/[dtapublic]/pubs/books/ucbka/trunk/c_glo1/c_glo1.tex
ViewVC logotype

Diff of /pubs/books/ucbka/trunk/c_glo1/c_glo1.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 5 by dashley, Thu Oct 6 23:27:41 2016 UTC revision 140 by dashley, Mon Jul 3 01:59:16 2017 UTC
# Line 1  Line 1 
1  %$Header: /home/dashley/cvsrep/e3ft_gpl01/e3ft_gpl01/dtaipubs/esrgubka/c_glo1/c_glo1.tex,v 1.7 2003/03/13 06:28:13 dtashley Exp $  %$Header$
2    
3  \chapter*{Glossary Of Mathematical And Other Notation}  \chapter*{Glossary Of Mathematical And Other Notation}
4  \markboth{GLOSSARY OF MATHEMATICAL NOTATION}{GLOSSARY OF MATHEMATICAL NOTATION}  \markboth{GLOSSARY OF MATHEMATICAL NOTATION}{GLOSSARY OF MATHEMATICAL NOTATION}
5    
6  \label{cglo1}  \label{cglo1}
7    
8  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11    
12  \section*{General Notation}  \section*{General Notation}
13    
14  \begin{vworkmathtermglossaryenum}  \begin{vworkmathtermglossaryenum}
15    
16  \item \mbox{\boldmath $ \vworkdivides $}  \item \mbox{\boldmath $ \vworkdivides $}
17    
18    
19        $a \vworkdivides b$,        $a \vworkdivides b$,
20        \index{divides@divides ($\vworkdivides$)}        \index{divides@divides ($\vworkdivides$)}
21        \index{--@$\vworkdivides$ (divides)}        \index{--@$\vworkdivides$ (divides)}
22        read ``\emph{$a$ divides $b$}'', denotes that $b/a$ has no remainder.        read ``\emph{$a$ divides $b$}'', denotes that $b/a$ has no remainder.
23        Equivalently, it may be stated that        Equivalently, it may be stated that
24        $(a \vworkdivides b) \Rightarrow (\exists c \in \vworkintset{}, b = ac)$.        $(a \vworkdivides b) \Rightarrow (\exists c \in \vworkintset{}, b = ac)$.
25    
26  \item \mbox{\boldmath $ \vworknotdivides $}  \item \mbox{\boldmath $ \vworknotdivides $}
27    
28        $a \vworknotdivides b$,        $a \vworknotdivides b$,
29        \index{divides@divides ($\vworkdivides$)}        \index{divides@divides ($\vworkdivides$)}
30        \index{--@$\vworknotdivides$ (doesn't divide)}        \index{--@$\vworknotdivides$ (doesn't divide)}
31        read ``\emph{$a$ does not divide $b$}'', denotes that $b/a$ has a reminder.        read ``\emph{$a$ does not divide $b$}'', denotes that $b/a$ has a reminder.
32        Equivalently, it may be stated that        Equivalently, it may be stated that
33        $(a \vworknotdivides b) \Rightarrow (\nexists c \in \vworkintset{}, b = ac)$.        $(a \vworknotdivides b) \Rightarrow (\nexists c \in \vworkintset{}, b = ac)$.
34    
35  \item \mbox{\boldmath $ \lfloor \cdot \rfloor $}  \item \mbox{\boldmath $ \lfloor \cdot \rfloor $}
36    
37        Used        Used
38        \index{floor function@floor function ($\lfloor\cdot\rfloor$)}        \index{floor function@floor function ($\lfloor\cdot\rfloor$)}
39        \index{--@$\lfloor\cdot\rfloor$ (\emph{floor($\cdot$)} function)}        \index{--@$\lfloor\cdot\rfloor$ (\emph{floor($\cdot$)} function)}
40        to denote the \emph{floor($\cdot$)} function.  The        to denote the \emph{floor($\cdot$)} function.  The
41        \emph{floor($\cdot$)}        \emph{floor($\cdot$)}
42        function is the largest integer not larger than the        function is the largest integer not larger than the
43        argument.        argument.
44    
45  \item \mbox{\boldmath $\lceil \cdot \rceil$ }  \item \mbox{\boldmath $\lceil \cdot \rceil$ }
46    
47        Used        Used
48        \index{ceiling function@ceiling function ($\lceil\cdot\rceil$)}        \index{ceiling function@ceiling function ($\lceil\cdot\rceil$)}
49        \index{--@$\lceil\cdot\rceil$ (\emph{ceiling($\cdot$)} function)}        \index{--@$\lceil\cdot\rceil$ (\emph{ceiling($\cdot$)} function)}
50        to denote the \emph{ceiling($\cdot$)} function.        to denote the \emph{ceiling($\cdot$)} function.
51        The \emph{ceiling($\cdot$)} function        The \emph{ceiling($\cdot$)} function
52        is the smallest integer not smaller than the        is the smallest integer not smaller than the
53        argument.        argument.
54  \end{vworkmathtermglossaryenum}  \end{vworkmathtermglossaryenum}
55    
56  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59    
60  \section*{Usage Of English And Greek Letters}  \section*{Usage Of English And Greek Letters}
61    
62  \begin{vworkmathtermglossaryenum}  \begin{vworkmathtermglossaryenum}
63    
64  \item \mbox {\boldmath $a/b$}  \item \mbox {\boldmath $a/b$}
65    
66        An arbitrary \index{rational number}rational number.        An arbitrary \index{rational number}rational number.
67    
68  \item \mbox {\boldmath $ F_N $}  \item \mbox {\boldmath $ F_N $}
69    
70        The \index{Farey series}Farey        The \index{Farey series}Farey
71        series of order $N$.  The Farey series is the        series of order $N$.  The Farey series is the
72        ordered set of irreducible rational numbers        ordered set of irreducible rational numbers
73            in [0,1] with a            in [0,1] with a
74        denominator not larger than $N$.        denominator not larger than $N$.
75    
76  \item \mbox {\boldmath $F_{k_{MAX}, \overline{h_{MAX}}}$}  \item \mbox {\boldmath $F_{k_{MAX}, \overline{h_{MAX}}}$}
77                
78            \index{FKMAXHMAX@$F_{k_{MAX}, \overline{h_{MAX}}}$}            \index{FKMAXHMAX@$F_{k_{MAX}, \overline{h_{MAX}}}$}
79            The ordered set of irreducible rational numbers            The ordered set of irreducible rational numbers
80            $h/k$ subject to the constraints $0 \leq h \leq h_{MAX}$            $h/k$ subject to the constraints $0 \leq h \leq h_{MAX}$
81            and $1 \leq k \leq h_{MAX}$.              and $1 \leq k \leq h_{MAX}$.  
82            (See Section \cfryzeroxrefhyphen{}\ref{cfry0:schk0}.)            (See Section \cfryzeroxrefhyphen{}\ref{cfry0:schk0}.)
83    
84    
85  \item \mbox{\boldmath $H/K$}, \mbox{\boldmath $h/k$},  \item \mbox{\boldmath $H/K$}, \mbox{\boldmath $h/k$},
86        \mbox{\boldmath $h'/k'$}, \mbox{\boldmath $h''/k''$},        \mbox{\boldmath $h'/k'$}, \mbox{\boldmath $h''/k''$},
87        \mbox{\boldmath $h_i/k_i$}        \mbox{\boldmath $h_i/k_i$}
88    
89        Terms in a Farey series of order $N$.        Terms in a Farey series of order $N$.
90    
91  \item \mbox{\boldmath $r_A$}  \item \mbox{\boldmath $r_A$}
92    
93        The rational number $h/k$ used to approximate        The rational number $h/k$ used to approximate
94        an arbitrary real number $r_I$.        an arbitrary real number $r_I$.
95    
96  \item \mbox{\boldmath $r_I$}  \item \mbox{\boldmath $r_I$}
97    
98        The real number, which may or may not be rational,        The real number, which may or may not be rational,
99        which is to be approximated by a rational number        which is to be approximated by a rational number
100        $r_A = h/k$.        $r_A = h/k$.
101    
102  \item \textbf{reduced}  \item \textbf{reduced}
103    
104        See \emph{irreducible}.        See \emph{irreducible}.
105    
106  \item \mbox{\boldmath $s_k = p_k/q_k$}  \item \mbox{\boldmath $s_k = p_k/q_k$}
107    
108        The $k$th convergent of a continued fraction.        The $k$th convergent of a continued fraction.
109    
110  \item \mbox{\boldmath $x_{MAX}$}  \item \mbox{\boldmath $x_{MAX}$}
111    
112        The largest element of the domain for which the        The largest element of the domain for which the
113        behavior of an approximation must be guaranteed.        behavior of an approximation must be guaranteed.
114        In this paper, most derivations assume        In this paper, most derivations assume
115        that $x \in [0, x_{MAX}]$, $x_{MAX} \in \vworkintsetpos{}$.        that $x \in [0, x_{MAX}]$, $x_{MAX} \in \vworkintsetpos{}$.
116  \end{vworkmathtermglossaryenum}  \end{vworkmathtermglossaryenum}
117    
118  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
119  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
120  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121    
122  \section*{Bitfields And Portions Of Integers}  \section*{Bitfields And Portions Of Integers}
123    
124  \begin{vworkmathtermglossaryenum}  \begin{vworkmathtermglossaryenum}
125  \item \mbox{\boldmath $a_{b}$}  \item \mbox{\boldmath $a_{b}$}
126    
127        The $b$th bit of the integer $a$.  Bits are numbered with the        The $b$th bit of the integer $a$.  Bits are numbered with the
128        least significant bit ``0'', and consecutively through        least significant bit ``0'', and consecutively through
129        ``$n-1$'', where $n$ is the total number of bits.        ``$n-1$'', where $n$ is the total number of bits.
130    
131        In general, if $p$ is an $n$-bit unsigned integer,        In general, if $p$ is an $n$-bit unsigned integer,
132    
133        \begin{equation}        \begin{equation}
134        \nonumber p = \sum_{i=0}^{n-1} 2^i p_i .        \nonumber p = \sum_{i=0}^{n-1} 2^i p_i .
135        \end{equation}        \end{equation}
136    
137  \item \mbox{\boldmath $a_{c:b}$}  \item \mbox{\boldmath $a_{c:b}$}
138    
139        The integer consisting of the $b$th through the        The integer consisting of the $b$th through the
140        $c$th bits of the integer $a$.  Bits are numbered with the        $c$th bits of the integer $a$.  Bits are numbered with the
141        least significant bit ``0'', and consecutively through        least significant bit ``0'', and consecutively through
142        ``$n-1$'', where $n$ is the total number of bits.        ``$n-1$'', where $n$ is the total number of bits.
143    
144        For example, if $p$ is a 24-bit unsigned integer, then        For example, if $p$ is a 24-bit unsigned integer, then
145    
146        \begin{equation}        \begin{equation}
147        \nonumber p = 2^{16}p_{23:16} + 2^{8}p_{15:8} + p_{7:0} .        \nonumber p = 2^{16}p_{23:16} + 2^{8}p_{15:8} + p_{7:0} .
148        \end{equation}        \end{equation}
149    
150  \item \mbox{\boldmath $a_{[b]}$}  \item \mbox{\boldmath $a_{[b]}$}
151    
152        The $b$th word of the integer $a$.  Words are numbered        The $b$th word of the integer $a$.  Words are numbered
153        with the        with the
154        least significant word ``0'', and consecutively through        least significant word ``0'', and consecutively through
155        ``$n-1$'', where $n$ is the total number of words.        ``$n-1$'', where $n$ is the total number of words.
156    
157        In general, if $p$ is an $n$-word unsigned integer        In general, if $p$ is an $n$-word unsigned integer
158        and $z$ is the wordsize in bits,        and $z$ is the wordsize in bits,
159    
160        \begin{equation}        \begin{equation}
161        \nonumber p = \sum_{i=0}^{n-1} 2^{iz} p_i .        \nonumber p = \sum_{i=0}^{n-1} 2^{iz} p_i .
162        \end{equation}        \end{equation}
163    
164  \item \mbox{\boldmath $a_{[c:b]}$}  \item \mbox{\boldmath $a_{[c:b]}$}
165    
166        The integer consisting of the $b$th through the        The integer consisting of the $b$th through the
167        $c$th word of the integer $a$.  Words are numbered with the        $c$th word of the integer $a$.  Words are numbered with the
168        least significant word ``0'', and consecutively through        least significant word ``0'', and consecutively through
169        ``$n-1$'', where $n$ is the total number of words.        ``$n-1$'', where $n$ is the total number of words.
170    
171        For example, if $p$ is a 24-word unsigned integer and        For example, if $p$ is a 24-word unsigned integer and
172        $z$ is the wordsize in bits, then        $z$ is the wordsize in bits, then
173    
174        \begin{equation}        \begin{equation}
175        \nonumber p = 2^{16z}p_{[23:16]} + 2^{8z}p_{[15:8]} + p_{[7:0]} .        \nonumber p = 2^{16z}p_{[23:16]} + 2^{8z}p_{[15:8]} + p_{[7:0]} .
176        \end{equation}        \end{equation}
177    
178  \end{vworkmathtermglossaryenum}  \end{vworkmathtermglossaryenum}
179    
180  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
182  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
183    
184  \section*{Matrices And Vectors}  \section*{Matrices And Vectors}
185    
186  \begin{vworkmathtermglossaryenum}  \begin{vworkmathtermglossaryenum}
187    
188  \item \mbox{\boldmath $0$}  \item \mbox{\boldmath $0$}
189    
190        $\mathbf{0}$ (in bold face) is used to denote either a vector or matrix        $\mathbf{0}$ (in bold face) is used to denote either a vector or matrix
191        populated with all zeroes.  Optionally, in cases where the context is not clear        populated with all zeroes.  Optionally, in cases where the context is not clear
192        or where there is cause to highlight the dimension, $\mathbf{0}$ may be subscripted        or where there is cause to highlight the dimension, $\mathbf{0}$ may be subscripted
193        to indicate the dimension, i.e.        to indicate the dimension, i.e.
194                
195        \begin{equation}        \begin{equation}
196        \nonumber        \nonumber
197        \mathbf{0}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]        \mathbf{0}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]
198        \end{equation}        \end{equation}
199    
200        \begin{equation}        \begin{equation}
201        \nonumber        \nonumber
202        \mathbf{0}_{3 \times 2} = \left[\begin{array}{cc} 0&0 \\ 0&0 \\ 0&0 \end{array}\right]        \mathbf{0}_{3 \times 2} = \left[\begin{array}{cc} 0&0 \\ 0&0 \\ 0&0 \end{array}\right]
203        \end{equation}        \end{equation}
204    
205  \item \mbox{\boldmath $I$}  \item \mbox{\boldmath $I$}
206    
207        $I$ is used to denote the square identity matrix (the matrix with all        $I$ is used to denote the square identity matrix (the matrix with all
208        elements 0 except elements on the diagonal which are 1).        elements 0 except elements on the diagonal which are 1).
209        Optionally, in cases where the context is not clear        Optionally, in cases where the context is not clear
210        or where there is cause to highlight the dimension, $I$ may be subscripted        or where there is cause to highlight the dimension, $I$ may be subscripted
211        to indicate the dimension, i.e.        to indicate the dimension, i.e.
212                
213        \begin{equation}        \begin{equation}
214        \nonumber        \nonumber
215        I = I_3 = I_{3 \times 3} = \left[\begin{array}{ccc} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}\right]        I = I_3 = I_{3 \times 3} = \left[\begin{array}{ccc} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}\right]
216        \end{equation}        \end{equation}
217    
218  \end{vworkmathtermglossaryenum}  \end{vworkmathtermglossaryenum}
219    
220    
221  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
222  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
223  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
224    
225  \section*{Sets And Set Notation}  \section*{Sets And Set Notation}
226    
227  \begin{vworkmathtermglossaryenum}  \begin{vworkmathtermglossaryenum}
228    
229  \item \mbox{\boldmath $n(A)$}  \item \mbox{\boldmath $n(A)$}
230    
231        The \index{cardinality}cardinality of set $A$.  (The cardinality of a set is the        The \index{cardinality}cardinality of set $A$.  (The cardinality of a set is the
232        number of elements in the set.)        number of elements in the set.)
233    
234  \end{vworkmathtermglossaryenum}  \end{vworkmathtermglossaryenum}
235    
236  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
237  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
238  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
239    
240  \section*{Sets Of Numbers}  \section*{Sets Of Numbers}
241    
242  \begin{vworkmathtermglossaryenum}  \begin{vworkmathtermglossaryenum}
243    
244  \item \mbox{\boldmath $\vworkintsetpos$}  \item \mbox{\boldmath $\vworkintsetpos$}
245    
246        The        The
247        \index{natural number}        \index{natural number}
248        \index{N@$\vworkintsetpos$}        \index{N@$\vworkintsetpos$}
249        set of positive integers (natural numbers).        set of positive integers (natural numbers).
250    
251  \item \mbox{\boldmath $\vworkratset$}  \item \mbox{\boldmath $\vworkratset$}
252    
253        The        The
254        \index{rational number}        \index{rational number}
255        \index{Q@$\vworkratset$}        \index{Q@$\vworkratset$}
256        set of rational numbers.        set of rational numbers.
257    
258  \item \mbox{\boldmath $\vworkratsetnonneg$}  \item \mbox{\boldmath $\vworkratsetnonneg$}
259    
260        The        The
261        \index{rational number}        \index{rational number}
262        \index{Q+@$\vworkratsetnonneg$}        \index{Q+@$\vworkratsetnonneg$}
263        set of non-negative rational numbers.        set of non-negative rational numbers.
264    
265  \item \mbox{\boldmath $\vworkrealset$}  \item \mbox{\boldmath $\vworkrealset$}
266    
267        The        The
268        \index{real number}        \index{real number}
269        \index{R@$\vworkrealset$}        \index{R@$\vworkrealset$}
270        set of real numbers.        set of real numbers.
271    
272  \item \mbox{\boldmath $\vworkrealsetnonneg$}  \item \mbox{\boldmath $\vworkrealsetnonneg$}
273    
274        The        The
275        \index{real number}        \index{real number}
276        \index{R+@$\vworkrealsetnonneg$}        \index{R+@$\vworkrealsetnonneg$}
277        set of non-negative real numbers.        set of non-negative real numbers.
278    
279  \item \mbox{\boldmath $\vworkintset$}  \item \mbox{\boldmath $\vworkintset$}
280    
281        The        The
282        \index{integer}        \index{integer}
283        \index{Z@$\vworkintset$}        \index{Z@$\vworkintset$}
284        set of integers.        set of integers.
285    
286  \item \mbox{\boldmath $\vworkintsetnonneg$}  \item \mbox{\boldmath $\vworkintsetnonneg$}
287    
288        The        The
289        \index{integer}        \index{integer}
290        \index{Z+@$\vworkintsetnonneg$}        \index{Z+@$\vworkintsetnonneg$}
291        set of non-negative integers.        set of non-negative integers.
292    
293  \end{vworkmathtermglossaryenum}  \end{vworkmathtermglossaryenum}
294    
295    
296  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
297  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
298  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
299    
300  \noindent\begin{figure}[!b]  \noindent\begin{figure}[!b]
301  \noindent\rule[-0.25in]{\textwidth}{1pt}  \noindent\rule[-0.25in]{\textwidth}{1pt}
302  \begin{tiny}  \begin{tiny}
303  \begin{verbatim}  \begin{verbatim}
304  $RCSfile: c_glo1.tex,v $  $RCSfile: c_glo1.tex,v $
305  $Source: /home/dashley/cvsrep/e3ft_gpl01/e3ft_gpl01/dtaipubs/esrgubka/c_glo1/c_glo1.tex,v $  $Source: /home/dashley/cvsrep/e3ft_gpl01/e3ft_gpl01/dtaipubs/esrgubka/c_glo1/c_glo1.tex,v $
306  $Revision: 1.7 $  $Revision: 1.7 $
307  $Author: dtashley $  $Author: dtashley $
308  $Date: 2003/03/13 06:28:13 $  $Date: 2003/03/13 06:28:13 $
309  \end{verbatim}  \end{verbatim}
310  \end{tiny}  \end{tiny}
311  \noindent\rule[0.25in]{\textwidth}{1pt}  \noindent\rule[0.25in]{\textwidth}{1pt}
312  \end{figure}  \end{figure}
313    
314  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
315  % $Log: c_glo1.tex,v $  % $Log: c_glo1.tex,v $
316  % Revision 1.7  2003/03/13 06:28:13  dtashley  % Revision 1.7  2003/03/13 06:28:13  dtashley
317  % Cardinality definition and notation added.  % Cardinality definition and notation added.
318  %  %
319  % Revision 1.6  2002/11/22 02:21:38  dtashley  % Revision 1.6  2002/11/22 02:21:38  dtashley
320  % Substantial edits.  % Substantial edits.
321  %  %
322  % Revision 1.5  2002/07/29 16:30:09  dtashley  % Revision 1.5  2002/07/29 16:30:09  dtashley
323  % Safety checkin before moving work back to WSU server Kalman.  % Safety checkin before moving work back to WSU server Kalman.
324  %  %
325  % Revision 1.4  2001/08/16 19:53:27  dtashley  % Revision 1.4  2001/08/16 19:53:27  dtashley
326  % Beginning to prepare for v1.05 release.  % Beginning to prepare for v1.05 release.
327  %  %
328  % Revision 1.3  2001/07/01 19:10:30  dtashley  % Revision 1.3  2001/07/01 19:10:30  dtashley
329  % LOG keyword expansion problem corrected.  % LOG keyword expansion problem corrected.
330  %  %
331  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
332  % $History: c_glo1.tex $  % $History: c_glo1.tex $
333  %  %
334  % *****************  Version 3  *****************  % *****************  Version 3  *****************
335  % User: Dashley1     Date: 1/31/01    Time: 4:20p  % User: Dashley1     Date: 1/31/01    Time: 4:20p
336  % Updated in $/uC Software Multi-Volume Book (A)/Chapter, GLO1, Glossary Of Mathematical Notation  % Updated in $/uC Software Multi-Volume Book (A)/Chapter, GLO1, Glossary Of Mathematical Notation
337  % Edits.  % Edits.
338  %  %
339  % *****************  Version 2  *****************  % *****************  Version 2  *****************
340  % User: Dashley1     Date: 8/08/00    Time: 10:53a  % User: Dashley1     Date: 8/08/00    Time: 10:53a
341  % Updated in $/uC Software Multi-Volume Book (A)/Chapter, GLO1, Glossary Of Mathematical Notation  % Updated in $/uC Software Multi-Volume Book (A)/Chapter, GLO1, Glossary Of Mathematical Notation
342  % Correction of DIVIDES and NOT DIVIDES symbols.  % Correction of DIVIDES and NOT DIVIDES symbols.
343  %  %
344  % *****************  Version 1  *****************  % *****************  Version 1  *****************
345  % User: David T. Ashley Date: 7/30/00    Time: 6:48p  % User: David T. Ashley Date: 7/30/00    Time: 6:48p
346  % Created in $/uC Software Multi-Volume Book (A)/Chapter, GLO1, Glossary Of Mathematical Notation  % Created in $/uC Software Multi-Volume Book (A)/Chapter, GLO1, Glossary Of Mathematical Notation
347  % Initial check-in.  % Initial check-in.
348  %  %
349  %End of file C_GLO1.TEX  %End of file C_GLO1.TEX

Legend:
Removed from v.5  
changed lines
  Added in v.140

dashley@gmail.com
ViewVC Help
Powered by ViewVC 1.1.25