPolygonToPoint(poly, 4, pointPtr); |
1127 |
if (angleInRange) { |
1128 |
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0) |
1129 |
|| (polyDist > 0.0)) { |
1130 |
newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr); |
1131 |
if (newDist < dist) { |
1132 |
dist = newDist; |
1133 |
} |
1134 |
} |
1135 |
} else { |
1136 |
if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) { |
1137 |
if (filled && (polyDist < dist)) { |
1138 |
dist = polyDist; |
1139 |
} |
1140 |
} |
1141 |
} |
1142 |
return dist; |
1143 |
} |
1144 |
|
1145 |
/* |
1146 |
*-------------------------------------------------------------- |
1147 |
* |
1148 |
* ArcToArea -- |
1149 |
* |
1150 |
* This procedure is called to determine whether an item |
1151 |
* lies entirely inside, entirely outside, or overlapping |
1152 |
* a given area. |
1153 |
* |
1154 |
* Results: |
1155 |
* -1 is returned if the item is entirely outside the area |
1156 |
* given by rectPtr, 0 if it overlaps, and 1 if it is entirely |
1157 |
* inside the given area. |
1158 |
* |
1159 |
* Side effects: |
1160 |
* None. |
1161 |
* |
1162 |
*-------------------------------------------------------------- |
1163 |
*/ |
1164 |
|
1165 |
/* ARGSUSED */ |
1166 |
static int |
1167 |
ArcToArea(canvas, itemPtr, rectPtr) |
1168 |
Tk_Canvas canvas; /* Canvas containing item. */ |
1169 |
Tk_Item *itemPtr; /* Item to check against arc. */ |
1170 |
double *rectPtr; /* Pointer to array of four coordinates |
1171 |
* (x1, y1, x2, y2) describing rectangular |
1172 |
* area. */ |
1173 |
{ |
1174 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
1175 |
double rx, ry; /* Radii for transformed oval: these define |
1176 |
* an oval centered at the origin. */ |
1177 |
double tRect[4]; /* Transformed version of x1, y1, x2, y2, |
1178 |
* for coord. system where arc is centered |
1179 |
* on the origin. */ |
1180 |
double center[2], width, angle, tmp; |
1181 |
double points[20], *pointPtr; |
1182 |
int numPoints, filled; |
1183 |
int inside; /* Non-zero means every test so far suggests |
1184 |
* that arc is inside rectangle. 0 means |
1185 |
* every test so far shows arc to be outside |
1186 |
* of rectangle. */ |
1187 |
int newInside; |
1188 |
Tk_State state = itemPtr->state; |
1189 |
|
1190 |
if(state == TK_STATE_NULL) { |
1191 |
state = ((TkCanvas *)canvas)->canvas_state; |
1192 |
} |
1193 |
width = (double) arcPtr->outline.width; |
1194 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) { |
1195 |
if (arcPtr->outline.activeWidth>width) { |
1196 |
width = (double) arcPtr->outline.activeWidth; |
1197 |
} |
1198 |
} else if (state==TK_STATE_DISABLED) { |
1199 |
if (arcPtr->outline.disabledWidth>0) { |
1200 |
width = (double) arcPtr->outline.disabledWidth; |
1201 |
} |
1202 |
} |
1203 |
|
1204 |
if ((arcPtr->fillGC != None) || (arcPtr->outline.gc == None)) { |
1205 |
filled = 1; |
1206 |
} else { |
1207 |
filled = 0; |
1208 |
} |
1209 |
if (arcPtr->outline.gc == None) { |
1210 |
width = 0.0; |
1211 |
} |
1212 |
|
1213 |
/* |
1214 |
* Transform both the arc and the rectangle so that the arc's oval |
1215 |
* is centered on the origin. |
1216 |
*/ |
1217 |
|
1218 |
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; |
1219 |
center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; |
1220 |
tRect[0] = rectPtr[0] - center[0]; |
1221 |
tRect[1] = rectPtr[1] - center[1]; |
1222 |
tRect[2] = rectPtr[2] - center[0]; |
1223 |
tRect[3] = rectPtr[3] - center[1]; |
1224 |
rx = arcPtr->bbox[2] - center[0] + width/2.0; |
1225 |
ry = arcPtr->bbox[3] - center[1] + width/2.0; |
1226 |
|
1227 |
/* |
1228 |
* Find the extreme points of the arc and see whether these are all |
1229 |
* inside the rectangle (in which case we're done), partly in and |
1230 |
* partly out (in which case we're done), or all outside (in which |
1231 |
* case we have more work to do). The extreme points include the |
1232 |
* following, which are checked in order: |
1233 |
* |
1234 |
* 1. The outside points of the arc, corresponding to start and |
1235 |
* extent. |
1236 |
* 2. The center of the arc (but only in pie-slice mode). |
1237 |
* 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc |
1238 |
* includes those angles). |
1239 |
*/ |
1240 |
|
1241 |
pointPtr = points; |
1242 |
angle = -arcPtr->start*(PI/180.0); |
1243 |
pointPtr[0] = rx*cos(angle); |
1244 |
pointPtr[1] = ry*sin(angle); |
1245 |
angle += -arcPtr->extent*(PI/180.0); |
1246 |
pointPtr[2] = rx*cos(angle); |
1247 |
pointPtr[3] = ry*sin(angle); |
1248 |
numPoints = 2; |
1249 |
pointPtr += 4; |
1250 |
|
1251 |
if ((arcPtr->style == PIESLICE_STYLE) && (arcPtr->extent < 180.0)) { |
1252 |
pointPtr[0] = 0.0; |
1253 |
pointPtr[1] = 0.0; |
1254 |
numPoints++; |
1255 |
pointPtr += 2; |
1256 |
} |
1257 |
|
1258 |
tmp = -arcPtr->start; |
1259 |
if (tmp < 0) { |
1260 |
tmp += 360.0; |
1261 |
} |
1262 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
1263 |
pointPtr[0] = rx; |
1264 |
pointPtr[1] = 0.0; |
1265 |
numPoints++; |
1266 |
pointPtr += 2; |
1267 |
} |
1268 |
tmp = 90.0 - arcPtr->start; |
1269 |
if (tmp < 0) { |
1270 |
tmp += 360.0; |
1271 |
} |
1272 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
1273 |
pointPtr[0] = 0.0; |
1274 |
pointPtr[1] = -ry; |
1275 |
numPoints++; |
1276 |
pointPtr += 2; |
1277 |
} |
1278 |
tmp = 180.0 - arcPtr->start; |
1279 |
if (tmp < 0) { |
1280 |
tmp += 360.0; |
1281 |
} |
1282 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
1283 |
pointPtr[0] = -rx; |
1284 |
pointPtr[1] = 0.0; |
1285 |
numPoints++; |
1286 |
pointPtr += 2; |
1287 |
} |
1288 |
tmp = 270.0 - arcPtr->start; |
1289 |
if (tmp < 0) { |
1290 |
tmp += 360.0; |
1291 |
} |
1292 |
if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) { |
1293 |
pointPtr[0] = 0.0; |
1294 |
pointPtr[1] = ry; |
1295 |
numPoints++; |
1296 |
} |
1297 |
|
1298 |
/* |
1299 |
* Now that we've located the extreme points, loop through them all |
1300 |
* to see which are inside the rectangle. |
1301 |
*/ |
1302 |
|
1303 |
inside = (points[0] > tRect[0]) && (points[0] < tRect[2]) |
1304 |
&& (points[1] > tRect[1]) && (points[1] < tRect[3]); |
1305 |
for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) { |
1306 |
newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2]) |
1307 |
&& (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]); |
1308 |
if (newInside != inside) { |
1309 |
return 0; |
1310 |
} |
1311 |
} |
1312 |
|
1313 |
if (inside) { |
1314 |
return 1; |
1315 |
} |
1316 |
|
1317 |
/* |
1318 |
* So far, oval appears to be outside rectangle, but can't yet tell |
1319 |
* for sure. Next, test each of the four sides of the rectangle |
1320 |
* against the bounding region for the arc. If any intersections |
1321 |
* are found, then return "overlapping". First, test against the |
1322 |
* polygon(s) forming the sides of a chord or pie-slice. |
1323 |
*/ |
1324 |
|
1325 |
if (arcPtr->style == PIESLICE_STYLE) { |
1326 |
if (width >= 1.0) { |
1327 |
if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, |
1328 |
rectPtr) != -1) { |
1329 |
return 0; |
1330 |
} |
1331 |
if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
1332 |
PIE_OUTLINE2_PTS, rectPtr) != -1) { |
1333 |
return 0; |
1334 |
} |
1335 |
} else { |
1336 |
if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) || |
1337 |
(TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) { |
1338 |
return 0; |
1339 |
} |
1340 |
} |
1341 |
} else if (arcPtr->style == CHORD_STYLE) { |
1342 |
if (width >= 1.0) { |
1343 |
if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, |
1344 |
rectPtr) != -1) { |
1345 |
return 0; |
1346 |
} |
1347 |
} else { |
1348 |
if (TkLineToArea(arcPtr->center1, arcPtr->center2, |
1349 |
rectPtr) != -1) { |
1350 |
return 0; |
1351 |
} |
1352 |
} |
1353 |
} |
1354 |
|
1355 |
/* |
1356 |
* Next check for overlap between each of the four sides and the |
1357 |
* outer perimiter of the arc. If the arc isn't filled, then also |
1358 |
* check the inner perimeter of the arc. |
1359 |
*/ |
1360 |
|
1361 |
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, |
1362 |
arcPtr->extent) |
1363 |
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry, |
1364 |
arcPtr->start, arcPtr->extent) |
1365 |
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry, |
1366 |
arcPtr->start, arcPtr->extent) |
1367 |
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry, |
1368 |
arcPtr->start, arcPtr->extent)) { |
1369 |
return 0; |
1370 |
} |
1371 |
if ((width > 1.0) && !filled) { |
1372 |
rx -= width; |
1373 |
ry -= width; |
1374 |
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, |
1375 |
arcPtr->extent) |
1376 |
|| HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry, |
1377 |
arcPtr->start, arcPtr->extent) |
1378 |
|| VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry, |
1379 |
arcPtr->start, arcPtr->extent) |
1380 |
|| VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry, |
1381 |
arcPtr->start, arcPtr->extent)) { |
1382 |
return 0; |
1383 |
} |
1384 |
} |
1385 |
|
1386 |
/* |
1387 |
* The arc still appears to be totally disjoint from the rectangle, |
1388 |
* but it's also possible that the rectangle is totally inside the arc. |
1389 |
* Do one last check, which is to check one point of the rectangle |
1390 |
* to see if it's inside the arc. If it is, we've got overlap. If |
1391 |
* it isn't, the arc's really outside the rectangle. |
1392 |
*/ |
1393 |
|
1394 |
if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) { |
1395 |
return 0; |
1396 |
} |
1397 |
return -1; |
1398 |
} |
1399 |
|
1400 |
/* |
1401 |
*-------------------------------------------------------------- |
1402 |
* |
1403 |
* ScaleArc -- |
1404 |
* |
1405 |
* This procedure is invoked to rescale an arc item. |
1406 |
* |
1407 |
* Results: |
1408 |
* None. |
1409 |
* |
1410 |
* Side effects: |
1411 |
* The arc referred to by itemPtr is rescaled so that the |
1412 |
* following transformation is applied to all point |
1413 |
* coordinates: |
1414 |
* x' = originX + scaleX*(x-originX) |
1415 |
* y' = originY + scaleY*(y-originY) |
1416 |
* |
1417 |
*-------------------------------------------------------------- |
1418 |
*/ |
1419 |
|
1420 |
static void |
1421 |
ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY) |
1422 |
Tk_Canvas canvas; /* Canvas containing arc. */ |
1423 |
Tk_Item *itemPtr; /* Arc to be scaled. */ |
1424 |
double originX, originY; /* Origin about which to scale rect. */ |
1425 |
double scaleX; /* Amount to scale in X direction. */ |
1426 |
double scaleY; /* Amount to scale in Y direction. */ |
1427 |
{ |
1428 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
1429 |
|
1430 |
arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX); |
1431 |
arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY); |
1432 |
arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX); |
1433 |
arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY); |
1434 |
ComputeArcBbox(canvas, arcPtr); |
1435 |
} |
1436 |
|
1437 |
/* |
1438 |
*-------------------------------------------------------------- |
1439 |
* |
1440 |
* TranslateArc -- |
1441 |
* |
1442 |
* This procedure is called to move an arc by a given amount. |
1443 |
* |
1444 |
* Results: |
1445 |
* None. |
1446 |
* |
1447 |
* Side effects: |
1448 |
* The position of the arc is offset by (xDelta, yDelta), and |
1449 |
* the bounding box is updated in the generic part of the item |
1450 |
* structure. |
1451 |
* |
1452 |
*-------------------------------------------------------------- |
1453 |
*/ |
1454 |
|
1455 |
static void |
1456 |
TranslateArc(canvas, itemPtr, deltaX, deltaY) |
1457 |
Tk_Canvas canvas; /* Canvas containing item. */ |
1458 |
Tk_Item *itemPtr; /* Item that is being moved. */ |
1459 |
double deltaX, deltaY; /* Amount by which item is to be |
1460 |
* moved. */ |
1461 |
{ |
1462 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
1463 |
|
1464 |
arcPtr->bbox[0] += deltaX; |
1465 |
arcPtr->bbox[1] += deltaY; |
1466 |
arcPtr->bbox[2] += deltaX; |
1467 |
arcPtr->bbox[3] += deltaY; |
1468 |
ComputeArcBbox(canvas, arcPtr); |
1469 |
} |
1470 |
|
1471 |
/* |
1472 |
*-------------------------------------------------------------- |
1473 |
* |
1474 |
* ComputeArcOutline -- |
1475 |
* |
1476 |
* This procedure creates a polygon describing everything in |
1477 |
* the outline for an arc except what's in the curved part. |
1478 |
* For a "pie slice" arc this is a V-shaped chunk, and for |
1479 |
* a "chord" arc this is a linear chunk (with cutaway corners). |
1480 |
* For "arc" arcs, this stuff isn't relevant. |
1481 |
* |
1482 |
* Results: |
1483 |
* None. |
1484 |
* |
1485 |
* Side effects: |
1486 |
* The information at arcPtr->outlinePtr gets modified, and |
1487 |
* storage for arcPtr->outlinePtr may be allocated or freed. |
1488 |
* |
1489 |
*-------------------------------------------------------------- |
1490 |
*/ |
1491 |
|
1492 |
static void |
1493 |
ComputeArcOutline(canvas,arcPtr) |
1494 |
Tk_Canvas canvas; /* Information about overall canvas. */ |
1495 |
ArcItem *arcPtr; /* Information about arc. */ |
1496 |
{ |
1497 |
double sin1, cos1, sin2, cos2, angle, width, halfWidth; |
1498 |
double boxWidth, boxHeight; |
1499 |
double vertex[2], corner1[2], corner2[2]; |
1500 |
double *outlinePtr; |
1501 |
Tk_State state = arcPtr->header.state; |
1502 |
|
1503 |
|
1504 |
/* |
1505 |
* Make sure that the outlinePtr array is large enough to hold |
1506 |
* either a chord or pie-slice outline. |
1507 |
*/ |
1508 |
|
1509 |
if (arcPtr->numOutlinePoints == 0) { |
1510 |
arcPtr->outlinePtr = (double *) ckalloc((unsigned) |
1511 |
(26 * sizeof(double))); |
1512 |
arcPtr->numOutlinePoints = 22; |
1513 |
} |
1514 |
outlinePtr = arcPtr->outlinePtr; |
1515 |
|
1516 |
if(state == TK_STATE_NULL) { |
1517 |
state = ((TkCanvas *)canvas)->canvas_state; |
1518 |
} |
1519 |
|
1520 |
/* |
1521 |
* First compute the two points that lie at the centers of |
1522 |
* the ends of the curved arc segment, which are marked with |
1523 |
* X's in the figure below: |
1524 |
* |
1525 |
* |
1526 |
* * * * |
1527 |
* * * |
1528 |
* * * * * |
1529 |
* * * * * |
1530 |
* * * * * |
1531 |
* X * * X |
1532 |
* |
1533 |
* The code is tricky because the arc can be ovular in shape. |
1534 |
* It computes the position for a unit circle, and then |
1535 |
* scales to fit the shape of the arc's bounding box. |
1536 |
* |
1537 |
* Also, watch out because angles go counter-clockwise like you |
1538 |
* might expect, but the y-coordinate system is inverted. To |
1539 |
* handle this, just negate the angles in all the computations. |
1540 |
*/ |
1541 |
|
1542 |
boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0]; |
1543 |
boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1]; |
1544 |
angle = -arcPtr->start*PI/180.0; |
1545 |
sin1 = sin(angle); |
1546 |
cos1 = cos(angle); |
1547 |
angle -= arcPtr->extent*PI/180.0; |
1548 |
sin2 = sin(angle); |
1549 |
cos2 = cos(angle); |
1550 |
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; |
1551 |
vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0; |
1552 |
arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0; |
1553 |
arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0; |
1554 |
arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0; |
1555 |
arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0; |
1556 |
|
1557 |
/* |
1558 |
* Next compute the "outermost corners" of the arc, which are |
1559 |
* marked with X's in the figure below: |
1560 |
* |
1561 |
* * * * |
1562 |
* * * |
1563 |
* * * * * |
1564 |
* * * * * |
1565 |
* X * * X |
1566 |
* * * |
1567 |
* |
1568 |
* The code below is tricky because it has to handle eccentricity |
1569 |
* in the shape of the oval. The key in the code below is to |
1570 |
* realize that the slope of the line from arcPtr->center1 to corner1 |
1571 |
* is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2 |
1572 |
* and corner2. These formulas can be computed from the formula for |
1573 |
* the oval. |
1574 |
*/ |
1575 |
|
1576 |
width = arcPtr->outline.width; |
1577 |
if (((TkCanvas *)canvas)->currentItemPtr == (Tk_Item *) arcPtr) { |
1578 |
if (arcPtr->outline.activeWidth>arcPtr->outline.width) { |
1579 |
width = arcPtr->outline.activeWidth; |
1580 |
} |
1581 |
} else if (state==TK_STATE_DISABLED) { |
1582 |
if (arcPtr->outline.disabledWidth>arcPtr->outline.width) { |
1583 |
width = arcPtr->outline.disabledWidth; |
1584 |
} |
1585 |
} |
1586 |
halfWidth = width/2.0; |
1587 |
|
1588 |
if (((boxWidth*sin1) == 0.0) && ((boxHeight*cos1) == 0.0)) { |
1589 |
angle = 0.0; |
1590 |
} else { |
1591 |
angle = atan2(boxWidth*sin1, boxHeight*cos1); |
1592 |
} |
1593 |
corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth; |
1594 |
corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth; |
1595 |
if (((boxWidth*sin2) == 0.0) && ((boxHeight*cos2) == 0.0)) { |
1596 |
angle = 0.0; |
1597 |
} else { |
1598 |
angle = atan2(boxWidth*sin2, boxHeight*cos2); |
1599 |
} |
1600 |
corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth; |
1601 |
corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth; |
1602 |
|
1603 |
/* |
1604 |
* For a chord outline, generate a six-sided polygon with three |
1605 |
* points for each end of the chord. The first and third points |
1606 |
* for each end are butt points generated on either side of the |
1607 |
* center point. The second point is the corner point. |
1608 |
*/ |
1609 |
|
1610 |
if (arcPtr->style == CHORD_STYLE) { |
1611 |
outlinePtr[0] = outlinePtr[12] = corner1[0]; |
1612 |
outlinePtr[1] = outlinePtr[13] = corner1[1]; |
1613 |
TkGetButtPoints(arcPtr->center2, arcPtr->center1, |
1614 |
width, 0, outlinePtr+10, outlinePtr+2); |
1615 |
outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2] |
1616 |
- arcPtr->center1[0]; |
1617 |
outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3] |
1618 |
- arcPtr->center1[1]; |
1619 |
outlinePtr[6] = corner2[0]; |
1620 |
outlinePtr[7] = corner2[1]; |
1621 |
outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10] |
1622 |
- arcPtr->center1[0]; |
1623 |
outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11] |
1624 |
- arcPtr->center1[1]; |
1625 |
} else if (arcPtr->style == PIESLICE_STYLE) { |
1626 |
/* |
1627 |
* For pie slices, generate two polygons, one for each side |
1628 |
* of the pie slice. The first arm has a shape like this, |
1629 |
* where the center of the oval is X, arcPtr->center1 is at Y, and |
1630 |
* corner1 is at Z: |
1631 |
* |
1632 |
* _____________________ |
1633 |
* | \ |
1634 |
* | \ |
1635 |
* X Y Z |
1636 |
* | / |
1637 |
* |_____________________/ |
1638 |
* |
1639 |
*/ |
1640 |
|
1641 |
TkGetButtPoints(arcPtr->center1, vertex, width, 0, |
1642 |
outlinePtr, outlinePtr+2); |
1643 |
outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0]; |
1644 |
outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1]; |
1645 |
outlinePtr[6] = corner1[0]; |
1646 |
outlinePtr[7] = corner1[1]; |
1647 |
outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0]; |
1648 |
outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1]; |
1649 |
outlinePtr[10] = outlinePtr[0]; |
1650 |
outlinePtr[11] = outlinePtr[1]; |
1651 |
|
1652 |
/* |
1653 |
* The second arm has a shape like this: |
1654 |
* |
1655 |
* |
1656 |
* ______________________ |
1657 |
* / \ |
1658 |
* / \ |
1659 |
* Z Y X / |
1660 |
* \ / |
1661 |
* \______________________/ |
1662 |
* |
1663 |
* Similar to above X is the center of the oval/circle, Y is |
1664 |
* arcPtr->center2, and Z is corner2. The extra jog out to the left |
1665 |
* of X is needed in or to produce a butted joint with the |
1666 |
* first arm; the corner to the right of X is one of the |
1667 |
* first two points of the first arm, depending on extent. |
1668 |
*/ |
1669 |
|
1670 |
TkGetButtPoints(arcPtr->center2, vertex, width, 0, |
1671 |
outlinePtr+12, outlinePtr+16); |
1672 |
if ((arcPtr->extent > 180) || |
1673 |
((arcPtr->extent < 0) && (arcPtr->extent > -180))) { |
1674 |
outlinePtr[14] = outlinePtr[0]; |
1675 |
outlinePtr[15] = outlinePtr[1]; |
1676 |
} else { |
1677 |
outlinePtr[14] = outlinePtr[2]; |
1678 |
outlinePtr[15] = outlinePtr[3]; |
1679 |
} |
1680 |
outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0]; |
1681 |
outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1]; |
1682 |
outlinePtr[20] = corner2[0]; |
1683 |
outlinePtr[21] = corner2[1]; |
1684 |
outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0]; |
1685 |
outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1]; |
1686 |
outlinePtr[24] = outlinePtr[12]; |
1687 |
outlinePtr[25] = outlinePtr[13]; |
1688 |
} |
1689 |
} |
1690 |
|
1691 |
/* |
1692 |
*-------------------------------------------------------------- |
1693 |
* |
1694 |
* HorizLineToArc -- |
1695 |
* |
1696 |
* Determines whether a horizontal line segment intersects |
1697 |
* a given arc. |
1698 |
* |
1699 |
* Results: |
1700 |
* The return value is 1 if the given line intersects the |
1701 |
* infinitely-thin arc section defined by rx, ry, start, |
1702 |
* and extent, and 0 otherwise. Only the perimeter of the |
1703 |
* arc is checked: interior areas (e.g. pie-slice or chord) |
1704 |
* are not checked. |
1705 |
* |
1706 |
* Side effects: |
1707 |
* None. |
1708 |
* |
1709 |
*-------------------------------------------------------------- |
1710 |
*/ |
1711 |
|
1712 |
static int |
1713 |
HorizLineToArc(x1, x2, y, rx, ry, start, extent) |
1714 |
double x1, x2; /* X-coords of endpoints of line segment. |
1715 |
* X1 must be <= x2. */ |
1716 |
double y; /* Y-coordinate of line segment. */ |
1717 |
double rx, ry; /* These x- and y-radii define an oval |
1718 |
* centered at the origin. */ |
1719 |
double start, extent; /* Angles that define extent of arc, in |
1720 |
* the standard fashion for this module. */ |
1721 |
{ |
1722 |
double tmp; |
1723 |
double tx, ty; /* Coordinates of intersection point in |
1724 |
* transformed coordinate system. */ |
1725 |
double x; |
1726 |
|
1727 |
/* |
1728 |
* Compute the x-coordinate of one possible intersection point |
1729 |
* between the arc and the line. Use a transformed coordinate |
1730 |
* system where the oval is a unit circle centered at the origin. |
1731 |
* Then scale back to get actual x-coordinate. |
1732 |
*/ |
1733 |
|
1734 |
ty = y/ry; |
1735 |
tmp = 1 - ty*ty; |
1736 |
if (tmp < 0) { |
1737 |
return 0; |
1738 |
} |
1739 |
tx = sqrt(tmp); |
1740 |
x = tx*rx; |
1741 |
|
1742 |
/* |
1743 |
* Test both intersection points. |
1744 |
*/ |
1745 |
|
1746 |
if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) { |
1747 |
return 1; |
1748 |
} |
1749 |
if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) { |
1750 |
return 1; |
1751 |
} |
1752 |
return 0; |
1753 |
} |
1754 |
|
1755 |
/* |
1756 |
*-------------------------------------------------------------- |
1757 |
* |
1758 |
* VertLineToArc -- |
1759 |
* |
1760 |
* Determines whether a vertical line segment intersects |
1761 |
* a given arc. |
1762 |
* |
1763 |
* Results: |
1764 |
* The return value is 1 if the given line intersects the |
1765 |
* infinitely-thin arc section defined by rx, ry, start, |
1766 |
* and extent, and 0 otherwise. Only the perimeter of the |
1767 |
* arc is checked: interior areas (e.g. pie-slice or chord) |
1768 |
* are not checked. |
1769 |
* |
1770 |
* Side effects: |
1771 |
* None. |
1772 |
* |
1773 |
*-------------------------------------------------------------- |
1774 |
*/ |
1775 |
|
1776 |
static int |
1777 |
VertLineToArc(x, y1, y2, rx, ry, start, extent) |
1778 |
double x; /* X-coordinate of line segment. */ |
1779 |
double y1, y2; /* Y-coords of endpoints of line segment. |
1780 |
* Y1 must be <= y2. */ |
1781 |
double rx, ry; /* These x- and y-radii define an oval |
1782 |
* centered at the origin. */ |
1783 |
double start, extent; /* Angles that define extent of arc, in |
1784 |
* the standard fashion for this module. */ |
1785 |
{ |
1786 |
double tmp; |
1787 |
double tx, ty; /* Coordinates of intersection point in |
1788 |
* transformed coordinate system. */ |
1789 |
double y; |
1790 |
|
1791 |
/* |
1792 |
* Compute the y-coordinate of one possible intersection point |
1793 |
* between the arc and the line. Use a transformed coordinate |
1794 |
* system where the oval is a unit circle centered at the origin. |
1795 |
* Then scale back to get actual y-coordinate. |
1796 |
*/ |
1797 |
|
1798 |
tx = x/rx; |
1799 |
tmp = 1 - tx*tx; |
1800 |
if (tmp < 0) { |
1801 |
return 0; |
1802 |
} |
1803 |
ty = sqrt(tmp); |
1804 |
y = ty*ry; |
1805 |
|
1806 |
/* |
1807 |
* Test both intersection points. |
1808 |
*/ |
1809 |
|
1810 |
if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) { |
1811 |
return 1; |
1812 |
} |
1813 |
if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) { |
1814 |
return 1; |
1815 |
} |
1816 |
return 0; |
1817 |
} |
1818 |
|
1819 |
/* |
1820 |
*-------------------------------------------------------------- |
1821 |
* |
1822 |
* AngleInRange -- |
1823 |
* |
1824 |
* Determine whether the angle from the origin to a given |
1825 |
* point is within a given range. |
1826 |
* |
1827 |
* Results: |
1828 |
* The return value is 1 if the angle from (0,0) to (x,y) |
1829 |
* is in the range given by start and extent, where angles |
1830 |
* are interpreted in the standard way for ovals (meaning |
1831 |
* backwards from normal interpretation). Otherwise the |
1832 |
* return value is 0. |
1833 |
* |
1834 |
* Side effects: |
1835 |
* None. |
1836 |
* |
1837 |
*-------------------------------------------------------------- |
1838 |
*/ |
1839 |
|
1840 |
static int |
1841 |
AngleInRange(x, y, start, extent) |
1842 |
double x, y; /* Coordinate of point; angle measured |
1843 |
* from origin to here, relative to x-axis. */ |
1844 |
double start; /* First angle, degrees, >=0, <=360. */ |
1845 |
double extent; /* Size of arc in degrees >=-360, <=360. */ |
1846 |
{ |
1847 |
double diff; |
1848 |
|
1849 |
if ((x == 0.0) && (y == 0.0)) { |
1850 |
return 1; |
1851 |
} |
1852 |
diff = -atan2(y, x); |
1853 |
diff = diff*(180.0/PI) - start; |
1854 |
while (diff > 360.0) { |
1855 |
diff -= 360.0; |
1856 |
} |
1857 |
while (diff < 0.0) { |
1858 |
diff += 360.0; |
1859 |
} |
1860 |
if (extent >= 0) { |
1861 |
return diff <= extent; |
1862 |
} |
1863 |
return (diff-360.0) >= extent; |
1864 |
} |
1865 |
|
1866 |
/* |
1867 |
*-------------------------------------------------------------- |
1868 |
* |
1869 |
* ArcToPostscript -- |
1870 |
* |
1871 |
* This procedure is called to generate Postscript for |
1872 |
* arc items. |
1873 |
* |
1874 |
* Results: |
1875 |
* The return value is a standard Tcl result. If an error |
1876 |
* occurs in generating Postscript then an error message is |
1877 |
* left in the interp's result, replacing whatever used |
1878 |
* to be there. If no error occurs, then Postscript for the |
1879 |
* item is appended to the result. |
1880 |
* |
1881 |
* Side effects: |
1882 |
* None. |
1883 |
* |
1884 |
*-------------------------------------------------------------- |
1885 |
*/ |
1886 |
|
1887 |
static int |
1888 |
ArcToPostscript(interp, canvas, itemPtr, prepass) |
1889 |
Tcl_Interp *interp; /* Leave Postscript or error message |
1890 |
* here. */ |
1891 |
Tk_Canvas canvas; /* Information about overall canvas. */ |
1892 |
Tk_Item *itemPtr; /* Item for which Postscript is |
1893 |
* wanted. */ |
1894 |
int prepass; /* 1 means this is a prepass to |
1895 |
* collect font information; 0 means |
1896 |
* final Postscript is being created. */ |
1897 |
{ |
1898 |
ArcItem *arcPtr = (ArcItem *) itemPtr; |
1899 |
char buffer[400]; |
1900 |
double y1, y2, ang1, ang2; |
1901 |
XColor *color; |
1902 |
Pixmap stipple; |
1903 |
XColor *fillColor; |
1904 |
Pixmap fillStipple; |
1905 |
Tk_State state = itemPtr->state; |
1906 |
|
1907 |
y1 = Tk_CanvasPsY(canvas, arcPtr->bbox[1]); |
1908 |
y2 = Tk_CanvasPsY(canvas, arcPtr->bbox[3]); |
1909 |
ang1 = arcPtr->start; |
1910 |
ang2 = ang1 + arcPtr->extent; |
1911 |
if (ang2 < ang1) { |
1912 |
ang1 = ang2; |
1913 |
ang2 = arcPtr->start; |
1914 |
} |
1915 |
|
1916 |
if(state == TK_STATE_NULL) { |
1917 |
state = ((TkCanvas *)canvas)->canvas_state; |
1918 |
} |
1919 |
color = arcPtr->outline.color; |
1920 |
stipple = arcPtr->outline.stipple; |
1921 |
fillColor = arcPtr->fillColor; |
1922 |
fillStipple = arcPtr->fillStipple; |
1923 |
if (((TkCanvas *)canvas)->currentItemPtr == itemPtr) { |
1924 |
if (arcPtr->outline.activeColor!=NULL) { |
1925 |
color = arcPtr->outline.activeColor; |
1926 |
} |
1927 |
if (arcPtr->outline.activeStipple!=None) { |
1928 |
stipple = arcPtr->outline.activeStipple; |
1929 |
} |
1930 |
if (arcPtr->activeFillColor!=NULL) { |
1931 |
fillColor = arcPtr->activeFillColor; |
1932 |
} |
1933 |
if (arcPtr->activeFillStipple!=None) { |
1934 |
fillStipple = arcPtr->activeFillStipple; |
1935 |
} |
1936 |
} else if (state==TK_STATE_DISABLED) { |
1937 |
if (arcPtr->outline.disabledColor!=NULL) { |
1938 |
color = arcPtr->outline.disabledColor; |
1939 |
} |
1940 |
if (arcPtr->outline.disabledStipple!=None) { |
1941 |
stipple = arcPtr->outline.disabledStipple; |
1942 |
} |
1943 |
if (arcPtr->disabledFillColor!=NULL) { |
1944 |
fillColor = arcPtr->disabledFillColor; |
1945 |
} |
1946 |
if (arcPtr->disabledFillStipple!=None) { |
1947 |
fillStipple = arcPtr->disabledFillStipple; |
1948 |
} |
1949 |
} |
1950 |
|
1951 |
/* |
1952 |
* If the arc is filled, output Postscript for the interior region |
1953 |
* of the arc. |
1954 |
*/ |
1955 |
|
1956 |
if (arcPtr->fillGC != None) { |
1957 |
sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n", |
1958 |
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2, |
1959 |
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2); |
1960 |
Tcl_AppendResult(interp, buffer, (char *) NULL); |
1961 |
if (arcPtr->style == CHORD_STYLE) { |
1962 |
sprintf(buffer, "0 0 1 %.15g %.15g arc closepath\nsetmatrix\n", |
1963 |
ang1, ang2); |
1964 |
} else { |
1965 |
sprintf(buffer, |
1966 |
"0 0 moveto 0 0 1 %.15g %.15g arc closepath\nsetmatrix\n", |
1967 |
ang1, ang2); |
1968 |
} |
1969 |
Tcl_AppendResult(interp, buffer, (char *) NULL); |
1970 |
if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) { |
1971 |
return TCL_ERROR; |
1972 |
}; |
1973 |
if (fillStipple != None) { |
1974 |
Tcl_AppendResult(interp, "clip ", (char *) NULL); |
1975 |
if (Tk_CanvasPsStipple(interp, canvas, fillStipple) |
1976 |
!= TCL_OK) { |
1977 |
return TCL_ERROR; |
1978 |
} |
1979 |
if (arcPtr->outline.gc != None) { |
1980 |
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL); |
1981 |
} |
1982 |
} else { |
1983 |
Tcl_AppendResult(interp, "fill\n", (char *) NULL); |
1984 |
} |
1985 |
} |
1986 |
|
1987 |
/* |
1988 |
* If there's an outline for the arc, draw it. |
1989 |
*/ |
1990 |
|
1991 |
if (arcPtr->outline.gc != None) { |
1992 |
sprintf(buffer, "matrix currentmatrix\n%.15g %.15g translate %.15g %.15g scale\n", |
1993 |
(arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2, |
1994 |
(arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2); |
1995 |
Tcl_AppendResult(interp, buffer, (char *) NULL); |
1996 |
sprintf(buffer, "0 0 1 %.15g %.15g", ang1, ang2); |
1997 |
Tcl_AppendResult(interp, buffer, |
1998 |
" arc\nsetmatrix\n0 setlinecap\n", (char *) NULL); |
1999 |
if (Tk_CanvasPsOutline(canvas, itemPtr, |
2000 |
&(arcPtr->outline)) != TCL_OK) { |
2001 |
return TCL_ERROR; |
2002 |
} |
2003 |
if (arcPtr->style != ARC_STYLE) { |
2004 |
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL); |
2005 |
if (arcPtr->style == CHORD_STYLE) { |
2006 |
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr, |
2007 |
CHORD_OUTLINE_PTS); |
2008 |
} else { |
2009 |
Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr, |
2010 |
PIE_OUTLINE1_PTS); |
2011 |
if (Tk_CanvasPsColor(interp, canvas, color) |
2012 |
!= TCL_OK) { |
2013 |
return TCL_ERROR; |
2014 |
} |
2015 |
if (stipple != None) { |
2016 |
Tcl_AppendResult(interp, "clip ", (char *) NULL); |
2017 |
if (Tk_CanvasPsStipple(interp, canvas, |
2018 |
stipple) != TCL_OK) { |
2019 |
return TCL_ERROR; |
2020 |
} |
2021 |
} else { |
2022 |
Tcl_AppendResult(interp, "fill\n", (char *) NULL); |
2023 |
} |
2024 |
Tcl_AppendResult(interp, "grestore gsave\n", (char *) NULL); |
2025 |
Tk_CanvasPsPath(interp, canvas, |
2026 |
arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, |
2027 |
PIE_OUTLINE2_PTS); |
2028 |
} |
2029 |
if (Tk_CanvasPsColor(interp, canvas, color) |
2030 |
!= TCL_OK) { |
2031 |
return TCL_ERROR; |
2032 |
} |
2033 |
if (stipple != None) { |
2034 |
Tcl_AppendResult(interp, "clip ", (char *) NULL); |
2035 |
if (Tk_CanvasPsStipple(interp, canvas, |
2036 |
stipple) != TCL_OK) { |
2037 |
return TCL_ERROR; |
2038 |
} |
2039 |
} else { |
2040 |
Tcl_AppendResult(interp, "fill\n", (char *) NULL); |
2041 |
} |
2042 |
} |
2043 |
} |
2044 |
|
2045 |
return TCL_OK; |
2046 |
} |
2047 |
|
2048 |
/* |
2049 |
*-------------------------------------------------------------- |
2050 |
* |
2051 |
* StyleParseProc -- |
2052 |
* |
2053 |
* This procedure is invoked during option processing to handle |
2054 |
* the "-style" option. |
2055 |
* |
2056 |
* Results: |
2057 |
* A standard Tcl return value. |
2058 |
* |
2059 |
* Side effects: |
2060 |
* The state for a given item gets replaced by the state |
2061 |
* indicated in the value argument. |
2062 |
* |
2063 |
*-------------------------------------------------------------- |
2064 |
*/ |
2065 |
|
2066 |
static int |
2067 |
StyleParseProc(clientData, interp, tkwin, value, widgRec, offset) |
2068 |
ClientData clientData; /* some flags.*/ |
2069 |
Tcl_Interp *interp; /* Used for reporting errors. */ |
2070 |
Tk_Window tkwin; /* Window containing canvas widget. */ |
2071 |
CONST char *value; /* Value of option. */ |
2072 |
char *widgRec; /* Pointer to record for item. */ |
2073 |
int offset; /* Offset into item. */ |
2074 |
{ |
2075 |
int c; |
2076 |
size_t length; |
2077 |
|
2078 |
register Style *stylePtr = (Style *) (widgRec + offset); |
2079 |
|
2080 |
if(value == NULL || *value == 0) { |
2081 |
*stylePtr = PIESLICE_STYLE; |
2082 |
return TCL_OK; |
2083 |
} |
2084 |
|
2085 |
c = value[0]; |
2086 |
length = strlen(value); |
2087 |
|
2088 |
if ((c == 'a') && (strncmp(value, "arc", length) == 0)) { |
2089 |
*stylePtr = ARC_STYLE; |
2090 |
return TCL_OK; |
2091 |
} |
2092 |
if ((c == 'c') && (strncmp(value, "chord", length) == 0)) { |
2093 |
*stylePtr = CHORD_STYLE; |
2094 |
return TCL_OK; |
2095 |
} |
2096 |
if ((c == 'p') && (strncmp(value, "pieslice", length) == 0)) { |
2097 |
*stylePtr = PIESLICE_STYLE; |
2098 |
return TCL_OK; |
2099 |
} |
2100 |
|
2101 |
Tcl_AppendResult(interp, "bad -style option \"", |
2102 |
value, "\": must be arc, chord, or pieslice", |
2103 |
(char *) NULL); |
2104 |
*stylePtr = PIESLICE_STYLE; |
2105 |
return TCL_ERROR; |
2106 |
} |
2107 |
|
2108 |
/* |
2109 |
*-------------------------------------------------------------- |
2110 |
* |
2111 |
* StylePrintProc -- |
2112 |
* |
2113 |
* This procedure is invoked by the Tk configuration code |
2114 |
* to produce a printable string for the "-style" |
2115 |
* configuration option. |
2116 |
* |
2117 |
* Results: |
2118 |
* The return value is a string describing the state for |
2119 |
* the item referred to by "widgRec". In addition, *freeProcPtr |
2120 |
* is filled in with the address of a procedure to call to free |
2121 |
* the result string when it's no longer needed (or NULL to |
2122 |
* indicate that the string doesn't need to be freed). |
2123 |
* |
2124 |
* Side effects: |
2125 |
* None. |
2126 |
* |
2127 |
*-------------------------------------------------------------- |
2128 |
*/ |
2129 |
|
2130 |
static char * |
2131 |
StylePrintProc(clientData, tkwin, widgRec, offset, freeProcPtr) |
2132 |
ClientData clientData; /* Ignored. */ |
2133 |
Tk_Window tkwin; /* Ignored. */ |
2134 |
char *widgRec; /* Pointer to record for item. */ |
2135 |
int offset; /* Offset into item. */ |
2136 |
Tcl_FreeProc **freeProcPtr; /* Pointer to variable to fill in with |
2137 |
* information about how to reclaim |
2138 |
* storage for return string. */ |
2139 |
{ |
2140 |
register Style *stylePtr = (Style *) (widgRec + offset); |
2141 |
|
2142 |
if (*stylePtr==ARC_STYLE) { |
2143 |
return "arc"; |
2144 |
} else if (*stylePtr==CHORD_STYLE) { |
2145 |
return "chord"; |
2146 |
} else { |
2147 |
return "pieslice"; |
2148 |
} |
2149 |
} |
2150 |
|
2151 |
/* End of tkcanvarc.c */ |