1 |
%$Header: /home/dashley/cvsrep/e3ft_gpl01/e3ft_gpl01/dtaipubs/esrgubka/c_rcs0/c_rcs0.tex,v 1.2 2001/07/01 19:46:09 dtashley Exp $
|
2 |
|
3 |
\chapter[\crcszeroshorttitle{}]{\crcszerolongtitle{}}
|
4 |
|
5 |
\label{crcs0}
|
6 |
|
7 |
|
8 |
\section{Introduction}
|
9 |
|
10 |
\index{ratiometric conversion and calculation}
|
11 |
This chapter describes the construction and analysis of ratiometric conversion and
|
12 |
measurement systems. By \emph{ratiometric}, we mean that the system requires input
|
13 |
from multiple A/D channels to infer the data of interest, typically a potentiometer
|
14 |
position. Ratiometric conversion and calculation systems are most often used in
|
15 |
small microcontroller work because they can reduce cost by eliminating regulated
|
16 |
voltage supplies. Successive sections in the chapter describe the analysis of progressively
|
17 |
more complex ratiometric conversion and calculation systems.
|
18 |
|
19 |
|
20 |
\section{Ratiometric Conversion In Hardware Versus Ratiometric Calculation In Software}
|
21 |
|
22 |
Need to include a differentiation between conversion in hardware and
|
23 |
calculation in software.
|
24 |
|
25 |
|
26 |
%Section tag: srsy1
|
27 |
%
|
28 |
\section{Potentiometer With $V_{+}$ Reference And Hardware Ratiometric Conversion}
|
29 |
|
30 |
The simplest ratiometric potentiometer system
|
31 |
that would be constructed in practice
|
32 |
is shown in Fig. \ref{crcs0:srsy1:smplsys0}.
|
33 |
In this system, microcontroller software must sense
|
34 |
the potentiometer position $R_{P1}/R_P$\footnote{We hope that
|
35 |
all of our readers have a background that allows them to
|
36 |
analyze resistor networks. For readers without this background,
|
37 |
we recommend reading and working through the exercises in an
|
38 |
undergraduate circuit analysis text.} even as
|
39 |
$V_{+}$ varies within the interval
|
40 |
$V_{+} \in [V_{+MIN}, V_{+MAX}]$. Such systems, with
|
41 |
additional filtering and current-limiting components,
|
42 |
are commonly used in automobiles to allow a microcontroller
|
43 |
software load to sense seat or
|
44 |
mirror position.
|
45 |
\index{seat position}
|
46 |
\index{mirror position}
|
47 |
\index{battery voltage}
|
48 |
Using automobile battery voltage as $V_{+}$
|
49 |
has the advantage that a regulated voltage is not
|
50 |
required, thus saving the component cost and circuit board
|
51 |
area of a voltage regulator.
|
52 |
|
53 |
\begin{figure}[!tb]
|
54 |
\centering
|
55 |
\includegraphics[width=4.6in]{c_rcs0/s_rsy1/smplsys0.eps}
|
56 |
\caption{Simple Ratiometric Measurement System With Hardware Ratiometric Conversion}
|
57 |
\label{crcs0:srsy1:smplsys0}
|
58 |
\end{figure}
|
59 |
|
60 |
In the circuit of Fig. \ref{crcs0:srsy1:smplsys0}, the microcontroller
|
61 |
\index{A/D converter}A/D converter will convert $V_P$ using $V_R$ as a voltage
|
62 |
reference according to the relationship in (\ref{crcs0:srsy1:eq000}), where $N_{MAX}$
|
63 |
is the maximum count of the A/D converter. The \index{floor function}$floor(\cdot{})$
|
64 |
function in (\ref{crcs0:srsy1:eq000}) is used to model the effect of
|
65 |
\index{quantization}quantization---the
|
66 |
A/D count $N$ is required to be $\in \vworkintsetnonneg$.
|
67 |
|
68 |
\begin{equation}
|
69 |
\label{crcs0:srsy1:eq000}
|
70 |
N = \left\lfloor { \frac{N_{MAX} V_P}{V_R} } \right\rfloor
|
71 |
\end{equation}
|
72 |
|
73 |
|
74 |
|
75 |
%Section tag: srsy0
|
76 |
%
|
77 |
\section{Fixed $r_{1}$, Fixed $r_{2}$ System}
|
78 |
The simplest ratiometric system that would be constructed in practice
|
79 |
is shown in Fig. \ref{crcs0:srsy0:fr1fr2a}.
|
80 |
In Fig. \ref{crcs0:srsy0:fr1fr2a},
|
81 |
assume that the potentiometer is positioned so that
|
82 |
$R_{P1}$ is the resistance from the potentiometer wiper
|
83 |
to ground, and $R_{P2}$ is the resistance from the potentiometer
|
84 |
wiper to $V_{+}$. By definition, $R_{P} = R_{P1} + R_{P2}$. $z_R$ and
|
85 |
$z_P$ are the transfer coefficients which relate voltage to A/D counts.
|
86 |
These transfer coefficients are an analysis convenience, and correspond to
|
87 |
A/D converter characteristics.
|
88 |
|
89 |
\begin{figure}[!tb]
|
90 |
\centering
|
91 |
\includegraphics[height=2.5in]{c_rcs0/s_rsy0/smplsys0.eps}
|
92 |
\caption{Simple Ratiometric Measurement System With Software Ratiometric Calculation}
|
93 |
\label{crcs0:srsy0:fr1fr2a}
|
94 |
\end{figure}
|
95 |
|
96 |
The circuit is designed to allow
|
97 |
estimation of $R_{P1}$ (effectively, the potentiometer position)
|
98 |
under conditions of varying $V_{+}$. The economy of such a circuit
|
99 |
comes from the characteristic that $V_{+}$ need not be regulated,
|
100 |
thus allowing less expensive lower-capacity voltage regulators or
|
101 |
fewer voltage regulators to be used in an embedded system.
|
102 |
In an vehicle, for example, $V_{+}$ may be the battery voltage of
|
103 |
the vehicle, which will vary substantially based on which
|
104 |
electrical loads are turned on, whether the starter motor is
|
105 |
engaged, etc.
|
106 |
|
107 |
The critical analysis question is,
|
108 |
how accurately can $R_{P1}/R_P$ be estimated under conditions
|
109 |
of varying $V_{+} \in [V_{+MIN}, V_{+MAX}]$? Or, equivalently,
|
110 |
given measured values of $y_R, y_P \in \vworkintsetnonneg$
|
111 |
and given $V_{+} \in [V_{+MIN}, V_{+MAX}]$,
|
112 |
what inequality describes the possible values of $R_{P1}/R_P$
|
113 |
(i.e. how much can be inferred or implied from the observation)?
|
114 |
|
115 |
|
116 |
From analysis of the circuit of Fig. \ref{crcs0:srsy0:fr1fr2a},
|
117 |
it can be shown that (\ref{crcs0:srsy0:eq000}) applies.
|
118 |
However, because an A/D
|
119 |
count is necessarily $\in \vworkintsetnonneg$, (\ref{crcs0:srsy0:eq000b}) must be
|
120 |
used for analysis.
|
121 |
|
122 |
\begin{equation}
|
123 |
\label{crcs0:srsy0:eq000}
|
124 |
y_R = \frac{R_1 z_R V_{+}}{R_1 + R_2}
|
125 |
\end{equation}
|
126 |
|
127 |
\begin{equation}
|
128 |
\label{crcs0:srsy0:eq000b}
|
129 |
y_R = \left\lfloor\frac{R_1 z_R V_{+}}{R_1 + R_2}\right\rfloor
|
130 |
\end{equation}
|
131 |
|
132 |
Similarly, (\ref{crcs0:srsy0:eq000c}) describes $y_P$ for analysis.
|
133 |
|
134 |
\begin{equation}
|
135 |
\label{crcs0:srsy0:eq000c}
|
136 |
y_P = \left\lfloor\frac{R_{P1} z_R V_{+}}{R_P}\right\rfloor
|
137 |
\end{equation}
|
138 |
|
139 |
|
140 |
\section{Unplaced Equations}
|
141 |
|
142 |
This section is a holding place for equations until can get my
|
143 |
thoughts together.
|
144 |
|
145 |
\begin{equation}
|
146 |
y_P = \frac{R_{P1}}{R_P} V_{+}
|
147 |
\end{equation}
|
148 |
|
149 |
\begin{equation}
|
150 |
V_{+} = y_P \left( {\frac{R_P}{R_{P1}}} \right)
|
151 |
\end{equation}
|
152 |
|
153 |
\begin{equation}
|
154 |
y_R = \frac{R_1}{R_1 + R_2} V_{+}
|
155 |
\end{equation}
|
156 |
|
157 |
\begin{equation}
|
158 |
V_{+} = \frac{y_R ( R_1 + R_2)}{R_1}
|
159 |
\end{equation}
|
160 |
|
161 |
\begin{equation}
|
162 |
y_P \left( {\frac{R_P}{R_{P1}}} \right) = y_R \left( {\frac{R1 + R2}{R1}} \right)
|
163 |
\end{equation}
|
164 |
|
165 |
\begin{equation}
|
166 |
\frac{R_P}{R_{P1}} = \frac{y_R}{y_P} \left( {\frac{R_1 + R_2}{R_1}} \right)
|
167 |
\end{equation}
|
168 |
|
169 |
\begin{equation}
|
170 |
\frac{R_{P1}}{R_P} = \frac{y_P}{y_R} \left( {\frac{R_1}{R_1 + R_2}} \right)
|
171 |
\end{equation}
|
172 |
|
173 |
\begin{equation}
|
174 |
\frac{R_P V}{R_P V + 1} < \frac{\lfloor R_P V \rfloor}{\lfloor R_R V \rfloor} < \frac{R_P V + 1}{R_R V}
|
175 |
\end{equation}
|
176 |
|
177 |
|
178 |
\vfill
|
179 |
\begin{figure}[b]
|
180 |
\noindent\rule[-0.25in]{\textwidth}{1pt}
|
181 |
\begin{tiny}
|
182 |
\begin{verbatim}
|
183 |
$RCSfile: c_rcs0.tex,v $
|
184 |
$Source: /home/dashley/cvsrep/e3ft_gpl01/e3ft_gpl01/dtaipubs/esrgubka/c_rcs0/c_rcs0.tex,v $
|
185 |
$Revision: 1.2 $
|
186 |
$Author: dtashley $
|
187 |
$Date: 2001/07/01 19:46:09 $
|
188 |
\end{verbatim}
|
189 |
\end{tiny}
|
190 |
\noindent\rule[0.25in]{\textwidth}{1pt}
|
191 |
\end{figure}
|
192 |
|
193 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
194 |
% $Log: c_rcs0.tex,v $
|
195 |
% Revision 1.2 2001/07/01 19:46:09 dtashley
|
196 |
% Move out of binary mode for use with CVS.
|
197 |
%
|
198 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
199 |
% $History: c_rcs0.tex $
|
200 |
%
|
201 |
% ***************** Version 5 *****************
|
202 |
% User: Dashley1 Date: 12/22/00 Time: 12:56a
|
203 |
% Updated in $/uC Software Multi-Volume Book (A)/Chapter, RCS0, Ratiometric Conversion And Measurement Systems
|
204 |
% Tcl automated method of build refined.
|
205 |
%
|
206 |
% ***************** Version 4 *****************
|
207 |
% User: Dashley1 Date: 6/28/00 Time: 12:09p
|
208 |
% Updated in $/uC Software Multi-Volume Book (A)/Chapter, RCS0, Ratiometric Conversion And Measurement Systems
|
209 |
% Substantial edits, forming thoughts.
|
210 |
%
|
211 |
% ***************** Version 3 *****************
|
212 |
% User: David T. Ashley Date: 6/27/00 Time: 11:51p
|
213 |
% Updated in $/uC Software Multi-Volume Book (A)/Chapter, RCS0, Ratiometric Conversion And Measurement Systems
|
214 |
% Initial check-in.
|
215 |
%
|
216 |
% ***************** Version 2 *****************
|
217 |
% User: Dashley1 Date: 6/27/00 Time: 7:36p
|
218 |
% Updated in $/uC Software Multi-Volume Book (A)/Chapter, RCS0, Ratiometric Conversion And Measurement Systems
|
219 |
% Edits for rationmetric conversion systems.
|
220 |
%End of file C_RCS0.TEX
|