1. Intellectual Property Notes

a. Everything on this topic (the design, verification, and implementation of systems with a large discrete state space) is pre-existing and pre-dates my employment. The appearance of this presentation within the company should not be interpreted to mean that the ideas were developed while employed by the company or that any intellectual property is assigned to the company.

b. The company is welcome to use, without restriction, everything released/distributed within the company during my employment.

2. Overview

a. Presentation is actually partially an analysis of an existing software component. Because there are some questions I’d like to discuss with researchers, the three files of the component are anonymized to x.c, x.h, and x_can.c so as not to leak any confidential information.

i. x.c: the major stateful component.

ii. x_comm.c: the portion of the component that deals with network communication.

iii. x.h: the header file for both x.c and x_comm.c.

b. Goals

i. To present ways of thinking about systems with a large discrete state space.

ii. To steer the group in these directions:

1. A defined way to [manually] design systems with a large discrete state space.

2. A defined way to [manually] implement systems with a large discrete space in software from a design.

3. Automated implementation (a.k.a. automatic code generation) from a design.

4. Model-checking: verifying important properties of the system automatically.

3. What is State?

a.

4. Timed Automata

a. Restricted modeling framework (Alur & Dill, UPPAAL).

b. System of concurrent state machines.

c. Time.

d. Counters.

e. Interaction mechanisms:

i. One state machine may take a transition or not take a transition based on the state of another (weak synchronization mechanism).

ii. Events (stronger synchronization mechanism).

f. The framework allows the automatons to be combined mathematically into a larger automaton. (Of course, exponential growth.)

g. What is the true state space?

i. Discrete state.

ii. Timers

iii. Counters

h. Polytopes and reasoning about reachability.

5. How a model-checking tool works

a. With a continuous system (classic control system), there are certain ways of reasoning about infinite sets (differential equations, stability criteria, etc.) that don’t require a lot of computer capability.

b. With automata, verifying properties involves state exploration, and is exponential with respect to the number of automatons being combined. There are of course combinations of automata and properties that will result in quick verification, but this is not the general case.

c. Because of the exponential growth, the composite automaton can’t be built as a data structure in memory in advance. The model-checking tools have clever ways of traversing the state space while keeping a reasonable memory footprint.

d. Additional reading/activities:

i. Model checking.

ii. Papers by Alur and Dill.

iii. Papers surrounding UPPAAL.

iv. It is also possible to ask for a research license for UPPAAL and download and try it out for free.

6. Possible Lessons to Learn from Timed Automata

a. A collection of state machines within a software component really make up one much bigger state machine. You can actually determine what it is (given adequate computing resources).

b. The maintenance of time.

c. Composition and decomposition of a sequential system is not unique. More than one set of automatons combined may lead to the same behavior.

d. What a bitfield really is.

e.

7. Notions of robustness.

a. None of this is standard as best I know—these are just my rambling thoughts.

b. A system consists of a plant and a controller. The plant may be a mechanical system, a piece of digital logic, another software system, whatever. Both may be upsettable.

c. R00 robustness: the system behaves acceptably when both the controller and plant start from a unique initial state. This might also be called correctness of the controller.

d. R0X robustness: the system behaves acceptably if the controller starts in an initial state but the plant starts in an arbitrary state. (The transfer case story.) This might also be referred to as correct or robust design of the controller.

e. [bookmark: _GoBack]

8. Recommendations for the component (x.c, x.h, and x_comm.c).

a. Conceptual.

i. Get the code clear on the meaning of event versus the meaning of signal.

ii. Get the customer clear on the meaning of event versus the meaning of signal.

b. Correspondence between spec. and code.

i. Bring the code as close as possible to the spec.

ii. Bring the spec. as close as possible to the code.

iii. Find a non-sequential way of tagging the spec. to trace the code to the spec.

c. Time as maintained in the code.

i. Eliminate timers that count down in some states but not in others. (Time should be part of the ether.)

ii. Consider eliminating timers that expire.

iii. If that won’t work, enhance the definition of timer to include expired and inactive without adding additional variables.

d. Function naming conventions

i. Consider naming functions based on how they are called and threading issues.

ii.

e.
20170221_stateful_sys_imp.docx	4/4	David T. Ashley (dashley@gmail.com)
