
Notes on Economical 16/16 = 16 Unsigned

Integer Division on the Freescale CPU08

David T. Ashley
dta@e3ft.com

Version Control Revision: 1.12
Version Control Date: 2007/05/26 18:25:46 (UTC)

RCSfile: cpu08div16by16a.tex,v
LATEX Compilation Date: May 26, 2007



Abstract

This document contains my notes on attempting to optimize the 16 = 16/16
unsigned integer division subroutine distributed with a Freescale CPU08 com-
piler. I attempted to replace the standard shift-compare-subtract algorithm
with Knuth’s algorithm.

In the end, the attempt was mostly a failure. There seemed to be no way
to gain the execution time advantages of Knuth’s algorithm without increasing
FLASH size. (The goal would have been to obtain more favorable execution
time and FLASH size, rather than a tradeoff.)



1 Introduction and Overview

The fundamental goal of practical computer integer arithmetic is to obtain an
exact result using machine instructions that are as fast and compact as possible.

For three of the four fundamental operations (addition, subtraction, and
multiplication), it is intuitively obvious to most programmers how to use existing
machine instructions to operate on operands that are larger than the machine
instructions can accommodate.

The fourth fundamental operation (division), however, is less well under-
stood by a typical programmer than the other three. It is not obvious to most
programmers how to use machine division instructions to divide integers larger
than the native machine division instructions will accommodate.

In 2007, I noticed that the integer division library functions associated with a
particular C compiler were of the shift-compare-subtract variety. As the CPU08
has a 16/16=8 native division instruction, I suspected but was not sure that the
16/16=16 division function could be improved.

Note that for a library function used by a C compiler, it may not be necessary
(although it may be desirable) to calculate the quotient and the remainder at
the same time. An algorithm that calculates the quotient but does not calculate
the remainder, or vice-versa, may be acceptable for use by compiled code.

Although I haven’t examined the C standards, I doubt that there is any
special requirement for the quotient or remainder calculated when the denomi-
nator is zero. The only requirement is probably that the calculation not continue
indefinitely (i.e. not an infinite loop).

2 Nomenclature and Notation

I use the nomenclature “16/16=16 division” to denote a division function that
accepts a 16-bit unsigned numerator and a 16-bit unsigned denominator; and
produces either/both a 16-bit quotient and a 16-bit remainder.

I use n to denote the numerator, d to denote the denominator, q to denote
the integer quotient, and r to denote the remainder.

Any of the 16-bit quantities can be subscripted with “H” or “L” to denote
the most-significant or least-significant byte. For example,

n = 28nH + nL. (1)

Within any of the 16-bit quantities, bits are subscripted in the traditional
fashion. For example,

n =
15∑

i=0

2ini. (2)

Within any of the 8-bit quantities, bits are also subscripted in the traditional
fashion. For example,

1



n = 28
7∑

i=0

2inHi +
7∑

i=0

2inLi =
7∑

i=0

2i+8nHi +
7∑

i=0

2inLi . (3)

Because only non-negative integers are involved, floor() and div are used
interchangeably, i.e.

⌊a

b

⌋
= a div b, a, b ≥ 0. (4)

An identity that is frequently used in this document is

a

b
= a div b +

a mod b

b
(5)

=
⌊a

b

⌋
+

a mod b

b
. (6)

3 Analysis of Existing Code

This section presents an analysis of the behavior and characteristics of the ex-
isting code.

3.1 Listing

The existing code is reproduced below, with line numbers.

001: c_umod:
002: bsr c_udiv ; divide
003: pshh ; transfer MSB
004: pula ; in place
005: sta c_reg
006: txa ; LSB in place
007: rts ; and return
008: ;
009: c_udiv:
010: psha ; save NL
011: pshh ; DH on the stack
012: tst 1,sp ; test zero
013: bne full ; full division
014: pulh ; clean stack
015: cpx c_reg ; compare DL with NH
016: bls half ; half division
017: lda c_reg ; NH
018: psha ; in
019: pulh ; H
020: pula ; NL in A
021: div ; DL in X, divide

2



022: clr c_reg ; QH is zero
023: fini:
024: pshh ; move RL
025: pulx ; in X
026: clrh ; RH is zero
027: rts ; and return
028: half:
029: lda c_reg ; NH in A
030: clrh ; 1st divide 8 X 8
031: div ; divide
032: sta c_reg ; QH in place
033: pula ; complete dividend with NL
034: div ; divide
035: bra fini ; complete remainder
036: full:
037: pshx ; save DL
038: ldx #8 ; counter
039: clra ; Extention
040: pshx ; save on
041: psha ; the stack
042: tsx ; stack addressed by H:X
043: bcl:
044: lsl 4,x ; shift E:NH:NL
045: rol c_reg ; left
046: rola
047: sta 0,x ; store E
048: cmp 3,x ; compare DH
049: blo next ; too low, continue
050: bne ok ; ok to subtract
051: lda c_reg ; compare NH
052: sub 2,x ; with DL
053: bhs ok2 ; ok, complete result
054: lda 0,x ; restore value
055: bra next ; and continue
056: ok:
057: lda c_reg ; substract D
058: sub 2,x ; from E:NH
059: ok2:
060: sta c_reg ; in place
061: lda 0,x
062: sbc 3,x
063: inc 4,x ; set result bit
064: next:
065: dbnz 1,x,bcl ; count down and loop
066: sta 0,x ; store E
067: pulh ; RH in place

3



068: ais #3 ; clean up stack
069: ldx c_reg ; RL in place
070: pula ; QL in place
071: clr c_reg ; QH is zero
072: rts ; and return

3.2 Algorithmic Analysis

The algorithm is divided into two cases:

• Case I: dH = 0 (lines 14-35).

• Case II: dH > 0 (lines 36-72).

3.2.1 Case I

In the case of dH = 0, the division is 16/8:

28nH + nL

dL
=

28nH

dL
+

nL

dL
(7)

= 28

(
nH div dL +

nH mod dL

dL

)
+

nL

dL
(8)

= 28(nH div dL) +
28(nH mod dL) + nL

dL
(9)

(9) is an exact expression involving rational numbers. However, we don’t
want to calculate the left side of (9); rather, we wish to calculate its floor().
Applying the floor() function to both sides of (9) yields:

⌊
28nH + nL

dL

⌋
= 28(nH div dL) +

⌊
28(nH mod dL) + nL

dL

⌋
. (10)

Note that (10) is in a form that can be readily evaluated using a processor
with 16/8 division capability; so long as

28(nH mod dL) + nL

dL
< 28, (11)

a fact that can be easily verified by the reader.
(10) can be readily evaluated by a processor with 16/8 division capability

because such a division instruction always provides both quotient and remain-
der. It is easy to see that (10) can be evaluated with a division, a re-staging of
bytes, and a second division.

If (10) is evaluated as suggested, it needs to be verified whether the remainder
of the second division is the same as the remainder of the larger division, i.e.

(28nH + nL) mod dL =?((28 mod dL) + nL) mod dL. (12)

4



The question of whether (12) is an equality is the question of whether

ka mod b = (k(a mod b)) mod b. (13)

In order to prove or disprove (13), decompose a into ib + j. Then, since
kib mod b = 0,

k(ib + j) mod b = kj mod b (14)
kj mod b = kj mod b. (15)

Thus, if (10) is evaluated as suggested (with two divisions), the final remain-
der will be the same as the remainder for the original division. (10) will, in fact,
deliver both the quotient and remainder economically.

3.2.2 Case II

The case of dH > 0 (§3.1, lines 36-72) is conventional shift-compare-subtract
division. Only eight iterations of the loop are required because with dH > 0,
d ≥ 28, and n/d < 28.

3.3 Timing Analysis

The code of §3.1 is reproduced below, with instruction timing (number of clocks)
and FLASH requirements (number of bytes) added as (clocks/bytes). It was
determined that c reg resides in zero-page (i.e. direct) memory.

001: c_umod:
002: bsr c_udiv 4/2 ; divide
003: pshh ; transfer MSB
004: pula 2/1 ; in place
005: sta c_reg 3/2
006: txa 1/1 ; LSB in place
007: rts 4/1 ; and return
008: ;
009: c_udiv:
010: psha 2/1 ; save NL
011: pshh 2/1 ; DH on the stack
012: tst 1,sp 4/3 ; test zero
013: bne full 3/2 ; full division
014: pulh 2/1 ; clean stack
015: cpx c_reg 3/2 ; compare DL with NH
016: bls half 3/2 ; half division
017: lda c_reg 3/2 ; NH
018: psha 2/1 ; in
019: pulh 2/1 ; H
020: pula 2/1 ; NL in A

5



021: div 7/1 ; DL in X, divide
022: clr c_reg 3/2 ; QH is zero
023: fini:
024: pshh 2/1 ; move RL
025: pulx 2/1 ; in X
026: clrh 1/1 ; RH is zero
027: rts 4/1 ; and return
028: half:
029: lda c_reg 3/2 ; NH in A
030: clrh 1/1 ; 1st divide 8 X 8
031: div 7/1 ; divide
032: sta c_reg 3/2 ; QH in place
033: pula 2/1 ; complete dividend with NL
034: div 7/1 ; divide
035: bra fini 3/2 ; complete remainder
036: full:
037: pshx 2/1 ; save DL
038: ldx #8 2/2 ; counter
039: clra 1/1 ; Extention
040: pshx 2/1 ; save on
041: psha 2/1 ; the stack
042: tsx 2/1 ; stack addressed by H:X
043: bcl:
044: lsl 4,x 4/2 ; shift E:NH:NL
045: rol c_reg 4/2 ; left
046: rola 1/1
047: sta 0,x 2/1 ; store E
048: cmp 3,x 3/2 ; compare DH
049: blo next 3/2 ; too low, continue
050: bne ok 3/2 ; ok to subtract
051: lda c_reg 3/2 ; compare NH
052: sub 2,x 3/2 ; with DL
053: bhs ok2 3/2 ; ok, complete result
054: lda 0,x 2/1 ; restore value
055: bra next 3/2 ; and continue
056: ok:
057: lda c_reg 3/2 ; substract D
058: sub 2,x 3/2 ; from E:NH
059: ok2:
060: sta c_reg 3/2 ; in place
061: lda 0,x 2/1
062: sbc 3,x 3/2
063: inc 4,x 3/2 ; set result bit
064: next:
065: dbnz 1,x,bcl 5/3 ; count down and loop
066: sta 0,x 2/1 ; store E

6



067: pulh 2/1 ; RH in place
068: ais #3 2/2 ; clean up stack
069: ldx c_reg 3/2 ; RL in place
070: pula 2/1 ; QL in place
071: clr c_reg 3/2 ; QH is zero
072: rts 4/1 ; and return

There are three distinct timing cases for the c udiv function:

1. dH = 0 and nH < dL: 47 clocks are required, representing straight flow of
the instructions from line 10 through line 27.

2. dH = 0 and nH ≥ dL: 54 clocks are required.

3. dH > 0 and every bit of the quotient is 1, in which case 400 clocks are
required. This represents 22 clocks up through line 42, 45 clocks × 8 in
the lines from 43 through 65, and 18 clocks in the lines from 66 through
72.

3.4 FLASH/RAM Consumption Analysis

From §3.3, 93 bytes of FLASH are used. Only one byte of RAM is used (c reg,
probably shared with other functions as well).

4 Potential Optimizations

4.1 Potential Case I Optimizations

This section corresponds to Case I of §3.2.1.
The most obvious observation about the code (§3.1) is that division instruc-

tions are very inexpensive on the CPU08—7 clock cycles, or about 2 typical
instructions. Branching based on nH ≥ dL (§3.1, lines 15-16) may cost more in
the test, the branch, and in other data transfer overhead than is saved. It may
make sense to apply the full formula in (10) in all cases where dH = 0.

When dH = 0, and if one assumes normal distribution of data, the expected
value of execution time is about (47 + 54)/2 = 50.5 clocks.1

The code below combines two of the three timing cases into one by ignoring
the relationship between nH and dL.

;Condition at function entry:
;N_H in 1,SP
;N_L in A
;D_H in H
;D_L in X
;

1If the data is assumed normally distributed, nH has about a 0.5 probability of being at
least as large as dL.

7



;Condition at function exit:
;Q_H in c_reg
;Q_L in A
;R_H in H
;R_L in X
;
c_udiv:

psha 2/1 ; save NL
pshh 2/1 ; DH on the stack
tst 1,sp 4/3 ; test zero
bne full 3/2 ; full division

;
;From here on we’re committed to the division with
;arbitary numerator, and denominator <= 255.
; N_H at 3,sp
; N_L at 2,sp
; D_H at 1,sp
;

clrh 1/1
lda 3,sp 4/3 ; H:A now contains N_H
div 7/1 ; divide
sta c_reg 3/2 ; QH in place
lda 2,sp 4/3 ; complete dividend with NL
div 7/1 ; divide. Q_L in A, R_L in H
pshh 2/1 ; move RL
pulx 2/1 ; in X
clrh 1/1 ; RH is zero
ais #3 2/2 ; clean stack
rts 4/1 ; and return

Although the code does raise the minimum execution time from 47 to 48
clocks:

• It lowers the expected value of the dH = 0 execution time from 50.5 to 48
clocks.

• It saves approximately 15 bytes of FLASH.

This optimization is recommended.

4.2 Potential Case II Optimizations

This section corresponds to Case II of §3.2.2.
I sent an e-mail to an engineer at the compiler manufacturer indicating that:

• I believed Case I could be optimized as indicated earlier in the document.

• I believed Case II could be optimized by applying Knuth’s algorithm.

8



The reply I received from the compiler manufacturer was that:

• There was agreeement about Case I.

• Case II may be a little faster using Knuth’s algorithm, but would definitely
be larger (code used to evaluate the application of Knuth’s algorithm was
also provided).

In the test code provided by the compiler manufacturer, the approach used
was to obtain a trial quotient and then to subtract the divisor from the re-
mainder up to twice to adjust the quotient up to 2 counts downward (Knuth’s
algorithm).

I did try a different approach (to iterate on the quotient and to reconstruct
q × d with decreasing q). This approach promised to be slightly more compact
because q × d reconstruction was reutilized. However, it worked out to oc-
cupy about 153 bytes rather than 103 for the shift-compare-subtract algorithm
(timing was not examined). (This test code is version-controlled in the same
directory as this LATEX document.)

At this point I agree with the compiler manufacturer that there is a tradeoff
between size and speed (it seems nearly impossible to get both).

In any reimplementation of this algorithm, will probably need to choose
between size and speed. I believe there is some possibility to reduce the reim-
plementation from 153 bytes, but not down to 103 bytes.

9


