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Abstract

This document presents a solution to the problem of estimating wind speed and
direction from simultaneous radar observations of the course and groundspeed
of multiple aircraft and knowledge of the approximate cruising airspeed of each
aircraft.

The problem was posted to the sci.math newsgroup by Chad Speer in De-
cember, 2006.



1 Introduction and Overview

This problem was posted by Chad Speer to the sci.math newsgroup in Decem-
ber, 2006. The problem did not at that time receive any meaningful suggestions
toward a solution.

The problem is how to [uniquely] estimate wind velocity and direction in the
local area from:

• Radar observations of the course and groundspeed of multiple aircraft.

• Knowledge of the cruising airspeed of each aircraft (typically obtained
from VFR or IFR flightplan or clearance data filed by the pilot, or from
knowledge of the model of aircraft).

This solution assumes that each observed aircraft is affected by wind at the
same speed and in the same direction. This is a reasonable assumption, and will
generally hold true for aircraft at the same altitude separated by perhaps 20-
200 nautical miles. However, this assumption may be very flawed for aircraft at
different altitudes, as the winds tend to vary greatly in magnitude and direction
with altitude. (Relaxing the assumption of identical wind vectors affecting all
observed aircraft may be a direction for future mathematical refinement.)

Any mathematical results shown to work well in practice may eventually be
incorporated into algorithms used in air traffic control radar.

2 Terms and Mathematical Nomenclature

All angular measurements (the angles of vectors) are in degrees clockwise from
true North, and are expressed canonically where possible so that 0◦ ≤ θ < 360◦.
0◦ is true North, 90◦ is true East, 180◦ is true South, and 270◦ is true West.

The heading of an aircraft is the direction the aircraft is pointed, whereas
the course is the direction of the ground path of the aircraft. In the presence
of wind other than a direct headwind or tailwind, the heading is unequal to the
course. The heading of the aircraft is known by the pilot but not reported to
anyone on the ground. The course of the aircraft is known from radar data.

Vectors are differentiated from scalars with an overlying arrow—vi is a scalar
but �vi is a vector.

The local wind vector is �w with magnitude vw and direction θw.
Each aircraft is denoted Ai, i ∈ {1, 2, . . .}; and has a heading vector �vhAi

with magnitude vhAi and heading direction θhAi. The course of the aircraft Ai

is denoted as a vector �vcAi with magnitude vcAi and course direction θcAi. Note
that the course is observed by radar.

3 The Wind Triangle

Airplanes fly in a moving block of air, so that the aircraft’s ground motion is
the vector sum of the air motion with respect to the ground and the aircraft’s
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Figure 1: Wind Triangle

motion with respect to the air (Fig. 1).
For each aircraft Ai,

�vcAi = �w + �vhAi. (1)

(1) is known as the wind triangle because student pilots are taught to make
this calculation graphically by drawing a triangle of three vectors on graph paper
or by using a mechanical computer such as the E-6B1.

To a person who has never piloted an aircraft, (1) may be unexpected. It is
very common for pilots to have a course that differs from the heading by more
than 10 degrees; and this is visually apparent in an airplane when tracking roads
or freeways below or when landing in a crosswind.

4 The One-Aircraft Case

4.1 Graphical Solution

With only a single aircraft A1,

�vcA1 = �w + �vhA1. (2)

Separating (2) into x- and y-components yields

1http://en.wikipedia.org/wiki/E6B.
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vcA1 cos θcA1 = w cos θw + vhA1 cos θhA1 (3)
vcA1 sin θcA1 = w sin θw + vhA1 sin θhA1 (4)

The following quantities are known:

• vcA1 (from radar observation of the aircraft).

• θcA1 (from radar observation of the aircraft).

• vhA1 (the cruising speed of the aircraft, usually filed by the pilot as part
of the VFR or IFR clearance process).

The following quantities are unknown:

• w (wind velocity).

• θw (wind direction).

• θhA1 (Note as discussed above that heading and course are distinct. The
course is known from radar observation, but the heading—the direction
the aircraft is pointed—is not known.2)

With two equations and three unknowns, it would normally be expected that
the solution is a set that can be parameterized with one parameter.

It can be seen graphically (Fig. 23) that an infinite number of solutions exist,
parameterized by 0◦ ≤ θhA1 < 360◦. A heading vector with the appropriate
magnitude (vhA1, the cruising speed of the aircraft) can be chosen so that its
endpoint is anywhere on the circle C in Fig. 2, and a wind vector �w can then
be chosen to solve the equations.

4.2 Analytic Solution

The problem can be solved analytically as follows:

• Choose θhA1 ∈ [0◦, 360◦).

• Since θhA1 and vhA1 are established, �vhA1 is established. Solve for �w using
(2):

�w = �vcA1 − �vhA1. (5)

2More precisely, the heading is not known by anyone on the ground. The heading is
indicated by at least one aircraft instrument and known to the pilot, but this information is
not communicated to anyone else.

3Note that although Fig. 2 conveys all the essential features of the one-aircraft case, the
wind vector �w normally has the smallest magnitude of the three vectors in the wind triangle.
A light aircraft that cruises at 120 knots airspeed and is affected by winds of 10-30 knots is
the typical case.

3



Figure 2: Graphical Solution for One-Aircraft Case
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Figure 3: Graphical Solution for Two-Aircraft Case

5 The Two-Aircraft Case

5.1 Graphical Solution

The two-aircraft case can be solved graphically by constructing the solution
sets (circle S in Fig. 2) of the two aircraft so that Vertex C (Figs. 1, 2) are
coincident. Figure 3 depicts the graphical solution.

Figure 3 depicts the case where A2 has a higher cruising speed (a solution
circle of larger radius) than A1. The following properties can be observed from
Fig. 3:

• Since the solution set for each aircraft is represented by a circle, the solu-
tions for the two-aircraft case are the points where the two circles meet.

• There may be no solutions, one solution, or two solutions for the two-
aircraft case. (Fig. 3 depicts the case with two solutions. The second
solution is shown with dotted lines.)

• In a practical case, the correct solution would probably be the solution
with the wind vector of lesser magnitude.
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5.2 Analytic Solution

I have not a clue how to think about this problem analytically.

6 The General Multiple Aircraft Case

It is unclear how to set this up as a problem so that a unique solution can
be obtained in the presence of [mildly] inconsistent data, or what the basis for
the unique solution should be (i.e. similar to least-squares—there has to be
something one is trying to optimize or minimize).

6


