1 |
/* $Header$ */ |
2 |
|
3 |
/* |
4 |
* tkTrig.c -- |
5 |
* |
6 |
* This file contains a collection of trigonometry utility |
7 |
* routines that are used by Tk and in particular by the |
8 |
* canvas code. It also has miscellaneous geometry functions |
9 |
* used by canvases. |
10 |
* |
11 |
* Copyright (c) 1992-1994 The Regents of the University of California. |
12 |
* Copyright (c) 1994-1997 Sun Microsystems, Inc. |
13 |
* |
14 |
* See the file "license.terms" for information on usage and redistribution |
15 |
* of this file, and for a DISCLAIMER OF ALL WARRANTIES. |
16 |
* |
17 |
* RCS: @(#) $Id: tktrig.c,v 1.1.1.1 2001/06/13 05:11:18 dtashley Exp $ |
18 |
*/ |
19 |
|
20 |
#include <stdio.h> |
21 |
#include "tkInt.h" |
22 |
#include "tkPort.h" |
23 |
#include "tkCanvas.h" |
24 |
|
25 |
#undef MIN |
26 |
#define MIN(a,b) (((a) < (b)) ? (a) : (b)) |
27 |
#undef MAX |
28 |
#define MAX(a,b) (((a) > (b)) ? (a) : (b)) |
29 |
#ifndef PI |
30 |
# define PI 3.14159265358979323846 |
31 |
#endif /* PI */ |
32 |
|
33 |
/* |
34 |
*-------------------------------------------------------------- |
35 |
* |
36 |
* TkLineToPoint -- |
37 |
* |
38 |
* Compute the distance from a point to a finite line segment. |
39 |
* |
40 |
* Results: |
41 |
* The return value is the distance from the line segment |
42 |
* whose end-points are *end1Ptr and *end2Ptr to the point |
43 |
* given by *pointPtr. |
44 |
* |
45 |
* Side effects: |
46 |
* None. |
47 |
* |
48 |
*-------------------------------------------------------------- |
49 |
*/ |
50 |
|
51 |
double |
52 |
TkLineToPoint(end1Ptr, end2Ptr, pointPtr) |
53 |
double end1Ptr[2]; /* Coordinates of first end-point of line. */ |
54 |
double end2Ptr[2]; /* Coordinates of second end-point of line. */ |
55 |
double pointPtr[2]; /* Points to coords for point. */ |
56 |
{ |
57 |
double x, y; |
58 |
|
59 |
/* |
60 |
* Compute the point on the line that is closest to the |
61 |
* point. This must be done separately for vertical edges, |
62 |
* horizontal edges, and other edges. |
63 |
*/ |
64 |
|
65 |
if (end1Ptr[0] == end2Ptr[0]) { |
66 |
|
67 |
/* |
68 |
* Vertical edge. |
69 |
*/ |
70 |
|
71 |
x = end1Ptr[0]; |
72 |
if (end1Ptr[1] >= end2Ptr[1]) { |
73 |
y = MIN(end1Ptr[1], pointPtr[1]); |
74 |
y = MAX(y, end2Ptr[1]); |
75 |
} else { |
76 |
y = MIN(end2Ptr[1], pointPtr[1]); |
77 |
y = MAX(y, end1Ptr[1]); |
78 |
} |
79 |
} else if (end1Ptr[1] == end2Ptr[1]) { |
80 |
|
81 |
/* |
82 |
* Horizontal edge. |
83 |
*/ |
84 |
|
85 |
y = end1Ptr[1]; |
86 |
if (end1Ptr[0] >= end2Ptr[0]) { |
87 |
x = MIN(end1Ptr[0], pointPtr[0]); |
88 |
x = MAX(x, end2Ptr[0]); |
89 |
} else { |
90 |
x = MIN(end2Ptr[0], pointPtr[0]); |
91 |
x = MAX(x, end1Ptr[0]); |
92 |
} |
93 |
} else { |
94 |
double m1, b1, m2, b2; |
95 |
|
96 |
/* |
97 |
* The edge is neither horizontal nor vertical. Convert the |
98 |
* edge to a line equation of the form y = m1*x + b1. Then |
99 |
* compute a line perpendicular to this edge but passing |
100 |
* through the point, also in the form y = m2*x + b2. |
101 |
*/ |
102 |
|
103 |
m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]); |
104 |
b1 = end1Ptr[1] - m1*end1Ptr[0]; |
105 |
m2 = -1.0/m1; |
106 |
b2 = pointPtr[1] - m2*pointPtr[0]; |
107 |
x = (b2 - b1)/(m1 - m2); |
108 |
y = m1*x + b1; |
109 |
if (end1Ptr[0] > end2Ptr[0]) { |
110 |
if (x > end1Ptr[0]) { |
111 |
x = end1Ptr[0]; |
112 |
y = end1Ptr[1]; |
113 |
} else if (x < end2Ptr[0]) { |
114 |
x = end2Ptr[0]; |
115 |
y = end2Ptr[1]; |
116 |
} |
117 |
} else { |
118 |
if (x > end2Ptr[0]) { |
119 |
x = end2Ptr[0]; |
120 |
y = end2Ptr[1]; |
121 |
} else if (x < end1Ptr[0]) { |
122 |
x = end1Ptr[0]; |
123 |
y = end1Ptr[1]; |
124 |
} |
125 |
} |
126 |
} |
127 |
|
128 |
/* |
129 |
* Compute the distance to the closest point. |
130 |
*/ |
131 |
|
132 |
return hypot(pointPtr[0] - x, pointPtr[1] - y); |
133 |
} |
134 |
|
135 |
/* |
136 |
*-------------------------------------------------------------- |
137 |
* |
138 |
* TkLineToArea -- |
139 |
* |
140 |
* Determine whether a line lies entirely inside, entirely |
141 |
* outside, or overlapping a given rectangular area. |
142 |
* |
143 |
* Results: |
144 |
* -1 is returned if the line given by end1Ptr and end2Ptr |
145 |
* is entirely outside the rectangle given by rectPtr. 0 is |
146 |
* returned if the polygon overlaps the rectangle, and 1 is |
147 |
* returned if the polygon is entirely inside the rectangle. |
148 |
* |
149 |
* Side effects: |
150 |
* None. |
151 |
* |
152 |
*-------------------------------------------------------------- |
153 |
*/ |
154 |
|
155 |
int |
156 |
TkLineToArea(end1Ptr, end2Ptr, rectPtr) |
157 |
double end1Ptr[2]; /* X and y coordinates for one endpoint |
158 |
* of line. */ |
159 |
double end2Ptr[2]; /* X and y coordinates for other endpoint |
160 |
* of line. */ |
161 |
double rectPtr[4]; /* Points to coords for rectangle, in the |
162 |
* order x1, y1, x2, y2. X1 must be no |
163 |
* larger than x2, and y1 no larger than y2. */ |
164 |
{ |
165 |
int inside1, inside2; |
166 |
|
167 |
/* |
168 |
* First check the two points individually to see whether they |
169 |
* are inside the rectangle or not. |
170 |
*/ |
171 |
|
172 |
inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2]) |
173 |
&& (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]); |
174 |
inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2]) |
175 |
&& (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]); |
176 |
if (inside1 != inside2) { |
177 |
return 0; |
178 |
} |
179 |
if (inside1 & inside2) { |
180 |
return 1; |
181 |
} |
182 |
|
183 |
/* |
184 |
* Both points are outside the rectangle, but still need to check |
185 |
* for intersections between the line and the rectangle. Horizontal |
186 |
* and vertical lines are particularly easy, so handle them |
187 |
* separately. |
188 |
*/ |
189 |
|
190 |
if (end1Ptr[0] == end2Ptr[0]) { |
191 |
/* |
192 |
* Vertical line. |
193 |
*/ |
194 |
|
195 |
if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1])) |
196 |
&& (end1Ptr[0] >= rectPtr[0]) |
197 |
&& (end1Ptr[0] <= rectPtr[2])) { |
198 |
return 0; |
199 |
} |
200 |
} else if (end1Ptr[1] == end2Ptr[1]) { |
201 |
/* |
202 |
* Horizontal line. |
203 |
*/ |
204 |
|
205 |
if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0])) |
206 |
&& (end1Ptr[1] >= rectPtr[1]) |
207 |
&& (end1Ptr[1] <= rectPtr[3])) { |
208 |
return 0; |
209 |
} |
210 |
} else { |
211 |
double m, x, y, low, high; |
212 |
|
213 |
/* |
214 |
* Diagonal line. Compute slope of line and use |
215 |
* for intersection checks against each of the |
216 |
* sides of the rectangle: left, right, bottom, top. |
217 |
*/ |
218 |
|
219 |
m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]); |
220 |
if (end1Ptr[0] < end2Ptr[0]) { |
221 |
low = end1Ptr[0]; high = end2Ptr[0]; |
222 |
} else { |
223 |
low = end2Ptr[0]; high = end1Ptr[0]; |
224 |
} |
225 |
|
226 |
/* |
227 |
* Left edge. |
228 |
*/ |
229 |
|
230 |
y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m; |
231 |
if ((rectPtr[0] >= low) && (rectPtr[0] <= high) |
232 |
&& (y >= rectPtr[1]) && (y <= rectPtr[3])) { |
233 |
return 0; |
234 |
} |
235 |
|
236 |
/* |
237 |
* Right edge. |
238 |
*/ |
239 |
|
240 |
y += (rectPtr[2] - rectPtr[0])*m; |
241 |
if ((y >= rectPtr[1]) && (y <= rectPtr[3]) |
242 |
&& (rectPtr[2] >= low) && (rectPtr[2] <= high)) { |
243 |
return 0; |
244 |
} |
245 |
|
246 |
/* |
247 |
* Bottom edge. |
248 |
*/ |
249 |
|
250 |
if (end1Ptr[1] < end2Ptr[1]) { |
251 |
low = end1Ptr[1]; high = end2Ptr[1]; |
252 |
} else { |
253 |
low = end2Ptr[1]; high = end1Ptr[1]; |
254 |
} |
255 |
x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m; |
256 |
if ((x >= rectPtr[0]) && (x <= rectPtr[2]) |
257 |
&& (rectPtr[1] >= low) && (rectPtr[1] <= high)) { |
258 |
return 0; |
259 |
} |
260 |
|
261 |
/* |
262 |
* Top edge. |
263 |
*/ |
264 |
|
265 |
x += (rectPtr[3] - rectPtr[1])/m; |
266 |
if ((x >= rectPtr[0]) && (x <= rectPtr[2]) |
267 |
&& (rectPtr[3] >= low) && (rectPtr[3] <= high)) { |
268 |
return 0; |
269 |
} |
270 |
} |
271 |
return -1; |
272 |
} |
273 |
|
274 |
/* |
275 |
*-------------------------------------------------------------- |
276 |
* |
277 |
* TkThickPolyLineToArea -- |
278 |
* |
279 |
* This procedure is called to determine whether a connected |
280 |
* series of line segments lies entirely inside, entirely |
281 |
* outside, or overlapping a given rectangular area. |
282 |
* |
283 |
* Results: |
284 |
* -1 is returned if the lines are entirely outside the area, |
285 |
* 0 if they overlap, and 1 if they are entirely inside the |
286 |
* given area. |
287 |
* |
288 |
* Side effects: |
289 |
* None. |
290 |
* |
291 |
*-------------------------------------------------------------- |
292 |
*/ |
293 |
|
294 |
/* ARGSUSED */ |
295 |
int |
296 |
TkThickPolyLineToArea(coordPtr, numPoints, width, capStyle, joinStyle, rectPtr) |
297 |
double *coordPtr; /* Points to an array of coordinates for |
298 |
* the polyline: x0, y0, x1, y1, ... */ |
299 |
int numPoints; /* Total number of points at *coordPtr. */ |
300 |
double width; /* Width of each line segment. */ |
301 |
int capStyle; /* How are end-points of polyline drawn? |
302 |
* CapRound, CapButt, or CapProjecting. */ |
303 |
int joinStyle; /* How are joints in polyline drawn? |
304 |
* JoinMiter, JoinRound, or JoinBevel. */ |
305 |
double *rectPtr; /* Rectangular area to check against. */ |
306 |
{ |
307 |
double radius, poly[10]; |
308 |
int count; |
309 |
int changedMiterToBevel; /* Non-zero means that a mitered corner |
310 |
* had to be treated as beveled after all |
311 |
* because the angle was < 11 degrees. */ |
312 |
int inside; /* Tentative guess about what to return, |
313 |
* based on all points seen so far: one |
314 |
* means everything seen so far was |
315 |
* inside the area; -1 means everything |
316 |
* was outside the area. 0 means overlap |
317 |
* has been found. */ |
318 |
|
319 |
radius = width/2.0; |
320 |
inside = -1; |
321 |
|
322 |
if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2]) |
323 |
&& (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) { |
324 |
inside = 1; |
325 |
} |
326 |
|
327 |
/* |
328 |
* Iterate through all of the edges of the line, computing a polygon |
329 |
* for each edge and testing the area against that polygon. In |
330 |
* addition, there are additional tests to deal with rounded joints |
331 |
* and caps. |
332 |
*/ |
333 |
|
334 |
changedMiterToBevel = 0; |
335 |
for (count = numPoints; count >= 2; count--, coordPtr += 2) { |
336 |
|
337 |
/* |
338 |
* If rounding is done around the first point of the edge |
339 |
* then test a circular region around the point with the |
340 |
* area. |
341 |
*/ |
342 |
|
343 |
if (((capStyle == CapRound) && (count == numPoints)) |
344 |
|| ((joinStyle == JoinRound) && (count != numPoints))) { |
345 |
poly[0] = coordPtr[0] - radius; |
346 |
poly[1] = coordPtr[1] - radius; |
347 |
poly[2] = coordPtr[0] + radius; |
348 |
poly[3] = coordPtr[1] + radius; |
349 |
if (TkOvalToArea(poly, rectPtr) != inside) { |
350 |
return 0; |
351 |
} |
352 |
} |
353 |
|
354 |
/* |
355 |
* Compute the polygonal shape corresponding to this edge, |
356 |
* consisting of two points for the first point of the edge |
357 |
* and two points for the last point of the edge. |
358 |
*/ |
359 |
|
360 |
if (count == numPoints) { |
361 |
TkGetButtPoints(coordPtr+2, coordPtr, width, |
362 |
capStyle == CapProjecting, poly, poly+2); |
363 |
} else if ((joinStyle == JoinMiter) && !changedMiterToBevel) { |
364 |
poly[0] = poly[6]; |
365 |
poly[1] = poly[7]; |
366 |
poly[2] = poly[4]; |
367 |
poly[3] = poly[5]; |
368 |
} else { |
369 |
TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2); |
370 |
|
371 |
/* |
372 |
* If the last joint was beveled, then also check a |
373 |
* polygon comprising the last two points of the previous |
374 |
* polygon and the first two from this polygon; this checks |
375 |
* the wedges that fill the beveled joint. |
376 |
*/ |
377 |
|
378 |
if ((joinStyle == JoinBevel) || changedMiterToBevel) { |
379 |
poly[8] = poly[0]; |
380 |
poly[9] = poly[1]; |
381 |
if (TkPolygonToArea(poly, 5, rectPtr) != inside) { |
382 |
return 0; |
383 |
} |
384 |
changedMiterToBevel = 0; |
385 |
} |
386 |
} |
387 |
if (count == 2) { |
388 |
TkGetButtPoints(coordPtr, coordPtr+2, width, |
389 |
capStyle == CapProjecting, poly+4, poly+6); |
390 |
} else if (joinStyle == JoinMiter) { |
391 |
if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4, |
392 |
(double) width, poly+4, poly+6) == 0) { |
393 |
changedMiterToBevel = 1; |
394 |
TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, |
395 |
poly+6); |
396 |
} |
397 |
} else { |
398 |
TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6); |
399 |
} |
400 |
poly[8] = poly[0]; |
401 |
poly[9] = poly[1]; |
402 |
if (TkPolygonToArea(poly, 5, rectPtr) != inside) { |
403 |
return 0; |
404 |
} |
405 |
} |
406 |
|
407 |
/* |
408 |
* If caps are rounded, check the cap around the final point |
409 |
* of the line. |
410 |
*/ |
411 |
|
412 |
if (capStyle == CapRound) { |
413 |
poly[0] = coordPtr[0] - radius; |
414 |
poly[1] = coordPtr[1] - radius; |
415 |
poly[2] = coordPtr[0] + radius; |
416 |
poly[3] = coordPtr[1] + radius; |
417 |
if (TkOvalToArea(poly, rectPtr) != inside) { |
418 |
return 0; |
419 |
} |
420 |
} |
421 |
|
422 |
return inside; |
423 |
} |
424 |
|
425 |
/* |
426 |
*-------------------------------------------------------------- |
427 |
* |
428 |
* TkPolygonToPoint -- |
429 |
* |
430 |
* Compute the distance from a point to a polygon. |
431 |
* |
432 |
* Results: |
433 |
* The return value is 0.0 if the point referred to by |
434 |
* pointPtr is within the polygon referred to by polyPtr |
435 |
* and numPoints. Otherwise the return value is the |
436 |
* distance of the point from the polygon. |
437 |
* |
438 |
* Side effects: |
439 |
* None. |
440 |
* |
441 |
*-------------------------------------------------------------- |
442 |
*/ |
443 |
|
444 |
double |
445 |
TkPolygonToPoint(polyPtr, numPoints, pointPtr) |
446 |
double *polyPtr; /* Points to an array coordinates for |
447 |
* closed polygon: x0, y0, x1, y1, ... |
448 |
* The polygon may be self-intersecting. */ |
449 |
int numPoints; /* Total number of points at *polyPtr. */ |
450 |
double *pointPtr; /* Points to coords for point. */ |
451 |
{ |
452 |
double bestDist; /* Closest distance between point and |
453 |
* any edge in polygon. */ |
454 |
int intersections; /* Number of edges in the polygon that |
455 |
* intersect a ray extending vertically |
456 |
* upwards from the point to infinity. */ |
457 |
int count; |
458 |
register double *pPtr; |
459 |
|
460 |
/* |
461 |
* Iterate through all of the edges in the polygon, updating |
462 |
* bestDist and intersections. |
463 |
* |
464 |
* TRICKY POINT: when computing intersections, include left |
465 |
* x-coordinate of line within its range, but not y-coordinate. |
466 |
* Otherwise if the point lies exactly below a vertex we'll |
467 |
* count it as two intersections. |
468 |
*/ |
469 |
|
470 |
bestDist = 1.0e36; |
471 |
intersections = 0; |
472 |
|
473 |
for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) { |
474 |
double x, y, dist; |
475 |
|
476 |
/* |
477 |
* Compute the point on the current edge closest to the point |
478 |
* and update the intersection count. This must be done |
479 |
* separately for vertical edges, horizontal edges, and |
480 |
* other edges. |
481 |
*/ |
482 |
|
483 |
if (pPtr[2] == pPtr[0]) { |
484 |
|
485 |
/* |
486 |
* Vertical edge. |
487 |
*/ |
488 |
|
489 |
x = pPtr[0]; |
490 |
if (pPtr[1] >= pPtr[3]) { |
491 |
y = MIN(pPtr[1], pointPtr[1]); |
492 |
y = MAX(y, pPtr[3]); |
493 |
} else { |
494 |
y = MIN(pPtr[3], pointPtr[1]); |
495 |
y = MAX(y, pPtr[1]); |
496 |
} |
497 |
} else if (pPtr[3] == pPtr[1]) { |
498 |
|
499 |
/* |
500 |
* Horizontal edge. |
501 |
*/ |
502 |
|
503 |
y = pPtr[1]; |
504 |
if (pPtr[0] >= pPtr[2]) { |
505 |
x = MIN(pPtr[0], pointPtr[0]); |
506 |
x = MAX(x, pPtr[2]); |
507 |
if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0]) |
508 |
&& (pointPtr[0] >= pPtr[2])) { |
509 |
intersections++; |
510 |
} |
511 |
} else { |
512 |
x = MIN(pPtr[2], pointPtr[0]); |
513 |
x = MAX(x, pPtr[0]); |
514 |
if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2]) |
515 |
&& (pointPtr[0] >= pPtr[0])) { |
516 |
intersections++; |
517 |
} |
518 |
} |
519 |
} else { |
520 |
double m1, b1, m2, b2; |
521 |
int lower; /* Non-zero means point below line. */ |
522 |
|
523 |
/* |
524 |
* The edge is neither horizontal nor vertical. Convert the |
525 |
* edge to a line equation of the form y = m1*x + b1. Then |
526 |
* compute a line perpendicular to this edge but passing |
527 |
* through the point, also in the form y = m2*x + b2. |
528 |
*/ |
529 |
|
530 |
m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]); |
531 |
b1 = pPtr[1] - m1*pPtr[0]; |
532 |
m2 = -1.0/m1; |
533 |
b2 = pointPtr[1] - m2*pointPtr[0]; |
534 |
x = (b2 - b1)/(m1 - m2); |
535 |
y = m1*x + b1; |
536 |
if (pPtr[0] > pPtr[2]) { |
537 |
if (x > pPtr[0]) { |
538 |
x = pPtr[0]; |
539 |
y = pPtr[1]; |
540 |
} else if (x < pPtr[2]) { |
541 |
x = pPtr[2]; |
542 |
y = pPtr[3]; |
543 |
} |
544 |
} else { |
545 |
if (x > pPtr[2]) { |
546 |
x = pPtr[2]; |
547 |
y = pPtr[3]; |
548 |
} else if (x < pPtr[0]) { |
549 |
x = pPtr[0]; |
550 |
y = pPtr[1]; |
551 |
} |
552 |
} |
553 |
lower = (m1*pointPtr[0] + b1) > pointPtr[1]; |
554 |
if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2])) |
555 |
&& (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) { |
556 |
intersections++; |
557 |
} |
558 |
} |
559 |
|
560 |
/* |
561 |
* Compute the distance to the closest point, and see if that |
562 |
* is the best distance seen so far. |
563 |
*/ |
564 |
|
565 |
dist = hypot(pointPtr[0] - x, pointPtr[1] - y); |
566 |
if (dist < bestDist) { |
567 |
bestDist = dist; |
568 |
} |
569 |
} |
570 |
|
571 |
/* |
572 |
* We've processed all of the points. If the number of intersections |
573 |
* is odd, the point is inside the polygon. |
574 |
*/ |
575 |
|
576 |
if (intersections & 0x1) { |
577 |
return 0.0; |
578 |
} |
579 |
return bestDist; |
580 |
} |
581 |
|
582 |
/* |
583 |
*-------------------------------------------------------------- |
584 |
* |
585 |
* TkPolygonToArea -- |
586 |
* |
587 |
* Determine whether a polygon lies entirely inside, entirely |
588 |
* outside, or overlapping a given rectangular area. |
589 |
* |
590 |
* Results: |
591 |
* -1 is returned if the polygon given by polyPtr and numPoints |
592 |
* is entirely outside the rectangle given by rectPtr. 0 is |
593 |
* returned if the polygon overlaps the rectangle, and 1 is |
594 |
* returned if the polygon is entirely inside the rectangle. |
595 |
* |
596 |
* Side effects: |
597 |
* None. |
598 |
* |
599 |
*-------------------------------------------------------------- |
600 |
*/ |
601 |
|
602 |
int |
603 |
TkPolygonToArea(polyPtr, numPoints, rectPtr) |
604 |
double *polyPtr; /* Points to an array coordinates for |
605 |
* closed polygon: x0, y0, x1, y1, ... |
606 |
* The polygon may be self-intersecting. */ |
607 |
int numPoints; /* Total number of points at *polyPtr. */ |
608 |
register double *rectPtr; /* Points to coords for rectangle, in the |
609 |
* order x1, y1, x2, y2. X1 and y1 must |
610 |
* be lower-left corner. */ |
611 |
{ |
612 |
int state; /* State of all edges seen so far (-1 means |
613 |
* outside, 1 means inside, won't ever be |
614 |
* 0). */ |
615 |
int count; |
616 |
register double *pPtr; |
617 |
|
618 |
/* |
619 |
* Iterate over all of the edges of the polygon and test them |
620 |
* against the rectangle. Can quit as soon as the state becomes |
621 |
* "intersecting". |
622 |
*/ |
623 |
|
624 |
state = TkLineToArea(polyPtr, polyPtr+2, rectPtr); |
625 |
if (state == 0) { |
626 |
return 0; |
627 |
} |
628 |
for (pPtr = polyPtr+2, count = numPoints-1; count >= 2; |
629 |
pPtr += 2, count--) { |
630 |
if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) { |
631 |
return 0; |
632 |
} |
633 |
} |
634 |
|
635 |
/* |
636 |
* If all of the edges were inside the rectangle we're done. |
637 |
* If all of the edges were outside, then the rectangle could |
638 |
* still intersect the polygon (if it's entirely enclosed). |
639 |
* Call TkPolygonToPoint to figure this out. |
640 |
*/ |
641 |
|
642 |
if (state == 1) { |
643 |
return 1; |
644 |
} |
645 |
if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) { |
646 |
return 0; |
647 |
} |
648 |
return -1; |
649 |
} |
650 |
|
651 |
/* |
652 |
*-------------------------------------------------------------- |
653 |
* |
654 |
* TkOvalToPoint -- |
655 |
* |
656 |
* Computes the distance from a given point to a given |
657 |
* oval, in canvas units. |
658 |
* |
659 |
* Results: |
660 |
* The return value is 0 if the point given by *pointPtr is |
661 |
* inside the oval. If the point isn't inside the |
662 |
* oval then the return value is approximately the distance |
663 |
* from the point to the oval. If the oval is filled, then |
664 |
* anywhere in the interior is considered "inside"; if |
665 |
* the oval isn't filled, then "inside" means only the area |
666 |
* occupied by the outline. |
667 |
* |
668 |
* Side effects: |
669 |
* None. |
670 |
* |
671 |
*-------------------------------------------------------------- |
672 |
*/ |
673 |
|
674 |
/* ARGSUSED */ |
675 |
double |
676 |
TkOvalToPoint(ovalPtr, width, filled, pointPtr) |
677 |
double ovalPtr[4]; /* Pointer to array of four coordinates |
678 |
* (x1, y1, x2, y2) defining oval's bounding |
679 |
* box. */ |
680 |
double width; /* Width of outline for oval. */ |
681 |
int filled; /* Non-zero means oval should be treated as |
682 |
* filled; zero means only consider outline. */ |
683 |
double pointPtr[2]; /* Coordinates of point. */ |
684 |
{ |
685 |
double xDelta, yDelta, scaledDistance, distToOutline, distToCenter; |
686 |
double xDiam, yDiam; |
687 |
|
688 |
/* |
689 |
* Compute the distance between the center of the oval and the |
690 |
* point in question, using a coordinate system where the oval |
691 |
* has been transformed to a circle with unit radius. |
692 |
*/ |
693 |
|
694 |
xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0); |
695 |
yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0); |
696 |
distToCenter = hypot(xDelta, yDelta); |
697 |
scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0), |
698 |
yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0)); |
699 |
|
700 |
|
701 |
/* |
702 |
* If the scaled distance is greater than 1 then it means no |
703 |
* hit. Compute the distance from the point to the edge of |
704 |
* the circle, then scale this distance back to the original |
705 |
* coordinate system. |
706 |
* |
707 |
* Note: this distance isn't completely accurate. It's only |
708 |
* an approximation, and it can overestimate the correct |
709 |
* distance when the oval is eccentric. |
710 |
*/ |
711 |
|
712 |
if (scaledDistance > 1.0) { |
713 |
return (distToCenter/scaledDistance) * (scaledDistance - 1.0); |
714 |
} |
715 |
|
716 |
/* |
717 |
* Scaled distance less than 1 means the point is inside the |
718 |
* outer edge of the oval. If this is a filled oval, then we |
719 |
* have a hit. Otherwise, do the same computation as above |
720 |
* (scale back to original coordinate system), but also check |
721 |
* to see if the point is within the width of the outline. |
722 |
*/ |
723 |
|
724 |
if (filled) { |
725 |
return 0.0; |
726 |
} |
727 |
if (scaledDistance > 1E-10) { |
728 |
distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance) |
729 |
- width; |
730 |
} else { |
731 |
/* |
732 |
* Avoid dividing by a very small number (it could cause an |
733 |
* arithmetic overflow). This problem occurs if the point is |
734 |
* very close to the center of the oval. |
735 |
*/ |
736 |
|
737 |
xDiam = ovalPtr[2] - ovalPtr[0]; |
738 |
yDiam = ovalPtr[3] - ovalPtr[1]; |
739 |
if (xDiam < yDiam) { |
740 |
distToOutline = (xDiam - width)/2; |
741 |
} else { |
742 |
distToOutline = (yDiam - width)/2; |
743 |
} |
744 |
} |
745 |
|
746 |
if (distToOutline < 0.0) { |
747 |
return 0.0; |
748 |
} |
749 |
return distToOutline; |
750 |
} |
751 |
|
752 |
/* |
753 |
*-------------------------------------------------------------- |
754 |
* |
755 |
* TkOvalToArea -- |
756 |
* |
757 |
* Determine whether an oval lies entirely inside, entirely |
758 |
* outside, or overlapping a given rectangular area. |
759 |
* |
760 |
* Results: |
761 |
* -1 is returned if the oval described by ovalPtr is entirely |
762 |
* outside the rectangle given by rectPtr. 0 is returned if the |
763 |
* oval overlaps the rectangle, and 1 is returned if the oval |
764 |
* is entirely inside the rectangle. |
765 |
* |
766 |
* Side effects: |
767 |
* None. |
768 |
* |
769 |
*-------------------------------------------------------------- |
770 |
*/ |
771 |
|
772 |
int |
773 |
TkOvalToArea(ovalPtr, rectPtr) |
774 |
register double *ovalPtr; /* Points to coordinates definining the |
775 |
* bounding rectangle for the oval: x1, y1, |
776 |
* x2, y2. X1 must be less than x2 and y1 |
777 |
* less than y2. */ |
778 |
register double *rectPtr; /* Points to coords for rectangle, in the |
779 |
* order x1, y1, x2, y2. X1 and y1 must |
780 |
* be lower-left corner. */ |
781 |
{ |
782 |
double centerX, centerY, radX, radY, deltaX, deltaY; |
783 |
|
784 |
/* |
785 |
* First, see if oval is entirely inside rectangle or entirely |
786 |
* outside rectangle. |
787 |
*/ |
788 |
|
789 |
if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2]) |
790 |
&& (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) { |
791 |
return 1; |
792 |
} |
793 |
if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2]) |
794 |
|| (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) { |
795 |
return -1; |
796 |
} |
797 |
|
798 |
/* |
799 |
* Next, go through the rectangle side by side. For each side |
800 |
* of the rectangle, find the point on the side that is closest |
801 |
* to the oval's center, and see if that point is inside the |
802 |
* oval. If at least one such point is inside the oval, then |
803 |
* the rectangle intersects the oval. |
804 |
*/ |
805 |
|
806 |
centerX = (ovalPtr[0] + ovalPtr[2])/2; |
807 |
centerY = (ovalPtr[1] + ovalPtr[3])/2; |
808 |
radX = (ovalPtr[2] - ovalPtr[0])/2; |
809 |
radY = (ovalPtr[3] - ovalPtr[1])/2; |
810 |
|
811 |
deltaY = rectPtr[1] - centerY; |
812 |
if (deltaY < 0.0) { |
813 |
deltaY = centerY - rectPtr[3]; |
814 |
if (deltaY < 0.0) { |
815 |
deltaY = 0; |
816 |
} |
817 |
} |
818 |
deltaY /= radY; |
819 |
deltaY *= deltaY; |
820 |
|
821 |
/* |
822 |
* Left side: |
823 |
*/ |
824 |
|
825 |
deltaX = (rectPtr[0] - centerX)/radX; |
826 |
deltaX *= deltaX; |
827 |
if ((deltaX + deltaY) <= 1.0) { |
828 |
return 0; |
829 |
} |
830 |
|
831 |
/* |
832 |
* Right side: |
833 |
*/ |
834 |
|
835 |
deltaX = (rectPtr[2] - centerX)/radX; |
836 |
deltaX *= deltaX; |
837 |
if ((deltaX + deltaY) <= 1.0) { |
838 |
return 0; |
839 |
} |
840 |
|
841 |
deltaX = rectPtr[0] - centerX; |
842 |
if (deltaX < 0.0) { |
843 |
deltaX = centerX - rectPtr[2]; |
844 |
if (deltaX < 0.0) { |
845 |
deltaX = 0; |
846 |
} |
847 |
} |
848 |
deltaX /= radX; |
849 |
deltaX *= deltaX; |
850 |
|
851 |
/* |
852 |
* Bottom side: |
853 |
*/ |
854 |
|
855 |
deltaY = (rectPtr[1] - centerY)/radY; |
856 |
deltaY *= deltaY; |
857 |
if ((deltaX + deltaY) < 1.0) { |
858 |
return 0; |
859 |
} |
860 |
|
861 |
/* |
862 |
* Top side: |
863 |
*/ |
864 |
|
865 |
deltaY = (rectPtr[3] - centerY)/radY; |
866 |
deltaY *= deltaY; |
867 |
if ((deltaX + deltaY) < 1.0) { |
868 |
return 0; |
869 |
} |
870 |
|
871 |
return -1; |
872 |
} |
873 |
|
874 |
/* |
875 |
*-------------------------------------------------------------- |
876 |
* |
877 |
* TkIncludePoint -- |
878 |
* |
879 |
* Given a point and a generic canvas item header, expand |
880 |
* the item's bounding box if needed to include the point. |
881 |
* |
882 |
* Results: |
883 |
* None. |
884 |
* |
885 |
* Side effects: |
886 |
* The boudn. |
887 |
* |
888 |
*-------------------------------------------------------------- |
889 |
*/ |
890 |
|
891 |
/* ARGSUSED */ |
892 |
void |
893 |
TkIncludePoint(itemPtr, pointPtr) |
894 |
register Tk_Item *itemPtr; /* Item whose bounding box is |
895 |
* being calculated. */ |
896 |
double *pointPtr; /* Address of two doubles giving |
897 |
* x and y coordinates of point. */ |
898 |
{ |
899 |
int tmp; |
900 |
|
901 |
tmp = (int) (pointPtr[0] + 0.5); |
902 |
if (tmp < itemPtr->x1) { |
903 |
itemPtr->x1 = tmp; |
904 |
} |
905 |
if (tmp > itemPtr->x2) { |
906 |
itemPtr->x2 = tmp; |
907 |
} |
908 |
tmp = (int) (pointPtr[1] + 0.5); |
909 |
if (tmp < itemPtr->y1) { |
910 |
itemPtr->y1 = tmp; |
911 |
} |
912 |
if (tmp > itemPtr->y2) { |
913 |
itemPtr->y2 = tmp; |
914 |
} |
915 |
} |
916 |
|
917 |
/* |
918 |
*-------------------------------------------------------------- |
919 |
* |
920 |
* TkBezierScreenPoints -- |
921 |
* |
922 |
* Given four control points, create a larger set of XPoints |
923 |
* for a Bezier spline based on the points. |
924 |
* |
925 |
* Results: |
926 |
* The array at *xPointPtr gets filled in with numSteps XPoints |
927 |
* corresponding to the Bezier spline defined by the four |
928 |
* control points. Note: no output point is generated for the |
929 |
* first input point, but an output point *is* generated for |
930 |
* the last input point. |
931 |
* |
932 |
* Side effects: |
933 |
* None. |
934 |
* |
935 |
*-------------------------------------------------------------- |
936 |
*/ |
937 |
|
938 |
void |
939 |
TkBezierScreenPoints(canvas, control, numSteps, xPointPtr) |
940 |
Tk_Canvas canvas; /* Canvas in which curve is to be |
941 |
* drawn. */ |
942 |
double control[]; /* Array of coordinates for four |
943 |
* control points: x0, y0, x1, y1, |
944 |
* ... x3 y3. */ |
945 |
int numSteps; /* Number of curve points to |
946 |
* generate. */ |
947 |
register XPoint *xPointPtr; /* Where to put new points. */ |
948 |
{ |
949 |
int i; |
950 |
double u, u2, u3, t, t2, t3; |
951 |
|
952 |
for (i = 1; i <= numSteps; i++, xPointPtr++) { |
953 |
t = ((double) i)/((double) numSteps); |
954 |
t2 = t*t; |
955 |
t3 = t2*t; |
956 |
u = 1.0 - t; |
957 |
u2 = u*u; |
958 |
u3 = u2*u; |
959 |
Tk_CanvasDrawableCoords(canvas, |
960 |
(control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u) |
961 |
+ control[6]*t3), |
962 |
(control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u) |
963 |
+ control[7]*t3), |
964 |
&xPointPtr->x, &xPointPtr->y); |
965 |
} |
966 |
} |
967 |
|
968 |
/* |
969 |
*-------------------------------------------------------------- |
970 |
* |
971 |
* TkBezierPoints -- |
972 |
* |
973 |
* Given four control points, create a larger set of points |
974 |
* for a Bezier spline based on the points. |
975 |
* |
976 |
* Results: |
977 |
* The array at *coordPtr gets filled in with 2*numSteps |
978 |
* coordinates, which correspond to the Bezier spline defined |
979 |
* by the four control points. Note: no output point is |
980 |
* generated for the first input point, but an output point |
981 |
* *is* generated for the last input point. |
982 |
* |
983 |
* Side effects: |
984 |
* None. |
985 |
* |
986 |
*-------------------------------------------------------------- |
987 |
*/ |
988 |
|
989 |
void |
990 |
TkBezierPoints(control, numSteps, coordPtr) |
991 |
double control[]; /* Array of coordinates for four |
992 |
* control points: x0, y0, x1, y1, |
993 |
* ... x3 y3. */ |
994 |
int numSteps; /* Number of curve points to |
995 |
* generate. */ |
996 |
register double *coordPtr; /* Where to put new points. */ |
997 |
{ |
998 |
int i; |
999 |
double u, u2, u3, t, t2, t3; |
1000 |
|
1001 |
for (i = 1; i <= numSteps; i++, coordPtr += 2) { |
1002 |
t = ((double) i)/((double) numSteps); |
1003 |
t2 = t*t; |
1004 |
t3 = t2*t; |
1005 |
u = 1.0 - t; |
1006 |
u2 = u*u; |
1007 |
u3 = u2*u; |
1008 |
coordPtr[0] = control[0]*u3 |
1009 |
+ 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3; |
1010 |
coordPtr[1] = control[1]*u3 |
1011 |
+ 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3; |
1012 |
} |
1013 |
} |
1014 |
|
1015 |
/* |
1016 |
*-------------------------------------------------------------- |
1017 |
* |
1018 |
* TkMakeBezierCurve -- |
1019 |
* |
1020 |
* Given a set of points, create a new set of points that fit |
1021 |
* parabolic splines to the line segments connecting the original |
1022 |
* points. Produces output points in either of two forms. |
1023 |
* |
1024 |
* Note: in spite of this procedure's name, it does *not* generate |
1025 |
* Bezier curves. Since only three control points are used for |
1026 |
* each curve segment, not four, the curves are actually just |
1027 |
* parabolic. |
1028 |
* |
1029 |
* Results: |
1030 |
* Either or both of the xPoints or dblPoints arrays are filled |
1031 |
* in. The return value is the number of points placed in the |
1032 |
* arrays. Note: if the first and last points are the same, then |
1033 |
* a closed curve is generated. |
1034 |
* |
1035 |
* Side effects: |
1036 |
* None. |
1037 |
* |
1038 |
*-------------------------------------------------------------- |
1039 |
*/ |
1040 |
|
1041 |
int |
1042 |
TkMakeBezierCurve(canvas, pointPtr, numPoints, numSteps, xPoints, dblPoints) |
1043 |
Tk_Canvas canvas; /* Canvas in which curve is to be |
1044 |
* drawn. */ |
1045 |
double *pointPtr; /* Array of input coordinates: x0, |
1046 |
* y0, x1, y1, etc.. */ |
1047 |
int numPoints; /* Number of points at pointPtr. */ |
1048 |
int numSteps; /* Number of steps to use for each |
1049 |
* spline segments (determines |
1050 |
* smoothness of curve). */ |
1051 |
XPoint xPoints[]; /* Array of XPoints to fill in (e.g. |
1052 |
* for display. NULL means don't |
1053 |
* fill in any XPoints. */ |
1054 |
double dblPoints[]; /* Array of points to fill in as |
1055 |
* doubles, in the form x0, y0, |
1056 |
* x1, y1, .... NULL means don't |
1057 |
* fill in anything in this form. |
1058 |
* Caller must make sure that this |
1059 |
* array has enough space. */ |
1060 |
{ |
1061 |
int closed, outputPoints, i; |
1062 |
int numCoords = numPoints*2; |
1063 |
double control[8]; |
1064 |
|
1065 |
/* |
1066 |
* If the curve is a closed one then generate a special spline |
1067 |
* that spans the last points and the first ones. Otherwise |
1068 |
* just put the first point into the output. |
1069 |
*/ |
1070 |
|
1071 |
if (!pointPtr) { |
1072 |
/* Of pointPtr == NULL, this function returns an upper limit. |
1073 |
* of the array size to store the coordinates. This can be |
1074 |
* used to allocate storage, before the actual coordinates |
1075 |
* are calculated. */ |
1076 |
return 1 + numPoints * numSteps; |
1077 |
} |
1078 |
|
1079 |
outputPoints = 0; |
1080 |
if ((pointPtr[0] == pointPtr[numCoords-2]) |
1081 |
&& (pointPtr[1] == pointPtr[numCoords-1])) { |
1082 |
closed = 1; |
1083 |
control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0]; |
1084 |
control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1]; |
1085 |
control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0]; |
1086 |
control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1]; |
1087 |
control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2]; |
1088 |
control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3]; |
1089 |
control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; |
1090 |
control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; |
1091 |
if (xPoints != NULL) { |
1092 |
Tk_CanvasDrawableCoords(canvas, control[0], control[1], |
1093 |
&xPoints->x, &xPoints->y); |
1094 |
TkBezierScreenPoints(canvas, control, numSteps, xPoints+1); |
1095 |
xPoints += numSteps+1; |
1096 |
} |
1097 |
if (dblPoints != NULL) { |
1098 |
dblPoints[0] = control[0]; |
1099 |
dblPoints[1] = control[1]; |
1100 |
TkBezierPoints(control, numSteps, dblPoints+2); |
1101 |
dblPoints += 2*(numSteps+1); |
1102 |
} |
1103 |
outputPoints += numSteps+1; |
1104 |
} else { |
1105 |
closed = 0; |
1106 |
if (xPoints != NULL) { |
1107 |
Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1], |
1108 |
&xPoints->x, &xPoints->y); |
1109 |
xPoints += 1; |
1110 |
} |
1111 |
if (dblPoints != NULL) { |
1112 |
dblPoints[0] = pointPtr[0]; |
1113 |
dblPoints[1] = pointPtr[1]; |
1114 |
dblPoints += 2; |
1115 |
} |
1116 |
outputPoints += 1; |
1117 |
} |
1118 |
|
1119 |
for (i = 2; i < numPoints; i++, pointPtr += 2) { |
1120 |
/* |
1121 |
* Set up the first two control points. This is done |
1122 |
* differently for the first spline of an open curve |
1123 |
* than for other cases. |
1124 |
*/ |
1125 |
|
1126 |
if ((i == 2) && !closed) { |
1127 |
control[0] = pointPtr[0]; |
1128 |
control[1] = pointPtr[1]; |
1129 |
control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2]; |
1130 |
control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3]; |
1131 |
} else { |
1132 |
control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; |
1133 |
control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; |
1134 |
control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2]; |
1135 |
control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3]; |
1136 |
} |
1137 |
|
1138 |
/* |
1139 |
* Set up the last two control points. This is done |
1140 |
* differently for the last spline of an open curve |
1141 |
* than for other cases. |
1142 |
*/ |
1143 |
|
1144 |
if ((i == (numPoints-1)) && !closed) { |
1145 |
control[4] = .667*pointPtr[2] + .333*pointPtr[4]; |
1146 |
control[5] = .667*pointPtr[3] + .333*pointPtr[5]; |
1147 |
control[6] = pointPtr[4]; |
1148 |
control[7] = pointPtr[5]; |
1149 |
} else { |
1150 |
control[4] = .833*pointPtr[2] + .167*pointPtr[4]; |
1151 |
control[5] = .833*pointPtr[3] + .167*pointPtr[5]; |
1152 |
control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4]; |
1153 |
control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5]; |
1154 |
} |
1155 |
|
1156 |
/* |
1157 |
* If the first two points coincide, or if the last |
1158 |
* two points coincide, then generate a single |
1159 |
* straight-line segment by outputting the last control |
1160 |
* point. |
1161 |
*/ |
1162 |
|
1163 |
if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3])) |
1164 |
|| ((pointPtr[2] == pointPtr[4]) |
1165 |
&& (pointPtr[3] == pointPtr[5]))) { |
1166 |
if (xPoints != NULL) { |
1167 |
Tk_CanvasDrawableCoords(canvas, control[6], control[7], |
1168 |
&xPoints[0].x, &xPoints[0].y); |
1169 |
xPoints++; |
1170 |
} |
1171 |
if (dblPoints != NULL) { |
1172 |
dblPoints[0] = control[6]; |
1173 |
dblPoints[1] = control[7]; |
1174 |
dblPoints += 2; |
1175 |
} |
1176 |
outputPoints += 1; |
1177 |
continue; |
1178 |
} |
1179 |
|
1180 |
/* |
1181 |
* Generate a Bezier spline using the control points. |
1182 |
*/ |
1183 |
|
1184 |
|
1185 |
if (xPoints != NULL) { |
1186 |
TkBezierScreenPoints(canvas, control, numSteps, xPoints); |
1187 |
xPoints += numSteps; |
1188 |
} |
1189 |
if (dblPoints != NULL) { |
1190 |
TkBezierPoints(control, numSteps, dblPoints); |
1191 |
dblPoints += 2*numSteps; |
1192 |
} |
1193 |
outputPoints += numSteps; |
1194 |
} |
1195 |
return outputPoints; |
1196 |
} |
1197 |
|
1198 |
/* |
1199 |
*-------------------------------------------------------------- |
1200 |
* |
1201 |
* TkMakeBezierPostscript -- |
1202 |
* |
1203 |
* This procedure generates Postscript commands that create |
1204 |
* a path corresponding to a given Bezier curve. |
1205 |
* |
1206 |
* Results: |
1207 |
* None. Postscript commands to generate the path are appended |
1208 |
* to the interp's result. |
1209 |
* |
1210 |
* Side effects: |
1211 |
* None. |
1212 |
* |
1213 |
*-------------------------------------------------------------- |
1214 |
*/ |
1215 |
|
1216 |
void |
1217 |
TkMakeBezierPostscript(interp, canvas, pointPtr, numPoints) |
1218 |
Tcl_Interp *interp; /* Interpreter in whose result the |
1219 |
* Postscript is to be stored. */ |
1220 |
Tk_Canvas canvas; /* Canvas widget for which the |
1221 |
* Postscript is being generated. */ |
1222 |
double *pointPtr; /* Array of input coordinates: x0, |
1223 |
* y0, x1, y1, etc.. */ |
1224 |
int numPoints; /* Number of points at pointPtr. */ |
1225 |
{ |
1226 |
int closed, i; |
1227 |
int numCoords = numPoints*2; |
1228 |
double control[8]; |
1229 |
char buffer[200]; |
1230 |
|
1231 |
/* |
1232 |
* If the curve is a closed one then generate a special spline |
1233 |
* that spans the last points and the first ones. Otherwise |
1234 |
* just put the first point into the path. |
1235 |
*/ |
1236 |
|
1237 |
if ((pointPtr[0] == pointPtr[numCoords-2]) |
1238 |
&& (pointPtr[1] == pointPtr[numCoords-1])) { |
1239 |
closed = 1; |
1240 |
control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0]; |
1241 |
control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1]; |
1242 |
control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0]; |
1243 |
control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1]; |
1244 |
control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2]; |
1245 |
control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3]; |
1246 |
control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; |
1247 |
control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; |
1248 |
sprintf(buffer, "%.15g %.15g moveto\n%.15g %.15g %.15g %.15g %.15g %.15g curveto\n", |
1249 |
control[0], Tk_CanvasPsY(canvas, control[1]), |
1250 |
control[2], Tk_CanvasPsY(canvas, control[3]), |
1251 |
control[4], Tk_CanvasPsY(canvas, control[5]), |
1252 |
control[6], Tk_CanvasPsY(canvas, control[7])); |
1253 |
} else { |
1254 |
closed = 0; |
1255 |
control[6] = pointPtr[0]; |
1256 |
control[7] = pointPtr[1]; |
1257 |
sprintf(buffer, "%.15g %.15g moveto\n", |
1258 |
control[6], Tk_CanvasPsY(canvas, control[7])); |
1259 |
} |
1260 |
Tcl_AppendResult(interp, buffer, (char *) NULL); |
1261 |
|
1262 |
/* |
1263 |
* Cycle through all the remaining points in the curve, generating |
1264 |
* a curve section for each vertex in the linear path. |
1265 |
*/ |
1266 |
|
1267 |
for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) { |
1268 |
control[2] = 0.333*control[6] + 0.667*pointPtr[0]; |
1269 |
control[3] = 0.333*control[7] + 0.667*pointPtr[1]; |
1270 |
|
1271 |
/* |
1272 |
* Set up the last two control points. This is done |
1273 |
* differently for the last spline of an open curve |
1274 |
* than for other cases. |
1275 |
*/ |
1276 |
|
1277 |
if ((i == 1) && !closed) { |
1278 |
control[6] = pointPtr[2]; |
1279 |
control[7] = pointPtr[3]; |
1280 |
} else { |
1281 |
control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; |
1282 |
control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; |
1283 |
} |
1284 |
control[4] = 0.333*control[6] + 0.667*pointPtr[0]; |
1285 |
control[5] = 0.333*control[7] + 0.667*pointPtr[1]; |
1286 |
|
1287 |
sprintf(buffer, "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n", |
1288 |
control[2], Tk_CanvasPsY(canvas, control[3]), |
1289 |
control[4], Tk_CanvasPsY(canvas, control[5]), |
1290 |
control[6], Tk_CanvasPsY(canvas, control[7])); |
1291 |
Tcl_AppendResult(interp, buffer, (char *) NULL); |
1292 |
} |
1293 |
} |
1294 |
|
1295 |
/* |
1296 |
*-------------------------------------------------------------- |
1297 |
* |
1298 |
* TkGetMiterPoints -- |
1299 |
* |
1300 |
* Given three points forming an angle, compute the |
1301 |
* coordinates of the inside and outside points of |
1302 |
* the mitered corner formed by a line of a given |
1303 |
* width at that angle. |
1304 |
* |
1305 |
* Results: |
1306 |
* If the angle formed by the three points is less than |
1307 |
* 11 degrees then 0 is returned and m1 and m2 aren't |
1308 |
* modified. Otherwise 1 is returned and the points at |
1309 |
* m1 and m2 are filled in with the positions of the points |
1310 |
* of the mitered corner. |
1311 |
* |
1312 |
* Side effects: |
1313 |
* None. |
1314 |
* |
1315 |
*-------------------------------------------------------------- |
1316 |
*/ |
1317 |
|
1318 |
int |
1319 |
TkGetMiterPoints(p1, p2, p3, width, m1, m2) |
1320 |
double p1[]; /* Points to x- and y-coordinates of point |
1321 |
* before vertex. */ |
1322 |
double p2[]; /* Points to x- and y-coordinates of vertex |
1323 |
* for mitered joint. */ |
1324 |
double p3[]; /* Points to x- and y-coordinates of point |
1325 |
* after vertex. */ |
1326 |
double width; /* Width of line. */ |
1327 |
double m1[]; /* Points to place to put "left" vertex |
1328 |
* point (see as you face from p1 to p2). */ |
1329 |
double m2[]; /* Points to place to put "right" vertex |
1330 |
* point. */ |
1331 |
{ |
1332 |
double theta1; /* Angle of segment p2-p1. */ |
1333 |
double theta2; /* Angle of segment p2-p3. */ |
1334 |
double theta; /* Angle between line segments (angle |
1335 |
* of joint). */ |
1336 |
double theta3; /* Angle that bisects theta1 and |
1337 |
* theta2 and points to m1. */ |
1338 |
double dist; /* Distance of miter points from p2. */ |
1339 |
double deltaX, deltaY; /* X and y offsets cooresponding to |
1340 |
* dist (fudge factors for bounding |
1341 |
* box). */ |
1342 |
double p1x, p1y, p2x, p2y, p3x, p3y; |
1343 |
static double elevenDegrees = (11.0*2.0*PI)/360.0; |
1344 |
|
1345 |
/* |
1346 |
* Round the coordinates to integers to mimic what happens when the |
1347 |
* line segments are displayed; without this code, the bounding box |
1348 |
* of a mitered line can be miscomputed greatly. |
1349 |
*/ |
1350 |
|
1351 |
p1x = floor(p1[0]+0.5); |
1352 |
p1y = floor(p1[1]+0.5); |
1353 |
p2x = floor(p2[0]+0.5); |
1354 |
p2y = floor(p2[1]+0.5); |
1355 |
p3x = floor(p3[0]+0.5); |
1356 |
p3y = floor(p3[1]+0.5); |
1357 |
|
1358 |
if (p2y == p1y) { |
1359 |
theta1 = (p2x < p1x) ? 0 : PI; |
1360 |
} else if (p2x == p1x) { |
1361 |
theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0; |
1362 |
} else { |
1363 |
theta1 = atan2(p1y - p2y, p1x - p2x); |
1364 |
} |
1365 |
if (p3y == p2y) { |
1366 |
theta2 = (p3x > p2x) ? 0 : PI; |
1367 |
} else if (p3x == p2x) { |
1368 |
theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0; |
1369 |
} else { |
1370 |
theta2 = atan2(p3y - p2y, p3x - p2x); |
1371 |
} |
1372 |
theta = theta1 - theta2; |
1373 |
if (theta > PI) { |
1374 |
theta -= 2*PI; |
1375 |
} else if (theta < -PI) { |
1376 |
theta += 2*PI; |
1377 |
} |
1378 |
if ((theta < elevenDegrees) && (theta > -elevenDegrees)) { |
1379 |
return 0; |
1380 |
} |
1381 |
dist = 0.5*width/sin(0.5*theta); |
1382 |
if (dist < 0.0) { |
1383 |
dist = -dist; |
1384 |
} |
1385 |
|
1386 |
/* |
1387 |
* Compute theta3 (make sure that it points to the left when |
1388 |
* looking from p1 to p2). |
1389 |
*/ |
1390 |
|
1391 |
theta3 = (theta1 + theta2)/2.0; |
1392 |
if (sin(theta3 - (theta1 + PI)) < 0.0) { |
1393 |
theta3 += PI; |
1394 |
} |
1395 |
deltaX = dist*cos(theta3); |
1396 |
m1[0] = p2x + deltaX; |
1397 |
m2[0] = p2x - deltaX; |
1398 |
deltaY = dist*sin(theta3); |
1399 |
m1[1] = p2y + deltaY; |
1400 |
m2[1] = p2y - deltaY; |
1401 |
return 1; |
1402 |
} |
1403 |
|
1404 |
/* |
1405 |
*-------------------------------------------------------------- |
1406 |
* |
1407 |
* TkGetButtPoints -- |
1408 |
* |
1409 |
* Given two points forming a line segment, compute the |
1410 |
* coordinates of two endpoints of a rectangle formed by |
1411 |
* bloating the line segment until it is width units wide. |
1412 |
* |
1413 |
* Results: |
1414 |
* There is no return value. M1 and m2 are filled in to |
1415 |
* correspond to m1 and m2 in the diagram below: |
1416 |
* |
1417 |
* ----------------* m1 |
1418 |
* | |
1419 |
* p1 *---------------* p2 |
1420 |
* | |
1421 |
* ----------------* m2 |
1422 |
* |
1423 |
* M1 and m2 will be W units apart, with p2 centered between |
1424 |
* them and m1-m2 perpendicular to p1-p2. However, if |
1425 |
* "project" is true then m1 and m2 will be as follows: |
1426 |
* |
1427 |
* -------------------* m1 |
1428 |
* p2 | |
1429 |
* p1 *---------------* | |
1430 |
* | |
1431 |
* -------------------* m2 |
1432 |
* |
1433 |
* In this case p2 will be width/2 units from the segment m1-m2. |
1434 |
* |
1435 |
* Side effects: |
1436 |
* None. |
1437 |
* |
1438 |
*-------------------------------------------------------------- |
1439 |
*/ |
1440 |
|
1441 |
void |
1442 |
TkGetButtPoints(p1, p2, width, project, m1, m2) |
1443 |
double p1[]; /* Points to x- and y-coordinates of point |
1444 |
* before vertex. */ |
1445 |
double p2[]; /* Points to x- and y-coordinates of vertex |
1446 |
* for mitered joint. */ |
1447 |
double width; /* Width of line. */ |
1448 |
int project; /* Non-zero means project p2 by an additional |
1449 |
* width/2 before computing m1 and m2. */ |
1450 |
double m1[]; /* Points to place to put "left" result |
1451 |
* point, as you face from p1 to p2. */ |
1452 |
double m2[]; /* Points to place to put "right" result |
1453 |
* point. */ |
1454 |
{ |
1455 |
double length; /* Length of p1-p2 segment. */ |
1456 |
double deltaX, deltaY; /* Increments in coords. */ |
1457 |
|
1458 |
width *= 0.5; |
1459 |
length = hypot(p2[0] - p1[0], p2[1] - p1[1]); |
1460 |
if (length == 0.0) { |
1461 |
m1[0] = m2[0] = p2[0]; |
1462 |
m1[1] = m2[1] = p2[1]; |
1463 |
} else { |
1464 |
deltaX = -width * (p2[1] - p1[1]) / length; |
1465 |
deltaY = width * (p2[0] - p1[0]) / length; |
1466 |
m1[0] = p2[0] + deltaX; |
1467 |
m2[0] = p2[0] - deltaX; |
1468 |
m1[1] = p2[1] + deltaY; |
1469 |
m2[1] = p2[1] - deltaY; |
1470 |
if (project) { |
1471 |
m1[0] += deltaY; |
1472 |
m2[0] += deltaY; |
1473 |
m1[1] -= deltaX; |
1474 |
m2[1] -= deltaX; |
1475 |
} |
1476 |
} |
1477 |
} |
1478 |
|
1479 |
/* End of tktrig.c */ |