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Economical Implementation Of Linear Scaling
Functions In Microcontroller Software Using
Rational Number Approximation Techniques
David T. Ashley, Joseph P. DeVoe, Cory Pratt, Karl Perttunen, Anatoly Zhigljavsky

Abstract—Inexpensive microcontrollers are widely used in
vehicles, consumer electronics, laboratory equipment, and
medical equipment. A significant problem in the design of
software for these devices is the efficient and reliable imple-
mentation of arithmetic. In this paper, techniques are de-
veloped to use an instruction set typical of an inexpensive
microcontroller to economically approximate linear scaling
functions of the form f(x) = rIx (rI non-negative and real
but not necessarily rational) in the first quadrant using a
rational approximation factor rA = h/k. Methods and con-
siderations in choosing h and k are developed, and error
terms are derived which bound the error introduced by the
rational approximation.

Keywords—Microcontroller arithmetic, linear scaling, rat-
ional approximation, Farey series, continued fractions.

I. Introduction

LOW-COST microcontrollers provide weak instruction
sets, and a significant design challenge in the develop-

ment of software for these devices is the economical imple-
mentation of arithmetic. This paper presents techniques
which are suitable for economically implementing high-
precision linear scalings using instructions which are char-
acteristic of inexpensive 4-bit and 8-bit microcontrollers.

This paper is confined to the approximation of linear
scalings of the form y = rIx (rI ∈ R+, not necessarily
∈ Q+) by linear scalings of the form y = hx/k (h ∈ Z+,
k ∈ N). In Section II, error terms for rational approxi-
mations are derived without regard for how integers h and
k are chosen. In Section III, results from number theory
are presented which give insight into how to choose rat-
ional numbers h/k for use as scaling factors. In Section
IV, probabilistic results from number theory are presented
outlining how close to a real rI a rational rA = h/k can
typically be chosen. In Section V, a special case in which k
is chosen as an integral power of two is developed with the
aim of providing a framework for tabulating scaling fac-
tors. In Section VI, practical techniques for economically
implementing rational scaling functions using inexpensive
microcontroller instruction sets are presented. In Section
VII, design examples which illustrate the techniques are
presented.

D.T. Ashley, J.P. DeVoe, C. Pratt, and K. Perttunen are with
Visteon Automotive Systems in Dearborn, Michigan, USA. E-mail:
{dashley1, jdevoe, cpratt2, kperttun}@visteon.com. Anatoly Zhig-
ljavsky is with Cardiff University, Cardiff, UK. E-mail: zhigl-
javskyaa@cardiff.ac.uk.

II. Analysis Of Approximation Error

A function y = rIx (rI ∈ R+, not necessarily ∈ Q+)
is to be approximated by a function y = rAx; rA = h/k,
∈ Q+.1 In this section, error terms are developed which
bound the error introduced when f(x) = rIx is approxi-
mated by f(x) = rAx in the first quadrant only (x ∈ R+).

A. Model Functions

(1) through (4) provide models of the function to be
approximated which vary in whether the domain is real or
integral, and in whether the range is real or integral. The
floor(·) function, denoted �·�, is used to model the effect
of quantization, such as occurs when a real argument is
quantized for implementation using integer arithmetic, or
when the fractional part of a quotient is discarded.2

In practical problems, the domain and range may be in-
tegral rather than real for either practical or conceptual
reasons. As an example of a domain which is integral for
practical reasons, consider an embedded software algorithm
which has access only to integral data (as might happen
with integral vehicle speed reported to an embedded soft-
ware algorithm over a network). In this case, the behavior
of the software may be specified only over Z+, as it is im-
possible to excite the software with non-integral values. It
may also happen that the domain is conceptually integral,
as occurs when the input argument is a count or other in-
herently integral quantity. The range may also be integral
for similar practical or conceptual reasons.
(1) provides a model of the ideal function to be approx-

imated when both domain and range are the non-negative
real numbers.

F (x) = rIx (1)

(2) provides a model of the ideal function to be approx-
imated when the function is to be evaluated on a domain
of non-negative integers only.

G(x) = rI�x� (2)

(3) provides a model of the ideal function to be approx-
imated when only the range is integral.

1Mnemonic for rI and rA: I=ideal, A=actual.
2The ceiling(·) function, denoted �·�, is also used and appears in
many algebraic results throughout the paper. There is often ambigu-
ity in how the floor(·) and ceiling(·) functions are defined for negative
arguments. Here, �−1.1� = �−2.1� = −2.
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H(x) = �rIx� (3)

(4) provides a model of the ideal function to be aprox-
imated when both the domain and range are the non-
negative integers.

I(x) = �rI�x�� (4)

(5) defines rA, the rational number used to approximate
rI . h/k is always assumed reduced.

rA =
h

k
; h ∈ Z+; k ∈ N (5)

(6) provides a model of the function which is used to ap-
proximate (1), (2), (3), or (4). The approximation always
has an integral domain and range.

J(x) = �rA �x�� =
⌊
h �x�
k

⌋
(6)

(7) defines an enhancement to (6). The approximation
error introduced can be shifted using integral parameter z.

K(x) =
⌊
h �x�+ z

k

⌋
; z ∈ Z (7)

(8) and (9) are special cases of (6) and (7) which are
useful in microcontroller work, since division by a power
of two can be achieved very economically using right-shift
instructions.

L(x) =
⌊
h �x�
2q

⌋
; k = 2q; rA =

h

2q
(8)

M(x) =
⌊
h �x�+ z

2q

⌋
; k = 2q; rA =

h

2q
(9)

B. Methods Of Error Analysis

Quantization of a real argument which is not necessarily
rational is treated by noting that quantization introduces
an error ε ∈ [0, 1) (Eq. 10).

�x� = x− ε; ε ∈ [0, 1) (10)

Quantization of a rational argument a/b is treated by
noting that the largest quantization error ε occurs when a
is one less than an integral multiple of b (Eq. 11).3

⌊a
b

⌋
=

a

b
− ε; ε ∈

[
0,

b− 1
b

]
(11)

3Strictly speaking, ε ∈
{
0, 1

b
, . . . , b−2

b
, b−1

b

}
; however, since only

the smallest and largest values are of interest, (11) is used.

Since a difference of integers must also be an integer,
results on differences of quantized values are constrained
further by intersection with the set of integers. Care must
be taken in the intersection of an interval with the set of
integers, as the distinction between an open interval and a
closed interval is significant. The identities in (12) through
(15) are employed.4

[x, y] ∩ Z = [�x�, �y�]
Z

(12)

[x, y) ∩ Z = [�x�, �y − 1�]
Z

(13)

(x, y] ∩ Z = [�x+ 1�, �y�]
Z

(14)

(x, y) ∩ Z = [�x+ 1�, �y − 1�]
Z

(15)

C. Error Analysis Of {J(x),K(x)} − I(x)

(6) is a special case of (7), so the difference function
K(x) − I(x) with z = 0 is J(x) − I(x). For this reason
it is not necessary to derive J(x) − I(x) separately. The
difference function (or error function) is the difference be-
tween the ideal model function with integral domain and
range [I(x)], and the approximation function with integral
domain and range [J(x) or K(x)] (Eq. 16).

K(x)− I(x) =
⌊
h �x�+ z

k

⌋
− �rI �x�� (16)

The inner floor(·) function can be removed with the un-
derstanding that the difference function will be evaluated
on a domain of integers only (17).

K(x)− I(x) =
⌊
hx+ z

k

⌋
− �rIx� ; x ∈ Z+ (17)

Quantization (two occurrences of the floor(·) function)
can be modeled as introducing errors ε1 and ε2 (18). Be-
cause the domain is integral, the largest quantization error
in ε1 occurs when hx+ z is one less than an integral multi-
ple of k, hence ε1 ∈ [0, k−1

k

]
. Because rI may be irrational,

ε2 ∈ [0, 1).
Choosing the extremes of ε1 and ε2 so as to minimize

and maximize the difference function bounds the approxi-
mation error (19).
(19) may be intersected with the set of integers, because

the result, a difference of integers, must also be an integer
(20).
With z = 0, (20) supplies J(x)− I(x) (21).
rA must almost always be chosen unequal to rI , and as a

result the approximation error is larger for larger x. Most
4In (12) through (15) and throughout the paper, a subscript of Z

is used to denote that a set may contain only integers.
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K(x)− I(x) =
hx+ z

k
− ε1 − rIx+ ε2; x ∈ Z+; ε1 ∈

[
0,

k − 1
k

]
; ε2 ∈ [0, 1) (18)

K(x)− I(x) ∈
[
(rA − rI)x+

z

k
− k − 1

k
, (rA − rI)x+

z

k
+ 1

)
(19)

K(x)− I(x) ∈
[⌈
(rA − rI)x+

z

k
− k − 1

k

⌉
,
⌈
(rA − rI)x+

z

k

⌉]
Z

(20)

J(x)− I(x) ∈
[⌈
(rA − rI)x− k − 1

k

⌉
, �(rA − rI)x�

]
Z

(21)

approximations are used only in a restricted domain, and
it is useful to know the upper bound on approximation
error when the approximation is used only in an interval
[0, xMAX ]Z, xMAX ∈ N.5 These upper bounds can be ob-
tained by substitution into (20), and are presented as (22).
Note that the second case of (22) may not be distinct, de-
pending on the choice of z.
With z = 0, analogous results for J(x) − I(x) are ob-

tained (23).
In practice, there are three useful choices of the param-

eter z. (24) supplies the choice of z which will assure that
the approximation error is never negative. (25) supplies
the choice of z which will assure that the approximation
error is never positive. (26) supplies the choice of z which
will center the approximation error about zero.

zNONEG =
{ �(rI − rA)xMAXk� , rA < rI

0, rA ≥ rI
(24)

zNOPOS =
{

0, rA ≤ rI
�(rI − rA)xMAXk� , rA > rI

(25)

zCENTER =
⌊
(rI − rA)xMAXk

2

⌋
(26)

Example 1: In a vehicle software load, vehicle speed is
received in network messages as integral KPH, and is to be
converted to MPH and retransmitted over a second net-
work as integral MPH. If rA=59/95≈0.62105263 is used to
approximate rI ≈ 0.6214 (the ideal conversion factor from
KPH to MPH), how much error might be introduced by this
rational approximation (vs. retransmitting the quantized
product of rI and the received vehicle speed) for received
vehicle speeds up to 255 KPH?

5Throughout the paper, it is assumed that xMAX ∈ N.

Solution: In this example, the domain is integral and
the range is integral, so (23) applies with xMAX = 255.
The first row of (23) predicts that the error will always
be in [−1, 0]Z={-1,0}, so that the calculated integral MPH
may be up to one count less than implied by I(x) with
rI = 0.6214.

D. Error Analysis Of {J(x),K(x)} −G(x)

Because (6) is a special case of (7), the difference function
K(x) −G(x) with z = 0 is J(x) −G(x); hence there is no
need to derive J(x)−G(x) explicitly.

K(x)−G(x) =
⌊
h �x�+ z

k

⌋
− rI �x� (27)

The inner floor(·) function of (27) can be removed with
the understanding that the difference function will be eval-
uated on a domain of integers only (28). The difference
function (28) is real (not required to be rational or inte-
gral).

K(x)−G(x) =
⌊
hx+ z

k

⌋
− rIx; x ∈ Z+ (28)

The arguments which support the derivation of (17)
through (26) also support the derivation of (28) through
(35). (33), (34), and (35) supply choices of the parameter
z which ensure that the difference function is never nega-
tive, never positive, and centered about zero, respectively.

zNOPOS =
{

0, rA ≤ rI
�(rI − rA)xMAXk� , rA > rI

(34)

zCENTER =
⌊
(rI − rA)xMAXk + k

2

⌋
(35)
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K(x)− I(x)|x∈[0,xMAX ]Z
∈




[⌈
(rA − rI)xMAX + z

k − k−1
k

⌉
,
⌈
z
k

⌉]
Z
, rA ≤ rI − z+1

xMAXk

[
0,
⌈
z
k

⌉]
Z
, rI − z+1

xMAXk < rA ≤ rI

[⌈
z
k − k−1

k

⌉
,
⌈
z
k

⌉]
Z
, rA = rI

[⌈
z
k − k−1

k

⌉
,
⌈
(rA − rI)xMAX + z

k

⌉]
Z
, rA > rI

(22)

J(x)− I(x)|x∈[0,xMAX ]Z
∈




[⌈
(rA − rI)xMAX − k−1

k

⌉
, 0
]

Z
, rA ≤ rI − 1

xMAXk

{0}, rI − 1
xMAXk < rA ≤ rI

[0, �(rA − rI)xMAX�]
Z
, rA > rI

(23)

K(x)−G(x) ∈
[
(rA − rI)x +

z

k
− k − 1

k
, (rA − rI)x +

z

k

]
(29)

K(x)−G(x)|x∈[0,xMAX ]Z
∈




[
(rA − rI)xMAX + z

k − k−1
k , z

k

]
, rA < rI

[
z
k − k−1

k , zk
]
, rA = rI

[
z
k − k−1

k , (rA − rI)xMAX + z
k

]
, rA > rI

(30)

E. Error Analysis Of {J(x),K(x)} −H(x)

Because (6) is a special case of (7), the difference function
K(x)−H(x) with z = 0 is J(x)−H(x); hence there is no
need to derive J(x) −H(x) explicitly.

K(x)−H(x) =
⌊
h �x�+ z

k

⌋
− �rIx� (36)

(36) corresponds to the approximation error introduced
when a function with a real domain and integral range is
approximated using a function with an integral domain and
range. The error term supplied by (36) is integral.
The three quantizations in (36) can be treated by intro-

ducing ε1, ε2, and ε3 (37).
Evaluating (37) at the extremes of ε1, ε2, and ε3 leads

to (38).
Intersection of (38) with the set of integers leads to (39).
Evaluating (39) at the extremes of [0, xMAX ] yields (40).

With z = 0, (40) supplies J(x)−H(x) (Eq. 41).
(42), (43), and (44) supply choices of the parameter z

which ensure that the difference function is never negative,
never positive, and centered about zero, respectively.

zNOPOS =
{

0, rA ≤ rI
�(rI − rA)xMAXk� , rA > rI

(43)

zCENTER =
⌊
(rI − rA)xMAXk + rAk

2

⌋
(44)

F. Error Analysis Of {J(x),K(x)} − F (x)

Because (6) is a special case of (7), the difference function
K(x) − F (x) with z = 0 is J(x) − F (x); hence there is no
need to derive J(x)− F (x) explicitly.

K(x)− F (x) =
⌊
h �x�+ z

k

⌋
− rIx (45)

(45) corresponds to the approximation error introduced
when a function with a real domain and range is approxi-
mated using a function with an integral domain and range.
The error term supplied by (45) is real rather than integral.
The two quantizations in (45) can be treated by intro-

ducing ε1 and ε2 (46).
Choosing the extremes of ε1 and ε2 so as to minimize

and maximize the difference function bounds the approxi-
mation error (47).
Minimizing and maximizing (47) over a domain of

[0, xMAX ] gives (48). With z = 0, (48) supplies J(x)−F (x)
(Eq. 49).
(50), (51), and (52) supply choices of the parameter z

which ensure that the difference function is never negative,
never positive, and centered about zero, respectively.
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J(x)−G(x) ∈
[
(rA − rI)x− k − 1

k
, (rA − rI)x

]
(31)

J(x) −G(x)|x∈[0,xMAX ]Z
∈




[
(rA − rI)xMAX − k−1

k , 0
]
, rA < rI

[−k−1
k , 0

]
, rA = rI

[−k−1
k , (rA − rI)xMAX

]
, rA > rI

(32)

zNONEG =




�(rI − rA)xMAXk + k − 1� , rA < rI

k − 1, rA ≥ rI

(33)

K(x)−H(x) =
h(x− ε1) + z

k
− ε2 − rIx+ ε3; ε1 ∈ [0, 1); ε2 ∈

[
0,

k − 1
k

]
; ε3 ∈ [0, 1) (37)

K(x)−H(x) ∈
(
(rA − rI)x− rA +

z

k
− k − 1

k
, (rA − rI)x+

z

k
+ 1

)
(38)

K(x)−H(x) ∈
[⌊

(rA − rI)x − rA +
z

k
+

1
k

⌋
,
⌈
(rA − rI)x+

z

k

⌉]
Z

(39)

K(x)−H(x)|x∈[0,xMAX ] ∈




[⌊
(rA − rI)xMAX − rA + z

k +
1
k

⌋
,
⌈
z
k

⌉]
Z
, rA < rI

[⌊−rA + z
k +

1
k

⌋
,
⌈
z
k

⌉]
Z
, rA = rI

[⌊−rA + z
k +

1
k

⌋
,
⌈
(rA − rI)xMAX + z

k

⌉]
Z
, rA > rI

(40)

J(x)−H(x)|x∈[0,xMAX ] ∈




[⌊
(rA − rI)xMAX − rA + 1

k

⌋
, 0
]

Z
, rA < rI

[⌊−rA + 1
k

⌋
, 0
]

Z
, rA = rI

[⌊−rA + 1
k

⌋
, �(rA − rI)xMAX�]

Z
, rA > rI

(41)

zNONEG =




�(rI − rA)xMAXk + rAk − 1� , rA < rI

�rAk − 1�, rA ≥ rI

(42)

K(x)− F (x) =
h(x− ε1) + z

k
− ε2 − rIx; ε1 ∈ [0, 1); ε2 ∈

[
0,

k − 1
k

]
(46)
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K(x)− F (x) ∈
(
(rA − rI)x − rA +

z

k
− k − 1

k
, (rA − rI)x +

z

k

]
(47)

K(x)− F (x)|x∈[0,xMAX ] ∈




(
(rA − rI)xMAX − rA + z

k − k−1
k , zk

]
, rA < rI

(−rA + z
k − k−1

k , zk
]
, rA = rI

(−rA + z
k − k−1

k , (rA − rI)xMAX + z
k

]
, rA > rI

(48)

J(x) − F (x)|x∈[0,xMAX ] ∈




(
(rA − rI)xMAX − rA − k−1

k , 0
]
, rA < rI

(−rA − k−1
k , 0

]
, rA = rI

(−rA − k−1
k , (rA − rI)xMAX

]
, rA > rI

(49)

zNONEG =




�(rI − rA)xMAXk + rAk + k − 1� , rA < rI

�rAk + k − 1� , rA ≥ rI

(50)

zNOPOS =
{

0, rA ≤ rI
�(rI − rA)xMAXk� , rA > rI

(51)

zCENTER =
⌊
(rI − rA)xMAXk + rAk + k

2

⌋
(52)

III. Methods Of Choosing h And k

In this section, algorithms for choosing h and k subject
to the constraints h ≤ hMAX and k ≤ kMAX in order to
place rA = h/k close to rI are presented. The algorithms
are presented in order of increasing sophistication (and ef-
ficiency).6

A. Farey Series Methods Of Choosing h And k

The Farey series of order N , denoted FN , is the ordered
set of all irreducible rational numbers h/k in the interval
[0,1] with a denominator k ≤ kMAX . As an example, the
Farey series of order 5, F5, is shown in (53).

F5 =
{
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1

}
(53)

The distribution of Farey rational numbers in [0,1] is
repeated in any [n, n + 1], n ∈ Z; so that the distribution

6Although it won’t be shown in this paper, if N = kMAX is the
maximum allowable denominator, Algorithm 1 is O(N2), Algorithm
2 is O(N), and the continued fraction algorithm is O(logN).

of Farey rationals in [0,1] supplies complete information
about the distribution in all of R.7

Theorem 1: If H/K and h/k are two successive terms of
FN , then:

Kh−Hk = 1 (54)

Note: This condition is necessary but not sufficient for
h/k to be the Farey successor of H/K. In general, there is
more than one h/k with k ≤ kMAX such thatKh−Hk = 1.

Proof: See [1] p.23, [6] p.222.
Theorem 2: If H/K and h/k are two successive terms of

FN , then:

K + k > N (55)

Note: This condition is necessary but not sufficient for
h/k to be the Farey successor of H/K.

Proof: See [1] p.23.
Theorem 3: If hj−2/kj−2, hj−1/kj−1, and hj/kj are

three consecutive terms of FN , then:

hj =
⌊
kj−2 +N

kj−1

⌋
hj−1 − hj−2 (56)

7We occasionally abuse the proper nomenclature by referring to
sequential rational numbers outside the interval [0,1] as Farey terms
or as part of FN , which, technically, they are not. All of the results
presented in this paper can be shown to apply everywhere in R, so
this abuse is not harmful.
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kj =
⌊
kj−2 +N

kj−1

⌋
kj−1 − kj−2 (57)

Notes: (1)Theorem 3 gives recursive formulas for gener-
ating successive terms in FN if two consecutive terms are
known. (2)Equations (56) and (57) can be solved to allow
generation of terms in the decreasing direction (58, 59).

hj =
⌊
kj+2 +N

kj+1

⌋
hj+1 − hj+2 (58)

kj =
⌊
kj+2 +N

kj+1

⌋
kj+1 − kj+2 (59)

Proof: See [9] p.83.
In general, given only a single irreducible rational num-

ber h/k, there is no method to find the immediate prede-
cessor or successor in FN without some iteration (Eqns. 56,
57, 58, and 59 require two successive elements). However,
if the irreducible rational number is an integer i = i/1,
the predecessor and successor in FN are (iN − 1)/N and
(iN +1)/N , so it is convenient to build FN in either direc-
tion starting at an integer. This suggests an algorithm for
finding the closest rational numbers in FN to an rI when
N is small.

Algorithm 1:
• Choose an integer i as either �rI� or �rI�.
• If i = �rI� is chosen, use hj−2/kj−2 = i/1, hj−1/kj−1 =

(iN + 1)/N and use (56) and (57) to build successive
increasing terms in FN until the terms which enclose rI
are found. If i = �rI� is chosen, use hj+2/kj+2 = i/1,
hj+1/kj+1 = (iN−1)/N and use (58) and (59) to build
successive decreasing terms in FN until the terms which
enclose rI are found.8

The following additional theorem is presented, which can
be useful in finding the next term of FN given only a single
term.

Theorem 4: If H/K is a term of FN , the immediate suc-
cessor of H/K in FN is the h/k satisfying Kh − Hk = 1
with the largest denominator k ≤ N .

Proof: Any potential successor of H/K which meets
Kh−Hk = 1 can be formed by adding 1/Kk to H/K (60,
61).

Kh−Hk = 1 (60)
⇓

h

k
=

1 +Hk

Kk
=

H

K
+

1
Kk

(61)

If h/k and h′/k′ both satisfy Kh − Hk = 1 with k′ <
k ≤ N , then H/K < h/k < h′/k′. Thus the h/k with the
largest denominator ≤ N that meets Kh− Hk = 1 is the
successor in FN to H/K.

8This procedure is easily carried out with spreadsheet software, such
as Microsoft Excel.

Finding the Farey successor from a single Farey term
/∈ Z is labor-intensive and not easily done without a com-
puter for even moderate N . Theorems 1, 2, and 4 outline
a computationally tractable way (Algorithm 2) to use a
computer to form the successor in FN given only a single
Farey term, even for large N . Once two successive Farey
terms are known, Theorem 3 can be applied to generate
additional terms at low cost. Algorithm 2 below outlines
a method to economically find Farey terms on the left and
right of a real number.

Algorithm 2:
• Choose a prime number α � N . α is the number of

denominators that a computer can test against Kh −
Hk = 1 in a practical period of time.9

• Choose a rational number h′/α to the left of rI (h′ =
�rIα� is usually a good choice).

• Because α is prime, h′/α is not reducible unless h′/α
is an integer.

• Denote the Farey term succeeding h′/α as h/k. Theo-
rem 2 asserts that α+k > N , implying that k > N−α.

• Apply Theorems 1 and 4. Search downward from k =
N to k = N −α+1 for an h/k which satisfies Theorem
1. This will require at most α iterations.

• h′/α and h/k are now known to be successive Farey
terms in FN to the left of rI . Theorem 3 can be em-
ployed to economically generate successive Farey terms
until rI is enclosed.

B. Continued Fraction Methods Of Choosing h And k

For selection of a suitable rational number from FN

when N is a few hundred or less, building FN starting
at an integer (Algorithm 1) or at a rational number with a
large prime denominator (Algorithm 2) are practical tech-
niques.10 However, the number of elements of FN is ap-
proximately 3N2/π2; and so for large N , R is too dense
with Farey rationals to economically search.
A more direct algorithm for locating the Farey neighbors

of an arbitrary real rI comes from the study of continued
fractions (a topic in number theory).
A finite simple continued fraction is a fraction in the form

of (62), where a0 ∈ Z+ and ak ∈ N for k > 0. A continued
fraction in the form of (62) is denoted [a0; a1, a2, . . . , an].
Continued fractions provide an alternate apparatus for

representing real numbers. The form of (62) has important
properties which are presented without proof.
• Every rational number can be represented by a finite

simple continued fraction [a0; a1, a2, . . . , an].
• Each unique [a0; a1, a2, . . . , an] corresponds to a

uniquely valued rational number, so long as an �= 1.11

9Useful primes at each order of magnitude are 11; 101; 1,009;
10,007; 100,003; 1,000,003; and 10,000,019.

10Microsoft Excel, which maintains integers with 48 bits of preci-
sion, can be used to build FN and select a suitable rational number
for at least N ≈ 224. (Multiplying two 24-bit numbers yields a 48-bit
result, and so Excel should be usable until at least order ≈ 224.)

11If an = 1, the continued fraction can be reduced in order by one,
and an−1 can be increased by one while still preserving the value of
the continued fraction. The restriction that the final element an �= 1
is necessary to guarantee that each uniquely valued rational number
has a unique finite simple continued fraction representation.
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a0 +
1

a1 +
1

a2 +
1

. . .+
1
an

= [a0; a1, a2, . . . , an] (62)

TABLE I

Continued Fraction Representation Of 3, 362, 997/2, 924, 082

Index (k) Dividend Divisor ak Remainder
0 3,362,997 2,924,082 1 438,915
1 2,924,082 438,915 6 290,592
2 438,915 290,592 1 148,323
3 290,592 148,323 1 142,269
4 148,323 142,269 1 6,054
5 142,269 6,054 23 3,027
6 6,054 3,027 2 0

Without proof, we present the following procedure for
finding the continued fraction representation of an arbi-
trary non-negative rational number a/b.

Algorithm 3:
• Start with k = 0, dividend=a, divisor=b.
• Repeat

• Carry out the division of dividend/divisor to form
an integer quotient ak and an integer remainder.

• The divisor from the current iteration becomes the
dividend for the next iteration, and the remainder
from the current iteration becomes the divisor for
the next iteration.

• Increment k.
• Until (remainder is zero).
Without proof, we present the following properties of

Algorithm 3.
• The algorithm will produce the same continued fraction

representation [a0; a1, a2, . . . , an] for any (ia)/(ib), i ∈
N, i.e. the rational number a/b need not be reduced
before applying the algorithm.

• The algorithm will always terminate (i.e. the contin-
ued fraction representation [a0; a1, a2, . . . , an] will be
finite).

• The last non-zero remainder will be the greatest com-
mon divisor of a and b.

Example 2: Find the continued fraction representation
of a/b=3,362,997/2,924,082.

Solution: Table I shows the application of Algorithm 3
to form the continued fraction representation of a/b.
Table I implies that the continued fraction representation

of a/b = 3,362,997/2,924,082 is [1; 6, 1, 1, 1, 23, 2].
Note in Table I that the final non-zero remainder is 3,027,

the g.c.d. of 3,362,997 and 2,924,082.
Irrational numbers also have a continued fraction rep-

resentation, but this representation is necessarily infinite

(non-terminating).
An algorithm does exist for obtaining the continued frac-

tion representation of an irrational number; but in prac-
tice the algorithm must be carried out symbolically (which
can be difficult and not amenable to automation). For
this reason, only the algorithm for obtaining the continued
fraction representation of rational numbers is presented
here. Using a rational number as close as practical12 to
the irrational number to be approximated (such as using
3141592654/1000000000 for π, as is done in Example 4) is
the recommended technique.
The kth convergent of a finite simple continued frac-

tion [a0; a1, a2, . . . , an], denoted sk = pk/qk, is the rat-
ional number corresponding to the continued fraction
[a0; a1, a2, . . . , ak], k ≤ n.
Each convergent sk is a rational number with a numera-

tor pk and denominator qk. Eqns. (64) through (69) define
the canonical way to construct all sk = pk/qk from all ak.

p−1 = 1 (64)

q−1 = 0 (65)

p0 = a0 = �rI� (66)

q0 = 1 (67)

pk = akpk−1 + pk−2 (68)

qk = akqk−1 + qk−2 (69)

When pk and qk (the numerator and denominator of the
kth convergent sk) are formed as specified by (64) through

12Let α be the irrational number to be approximated, let a/b be
the rational number used as an approximation of α when applying
Algorithm 3, and let H/K and h/k be the two Farey neighbors iden-
tified through Theorem 5. In a worst case, α < H/K < a/b < h/k
or H/K < a/b < h/k < α. In such cases, the misidentification of the
two Farey neighbors is not detectable (because α is not known pre-
cisely enough, otherwise a more precise a/b would have been used).
In all cases, H/K < a/b < h/k.
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3, 362, 997
2, 924, 082

= 1 +
1

6 +
1

1 +
1

1 +
1

1 +
1

23 +
1
2

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 +
1
a6

= [1; 6, 1, 1, 1, 23, 2] (63)

TABLE II

Convergents Of Continued Fraction Representation Of

3, 362, 997/2, 924, 082

Index (k) ak pk qk

-1 Not defined 1 0
0 1 1 1
1 6 7 6
2 1 8 7
3 1 15 13
4 1 23 20
5 23 544 473
6 2 1,111 966

(69), convergents sk = pk/qk have the following properties,
which are presented without proof.
• Each even-ordered convergent sk = pk/qk =

[a0; a1, a2, . . . , ak] is less than [a0; a1, a2, . . . , an], and
each odd-ordered convergent sk is greater than
[a0; a1, a2, . . . , an], with the exception of the final con-
vergent sk, k = n, which is equal to [a0; a1, a2, . . . , an].

• Each convergent is irreducible; that is, pk and qk are
coprime.

• Each qk is greater than qk−1; that is, the denominators
of convergents are ever-increasing.

Example 3: Find all convergents of the continued frac-
tion representation of a/b=3,362,997/2,924,082; shown in
Example 2 to be [a0; a1, a2, a3, a4, a5, a6]=[1;6,1,1,1,23,2]

Solution: Table II shows the results of the application of
equations (64) through (69) to form all convergents.
Note that the final convergent, s6=p6/q6=1,111/966 is

the reduced form of a/b. Note also that all convergents
sk = pk/qk are irreducible. It may also be verified that
each even-ordered convergent is less than a/b, and that
each odd-ordered convergent is greater than a/b, with the
exception of the final convergent, which is equal to a/b.

Theorem 5: For a non-negative rational number a/b
not in FN which has a continued fraction representation
[a0; a1, a2, . . . , an], the highest-order convergent sk = pk/qk
with qk ≤ N is one neighbor13 in FN to a/b, and the other
neighbor in FN is given by (70).14

13By neighbors in FN we mean the rational numbers in FN imme-
diately to the left and immediately to the right of a/b.

14We were not able to locate Theorem 5 or a proof in print, but this

⌊
N − qk−1

qk

⌋
pk + pk−1⌊

N − qk−1

qk

⌋
qk + qk−1

(70)

Proof: First, it is proved that the highest-order con-
vergent sk = pk/qk with qk ≤ N is one of the two neighbors
to a/b in FN . Note that sk ∈ FN , since sk is rational and
reduced with denominator not exceeding N . By theorem
([5], Theorem 9, p. 9), the upper bound on the difference
between a/b and sk is given by (71).

∣∣∣∣ab − pk
qk

∣∣∣∣ < 1
qkqk+1

(71)

For two consecutive terms in FN , Kh− Hk = 1. For a
Farey neighbor H/K to sk in FN , (72) must hold.

1
qkN

≤
∣∣∣∣HK − pk

qk

∣∣∣∣ (72)

qk+1 > N , because qk+1 > qk and pk/qk was chosen to
be the highest-order convergent with qk ≤ N . Using this
knowledge and combining (71) and (72) leads to (73).

∣∣∣∣ab − pk
qk

∣∣∣∣ < 1
qkqk+1

<
1

qkN
≤
∣∣∣∣HK − pk

qk

∣∣∣∣ (73)

This proves that sk is one neighbor to a/b in FN . The
apparatus of continued fractions ensures that the highest
order convergent sk with qk ≤ N is closer to a/b than to
any neighboring term in FN . Thus, there is no intervening
term of FN between sk and a/b. If k is even, sk < a/b, and
if k is odd, sk > a/b.
It must be proved that (70) is the other Farey neighbor.

(70) is of the form (74), where i ∈ Z+.

ipk + pk−1

iqk + qk−1
(74)

theorem is known within the number theory community. It appears
on the Web page of David Eppstein in the form of a ‘C’-language com-
puter program, http://www.ics.uci.edu/~eppstein/numth/frap.c.
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If k is even, sk < a/b, and the two Farey terms enclosing
a/b, in order, are given in the first clause of (75). If k is
odd, sk > a/b, and the two Farey terms enclosing a/b, in
order, are given in the second clause of (75).

{
pk
qk

,
ipk + pk−1

iqk + qk−1

}
(k even)

{
ipk + pk−1

iqk + qk−1
,
pk
qk

}
(k odd)

(75)

In either clause of (75), applying the Kh−Hk = 1 test,
(76), gives the result of 1, since by theorem ([5], Theorem
2, p. 5), qkpk−1 − pkqk−1 = (−1)k, with the exponent of k
compensating for the ordering difference between the two
clauses of (75), as shown in (77).

qkpk−1 − pkqk−1 = (−1)k = 1, (k even)
qk−1pk − pk−1qk = −(−1)k = 1, (k odd) (77)

Thus, every potential Farey neighbor of the form (74)
meets the Kh−Hk = 1 test. In order to show that (70) is
the companion Farey neighbor to pk/qk, it is only necessary
to show that a term meeting the Hk − Hk = 1 test with
a larger denominator still not greater than N cannot exist
(Theorem 4).
It must first be established that a rational number of

the form (74) is irreducible. This result comes directly
from (76) and (77), since if the numerator and denominator
of (70) or (74) are not coprime, the difference of 1 is not
possible.
The denominator of (70) can be rewritten as (78).

N − [(N − qk−1) mod qk] ∈ {N − qk + 1, ..., N} (78)

Finally, it must be shown that if one irreducible rational
number—namely, the rational number given by (70)—with
a denominator ∈ {N−qk+1, . . . , N}meets the Kh−Hk =
1 test, there can be no other irreducible rational number in
FN with a larger denominator which also meets this test.
Let c/d be the irreducible rational number given by (70),

with d already shown above to be ∈ {N − qk + 1, ..., N}.
Since c/d and sk = pk/qk meet the Kh−Hk = 1 test, (79)
follows.

c =
1
qk

+
pkd

qk
; c ∈ Z (79)

c as shown in (79) is necessarily an integer. Assume that
d ∈ Z is to be perturbed by some amount ∆ ∈ Z to form a
different integer d+∆ ∈ Z. In order for the Kh−Hk = 1
test to be met with the new choice of denominator d+∆,
(80) is required.

1
qk

+
pkd

qk
+

pk∆
qk

∈ Z (80)

TABLE III

Continued Fraction Representation Of

3,141,592,654/1,000,000,000 (A Rational Approximation To π)

Index Dividend Divisor ak Remainder

(k)

0 3,141,592,654 1,000,000,000 3 141,592,654

1 1,000,000,000 141,592,654 7 8,851,422

2 141,592,654 8,851,422 15 8,821,324

3 8,851,422 8,821,324 1 30,098

4 8,821,324 30,098 293 2,610

5 30,098 2,610 11 1,388

6 2,610 1,388 1 1,222

7 1,388 1,222 1 166

8 1,222 166 7 60

9 166 60 2 46

10 60 46 1 14

11 46 14 3 4

12 14 4 3 2

13 4 2 2 0

Comparing (79) with (80), it can be seen that since the
first two terms of (80) sum to an integer, (80) implies that
pk∆/qk ∈ Z. pk and qk are coprime, and so in order for
qk to divide pk∆ with no remainder, ∆ must contain at
least every prime factor of qk, which implies that ∆ ≥ qk.
Noting that the denominator of (70) is necessarily d ∈ {N−
qk+1, ..., N}, any positive perturbation ∆ ≥ qk will form a
d+∆ > N . Thus, no other irreducible rational number in
FN besides that given by (70) with a larger denominator
≤ N and which meets the Kh − Hk = 1 test can exist;
therefore (70) is the other enclosing Farey neighbor to a/b
in FN .

Example 4: Find the members of F65535 immediately be-
fore and immediately after π.

Solution: π is transcendental and cannot be expressed
as a rational number. Using 3141592654/1000000000 as
a rational approximation to π and applying Algorithm 3
yields Table III.
Table IV shows the formation of the convergents of the

continued fraction representation of the rational approxi-
mation to π using (64) through (69).
By Theorem 5, one Farey neighbor is the convergent with

the largest denominator not greater than 65,535. From
Table IV, this convergent is s4 = p4/q4 = 104,348/33,215
(and note that since this is an even-ordered convergent,
it will be less than a/b). Also by Theorem 5, applying
equation (70), the other Farey neighbor is 104,703/33,328.

C. Case Of Constrained h

In a practical design problem, a rational approximation
will typically be implemented by multiplying the input ar-
gument x by h, adding an offset z, then dividing by k. Ef-
ficiency will often depend on being able to implement mul-
tiplication, addition, or division using single machine in-
structions, which are constrained in the size of the operands
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(qk)(ipk + pk−1)− (pk)(iqk + qk−1) = 1, (k even)
(iqk + qk−1)(pk)− (ipk + pk−1)(qk) = 1, (k odd) (76)

TABLE IV

Convergents Of Continued Fraction Representation Of

3,141,592,654/1,000,000,000 (A Rational Approximation To π)

Index (k) ak pk qk

-1 Not defined 1 0
0 3 3 1
1 7 22 7
2 15 333 106
3 1 355 113
4 293 104,348 33,215
5 11 1,148,183 365,478
6 1 1,252,531 398,693
7 1 2,400,714 764,171
8 7 18,057,529 5,747,890
9 2 38,515,772 12,259,951
10 1 56,573,301 18,007,841
11 3 208,235,675 66,283,474
12 3 681,280,326 216,858,263
13 2 1,570,796,327 500,000,000

they can accomodate.
The results from number theory presented earlier are

based only on the constraint k ≤ kMAX , i.e. only the
constraint on the denominator is considered. However, in
practical problems, the numerator is also typically con-
strained, usually by the size of operands that an integer
multiplication instruction can accomodate.

rI , hMAX , and kMAX can be specified so that the restric-
tion on the numerator is the dominant constraint, which
does not allow the Farey series of order N = kMAX to be
economically used to find the best rational approximation
to rI , because FkMAX near rI will contain predominantly
terms with numerators violating h ≤ hMAX .
To provide for a more economical search for the best rat-

ional approximations when the numerator is constrained,
Theorem 6 is presented.

Theorem 6: Given a positive real number rI and con-
straints on a rational approximation h/k to rI , 0 ≤ h ≤
hMAX and 0 < k ≤ kMAX , the closest rational numbers
to rI on the left and right subject to the constraints lie in
FN ′ , with N ′ chosen as in (81).

N ′ =
⌊
hMAX

rI
+ 1

⌋
(81)

Proof: Note that by (81), N ′ > hMAX/rI , for all
choices of hMAX and rI .
If rI ≤ hMAX/kMAX , N ′ > kMAX ; therefore FN ′ ⊃

FkMAX , and the theorem is true.

If rI > hMAX/kMAX , then hMAX/N ′ < rI . Note that
hMAX/N ′ or its reduced form if it is reducible is necessarily
in FN ′ . Any rational number a/b > hMAX/N ′ with b > N ′

must also have a > hMAX , which violates the constraints.
Therefore, any a/b such that hMAX/N ′ < a/b < rI must
lie in FN ′ , and the closest rational number to rI on the
right subject to the constraints must also lie in FN ′ .

Example 5: Find the two best rational approximations
to π subject to hMAX = 255 and kMAX = 255.

Solution: In this problem, both the numerator and de-
nominator are constrained. The constrained numerator is
not treated directly by the results from number theory.
Applying (81) gives N ′=82, thus it is only necessary to ex-
amine F82 for best approximations to π which meet both
constraints. Building F82 yields 245/78 and 22/7 as the two
best rational approximations to π under the constraints.

IV. Probabilistic Results On |RI −RA|
In this section we consider different asymptotics for the

precision of the approximation of an arbitrary rI by a frac-
tion rA = h/k with k ≤ kMAX. For simplicity of notation
we denote α = rI and N = kMAX and assume, without loss
of generality, that α ∈ [0, 1].
We are thus interested in the asymptotic behaviour,

when N → ∞, of the quantity

ρN (α) = min
h/k∈FN

|α− h/k| ,

which is the distance between α and FN , the Farey series
of order N .
The worst–case scenario is not very interesting: from the

construction of the Farey series we observe that for a fixed
N the longest intervals between the neighbours of FN are
[0, 1/N ] and [1− 1/N, 1] and therefore for all N

max
α∈[0,1]

ρN (α) =
1
2N

. (82)

(This supremum is achieved at the points 1/(2N) and 1−
1/(2N).)
Such behaviour of ρN (α) is however not typical: as we

shall see below, typical values of the approiximation error
ρN (α) are much smaller.
Let us first consider the behaviour of ρN (α) for almost

all α ∈ [0, 1].15 We then have, see [3] and also [2], that for
almost all α ∈ [0, 1] and any ε > 0, (83) and (84) hold.
Even more is true: in (83) and (84) one can re-

place logN by logN log logN , logN log logN log log logN
and so on. Analogously, log1+ε N could be replaced by
logN(log logN)1+ε, logN log logN(log log logN)1+ε and
so on.

15A statement is true for almost all α ∈ [0, 1] if the measure of the
set where this statement is wrong has measure zero.
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lim
N→∞

ρN(α)N2 log1+ε N = +∞, lim inf
N→∞

ρN (α)N2 logN = 0 (83)

lim sup
N→∞

ρN (α)N2

logN
= +∞, lim

N→∞
ρN (α)N2

log1+ε N
= 0 (84)

These statements are analogues of Khinchin’s metric the-
orem, the classic result in the metric number theory, see e.g.
[2].
The asymptotic distribution of the suitably normalised

ρN (α) was derived in [4]. A main result of this paper is
that the sequence of functions N2ρN (α) converges in dis-
tribution, when N → ∞, to the probability measure on
[0,∞) with the density given by (85).
This means that for all a,A such that 0 < a < A <

∞, (86) applies, where ‘meas’ denotes for the standard
Lebesgue measure on [0, 1].
Another result in [4] concerns the asymptotic behavior

of the moments of the approximation error ρN (α). It says
that for any δ �= 0 and N → ∞, (87) applies, where ζ(·)
and B(·, ·) are the Riemann zeta–function and the Beta–
function, correspondingly.
In particular, the average of the approximation error

ρN (α) asymptotically equals
∫ 1

0

ρN (α)dα =
3
π2

logN
N2

+O

(
1
N2

)
, N → ∞ . (88)

Comparison of (88) with (84) shows that the asymptotic
behavior of the average approximation error

∫
ρN (α)dα re-

sembles the behavior of the superior limit of ρN (α). Even
this limit decreases much faster than the maximum error
maxα ρN (α), see (82): for typical α the rate of decrease of
ρN (α), when N → ∞, is, roughly speaking, N−2 rather
than N−1, the error for the worst combination of α and N .

V. Tabulated Scaling Factors

Choosing rA = h/k using Farey series techniques as out-
lined in Section III is a suitable solution when rI is invariant
and known at the time the scaling function is designed. The
error terms developed allow prediction of the maximum ap-
proximation error over a domain [0, xMAX ] when a specific
rA ≈ rI is chosen.
A different problem which occurs in practice is the need

to tabulate scaling factors in ROM or EEPROM. These
scaling factors (which represent rA) may depend on sen-
sor or actuator calibrations and are not known precisely in
advance at the time the software is designed, and so the
technique of choosing and evaluating a rational number rA
at design time as presented earlier cannot be applied.

A. Method Of Tabulating Scaling Factors

The previous sections have concentrated on scaling fac-
tors expressed as an arbitrary rational number h/k. How-
ever, it is usually not practical to tabulate scaling factors

as rational numbers with an arbitrary denominator k for
the following reasons.
• Not all processors have division instructions, and divi-

sion in software (as would be required with an arbitrary
tabulated denominator k) is expensive.

• Even for processors with division instructions, if the re-
quired maximum arbitrary denominator k exceeds the
size which can be accomodated by the division instruc-
tions, there is no general way to perform a division
of large operands using small division instructions (a
solution involving arbitrary division is not scaleable).

• The rational elements of FN are irregularly spaced in R.
The worst case occurs near integers, where the elements
are 1/N apart. Allowing arbitrary tabulated rational
numbers rA = h/k means that in some regions of R, rA
can be placed very close to rI , whereas in other regions,
the maximum error may degrade to |rA − rI | ≤ 1/2N .
This irregular error is usually not useful in engineering
endeavors, as the worst-case error must typically be
assumed. The division by an arbitrary tabulated k
carries computational cost but a limited engineering
benefit.

The method of tabulating scaling factors presented in
this paper is to create scaling factors of the form h/2q, so
that the denominator is an integral power of two. This
approach has the following advantages.
• The required multiplication by h is scaleable, allowing

large h when necessary.
• The division by 2q is economically performed using

right shift instructions, which every processor has, and
which are scaleable.

B. Design Approaches For h/2q Tabulated Linear Scalings

Fig. 1 shows the three elements of design choice in en-
gineering an h/2q tabulated linear scaling. If any two of
these elements are fixed, the third can be derived. The
Maximum Approximation Error (A) is the maximum ap-
proximation error that can be tolerated for any element
of the domain and any tabulated rA. The Domain And
Range Of Approximation (B) are the domain over which
the approximation will be used, and the range which must
be reachable by the appropriate choice of tabulated scal-
ing factor h. The Data Size Of Tabulated h And Value Of
q, 2q (C) are the number of bits which must be reserved
for each tabulated h, and the number of bits by which the
multiplication result hx must be right-shifted (this value is
typically hard-coded into the scaling strategy).
The most typical case for beginning a design is that (A)
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p(τ) =




6/π2 if 0 ≤ τ ≤ 1
2

6
π2τ (1 + log τ − τ) if 1

2 ≤ τ ≤ 2

3
π2τ

(
2 log(2τ)−4 log(

√
τ+

√
τ−2)−(

√
τ−√

τ−2)2
)

if 2 ≤ τ < ∞

(85)

meas{α ∈ [0, 1] : a < N2ρN(α) ≤ A} →
∫ A

a

p(τ)dτ as N → ∞ (86)

δ + 1
2

∫ 1

0

ρδN (α)dα =




∞ if δ ≤ −1
3

δ2π2

(
2−δ + δ2δ+2B(−δ, 1

2 )
)
N−2δ (1+o(1)) if −1<δ<1, δ �=0

3
π2 N

−2 logN +O
(
N−2

)
if δ = 1

2−δ ζ(δ)
ζ(δ+1)N

−δ−1 +O
(
N−2δ

)
if δ > 1

(87)

Fig. 1. Three Elements Of Design Choice In Tabulated Linear h/2q

Scaling Design
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(Fig. 1) and (B) are known, so that (C) can be derived.
A less typical case for beginning a design is that (B) and
(C) are tentatively known, so that (A) can be derived (and
if this error is unacceptable, the tentative design must be
reevaluated). Although it is possible to make the necessary
derivations, it never occurs in practice that a design begins
with (A) and (C), with the intent of deriving (B). For this
reason, only the first two cases are discussed in this paper.

C. Design By Placement Of rA

A useful paradigm of design is to consider the problem
of engineering a tabulated h/2q scaling in terms of what
abilities we preserve for placing rA with respect to rI .
Assume that at design time, we know that the linear

scaling will be used over the domain [0, xMAX ], xMAX ∈ N,
and that 0 ≤ rI ≤ rIMAX for all of the rI we wish to
tabulate. This establishes a triangular region in which the

Fig. 2. Specification Of Domain And Possible Values Of rI As Tri-
angular Region
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approximation will be used (Fig. 2).
The forms of L(x) and M(x) (Eqns. 8, 9) reveal that

a specific choice of q allows the selection of rA in steps of
1/2q. With q selected, there are four obvious choices for
placement of rA (89, 90, 91, 92), with almost no practical
distinction between (90) and (91). For brevity, only (89)
will be developed—i.e. we will consider only placing rA
at or to the left of rI . Also for brevity, only F (x) as a
model function will be considered. All other cases can be
developed using similar methods.

rI − 1
2q

< rA ≤ rI (89)

rI − 1
2q+1

≤ rA < rI +
1

2q+1
(90)

rI − 1
2q+1

< rA ≤ rI +
1

2q+1
(91)
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rI ≤ rA < rI +
1
2q

(92)

Placing rA consistently at or to the left of rI (89) will be
accomplished if h is chosen by (93).

h = �rI2q� (93)

When h is selected using (93), rA ≤ rI and (94) applies.

rA − rI ∈
(
− 1
2q

, 0
]

(94)

To obtain a relationship (B,C)→(A) (Fig. 1), (94) may
be substituted into (48) to yield (95).
To obtain a relationship (A,B)→(C), define εSPAN as

the maximum span of error with a fixed z and fixed rI as
x is allowed to vary throughout [0, xMAX ] (Eq. 48). It can
be shown by solving (48) that q must be chosen so as to
meet (96) if the error span is not to exceed εSPAN . (97)
supplies the smallest choice of q which satisfies (96).

q ≥ log 2

(
xMAX − 1

εSPAN − rIMAX − 1

)
(96)

q may be chosen larger than suggested by (97), but not
smaller, while still meeting (96). In practice, this may be
done because it is economical to choose q to be a multiple
of eight so that the division by 2q is accomplished by ig-
noring the least significant byte(s) of hx + z, rather than
by shifting. (This technique, however, will eliminate shift-
ing at the expense of hMAX , and usually only makes sense
when hMAX can be increased without choosing different
processor instructions to calculate hx+ z.)
Once q is fixed, hMAX can be calculated. Substituting

rI = rIMAX into (93) yields (98).

hMAX = �rIMAX2q� (98)

D. Design By Placement Of L(xMAX)

A second useful paradigm of design is to consider the
problem of engineering a tabulated h/2q scaling in terms
of what abilities we preserve for placing the terminal point
L(xMAX) with respect to the terminal point of the model
function I(x), I(xMAX), ψL ≤ 0 ≤ ψU , so that (99) is met
(Fig 3).

I(xMAX) + ψL ≤ L(xMAX) ≤ I(xMAX) + ψU (99)
⇓

rA − rI ∈
(
ψL − 1
xMAX

,
ψU + 1
xMAX

)
(100)

(99) places restrictions on the relationship between rA
and rI , and implies (100). This implication is not re-
versible.

Fig. 3. Specification Of Domain And Possible Values Of rI As Rect-
angular Region
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For brevity, only F (x) will be considered as a model func-
tion and only L(x) will be considered as an approximation.
To obtain a relationship which shows how the choice of ψL

and ψU affect the error function L(x) − F (x), (100) may
be substituted into (48) to yield (101).
The ability to place the target point L(xMAX) in the

interval indicated in (99) requires (102). Solving for q leads
to the constraint in (103) and the smallest possible choice
of q in (104).

1
2q

≤ ψU − ψL + 1
xMAX

(102)

q ≥ log2

(
xMAX

ψU − ψL + 1

)
(103)

With q chosen by (103) or (104), h can be chosen by
(105) so as to meet (99).

h =
⌈
2q (�rIxMAX�+ ψL)

xMAX

⌉
(105)

(102) through (104) give useful rules of thumb for sizing
q based on allowed variability in L(xMAX). There are two
additional useful practical applications for the paradigm of
thought (observation implies scaling factor), and for the
equations themselves.
The first additional practical application (for the

paradigm of thought) is in the error analysis of self-
calibrating systems. In Example 7, it is assumed that we
precisely know the transfer characteristics of each bath-
room scale transducer and can thereby choose h. A practi-
cal bathroom scale is more likely to be self-calibrating, so
that at manufacture a known calibration weight xCAL ∈
R+ can be placed on the scale and the scale itself will
determine the transfer characteristics of the transducer
and choose h.16 For a self-calibrating scale, an impor-
tant question is if a known calibration weight xCAL is

16In this discussion and in (106) and (107), rI is taken to be the
transfer characteristic of of the transducer; whereas in Example 7,
1/rI is the transfer characteristic of the transducer, and rI is the
desired transfer characteristic of the linear scaling in the software.
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M(x)− F (x)|x∈[0,xMAX ],rA−rI∈(− 1
2q ,0] ∈

(−xMAX + z + 1
2q

− rIMAX − 1,
z

2q

]
(95)

q =
⌈
log 2

(
xMAX − 1

εSPAN − rIMAX − 1

)⌉
=



ln
(

xMAX − 1
εSPAN − rIMAX − 1

)

ln 2




(97)

L(x)− F (x)|
x∈[0,xMAX ],rA−rI∈

(
ψL−1
xMAX

,
ψU+1
xMAX

) ∈
(
ψL − 1− rA − 2q − 1

2q
, ψL + 1

)
(101)

q =
⌈
log2

(
xMAX

ψU − ψL + 1

)⌉
=



ln
(

xMAX

ψU − ψL + 1

)

ln 2




(104)

placed on the scale and produces an A/D converter count
yCAL = H(xCAL), how much can be inferred about the
underlying rI of the transducer? It can be shown that the
implication relationship in (106) and (107) applies. This
self-calibration uncertainty should not be neglected in er-
ror analyses. Note in (107) that the self-calibration un-
certainty in rI decreases with increasing xCAL, which is
consistent with intuition.

yCAL = H(xCAL) = �rIxCAL� (106)
⇓

rI ∈
[
yCAL

xCAL
,
yCAL

xCAL
+

1
xCAL

)
(107)

The second additional practical application (for the
equations) is the special case of ψL = ψU = 0, which is
useful in devising a tabulated linear scaling for piecewise
linear functions when the linear segments must join neatly,
or when the required accuracy of a linear scaling is not
known precisely in advance and a reasonable default tabu-
lated scaling strategy must be chosen. Theorem 7 supplies
a choice of q and a result about hMAX which is useful in
such cases.

Theorem 7: Given a rational linear scaling of the form
(8) with an m-bit domain and an n-bit range, choosing
q = m and hMAX = 2m+n−1 (i.e. choosing a data width of
m+n bits for h) will allow an h to be chosen so that L(x′) =
y′ for any x′ ∈ [1, xMAX = 2m − 1]Z, y′ ∈ [0, yMAX =
2n − 1]Z.

Proof: At x′ = xMAX , in order to be able to choose y′,
it is required that xMAX/2q ≤ 1, and q = m is the smallest
integral choice of q that will satisfy this constraint. With
q = m, L(1) = yMAX requires hMAX/2m ≥ yMAX , and

hMAX = 2m+n − 1 (a bit-width of at least m+ n for h) is
required.

VI. Implementation Techniques

Practical microprocessors fall into the following cate-
gories, ranked from least capable to most capable.
• Processors with shift and addition instructions.
• Processors with shift, addition, and multiplication in-

structions.17

• Processors with shift, addition, multiplication, and di-
vision instructions.

Shift instructions, addition instructions, and multipli-
cation instructions are always scaleable, meaning that
operands of arbitrary size can be shifted, added, or multi-
plied by the repeated use of instructions which inherently
accept smaller operands. Division instructions, however,
are not scaleable. No general method exists to use pro-
cessor division instructions to divide operands of arbitrary
size.
For multiplication, certain values of h can lead to espe-

cially economical implementations. Multiplication by an h
which is an integral power of two can be performed using
shift instructions. Multiplication by an h whose bit pat-
tern is very sparsely populated with 1’s can also lead to an
economical implementation. For example, multiplication
by h = 3310 = 1000012 can be performed using five left
shifts and an addition. For division, a value of k which is
an integral power will lead to a very economical implemen-
tation.
The following steps are recommended to economize an

(hx+ z)/k linear scaling for implementation.

17To date, the authors have not encountered a processor with divi-
sion instructions but no multiplication instructions.
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TABLE V

F159 Near 1.6093 (Example 6)

h k h/k Error
214 133 1.60902256 -0.00027744
177 110 1.60909091 -0.00020909
140 87 1.60919540 -0.00010460
243 151 1.60927152 -0.00002848
103 64 1.60937500 +0.00007500
169 105 1.60952381 +0.00022381
235 146 1.60958904 +0.00028904
227 141 1.60992908 +0.00062903

• If the processor does not have a division instruction
to directly support the integer division by k, use an
(hx + z)/2q scaling rather than an (hx + z)/k scaling
(due to the high cost of division in software).

• If the bit pattern of h is sparsely populated with 1’s,
evaluate implementation of the multiplication via re-
peated left-shifting and addition.

VII. Design Examples

Example 6: (CONVERSION FROM MPH TO KPH)
Devise an economical and accurate linear scaling algorithm
from integral MPH to integral KPH which operates over a
domain of [0, 255]Z MPH (one unsigned byte) and delivers
an unsigned byte in [0, 255]Z KPH, and bound the error
introduced by the scaling, assuming that the input speed
is quantized (already contains error). The error between
actual speed (before input quantization) and the output
of the algorithm must never be negative—i.e. the output
of the algorithm must never understate the speed. In the
event that the result is too large for one byte, the result
should be 255. Implement the algorithm on a TMS370
CPU core, which is characterized by an 8×8=16 unsigned
multiplication instruction and a 16×8=8 division instruc-
tion.

Solution: One mile is 1.6093 kilometers, thus rI =
1.6093. Efficient implementation using the instruction set
of the TMS370 is best done by a single multiplication in-
struction followed by a single division instruction, imply-
ing that hMAX = kMAX = 255. Applying Theorem 6
yields N ′ = 159, so it is only necessary to examine F159 for
the two enclosing rational numbers which meet the con-
straints on numerator and denominator.18 Building F159

near 1.6093 yields Table V.19

18Theorem 6 must be applied with caution, as it only guarantees
that the two enclosing rational numbers are in F159. Table V is
included to show the construction of F159—it should be noted that
without further analysis there is no guarantee that there are not rat-
ional numbers which meet the constraints to the left of 243/151 with
k > 159.

19Table V can be built using spreadsheet software to construct F159

starting with the rational numbers 1/1 and 160/159 and using (56)
and (57) to build increasing Farey terms until rI is enclosed.

Fig. 4. TMS370 Solution To Example 6 Using The Rational Number
243/151

MOV input, A ;12 cycles, load far input
;into A

MPY #243, A ;45 cycles, multiply by 243,
;result in (MSB:LSB)=(A:B)

ADD #139, B ;6 cycles, 139 = 395 mod 256
ADC #1, A ;6 cycles, 1 = 395 div 256
MOV #151, R02 ;8 cycles, set up for divide
DIV R02, A ;Max 63 cycles, divide,

;quotient in A, carry set if
;overflow

JNC NOOVERFLOW ;5 cycles if jump not taken
;7 cycles if jump taken
;Jump if div without overflow

MOV #255, A ;6 cycles, replace div result
;if too large and won’t fit in
;one byte. DIV instruction
;set C on overflow

NOOVERFLOW: ;Label, no code generated
MOV A, output ;10 cycles, move result to

;far output var

(Total: Max. 161 clocks, 53.7us with 12 Mhz
crystal.)

From Table V, the two rational numbers which enclose
1.6093 are 243/151 and 103/64. Choosing rA = 243/15120

and using xMAX = 25621 with z = 395 by (50) leads to the
assembly-language shown in Fig. 4.
From the problem statement, the input to the algorithm

is assumed to be quantized (it already contains error), so
(48) applies. Evaluating (48) with rA = 243/151, z =
395, rI = 1.6093 and xMAX = 256 yields K(x) − F (x) ∈
(0.0060, 2.6159] KPH over the domain [0,256).

Example 7: (BATHROOM SCALE) A manufacturer
wishes to build a family of electronic bathroom scales us-
ing linear transducers which convert weight to voltage. The
voltage from a transducer is measured using a 10-bit A/D
converter and a custom combinational logic integrated cir-
cuit which will multiply the integer x ∈ [0, 210 − 1]Z from
the A/D converter by a programmable calibration constant
h, neglect a number q of least significant bits of the prod-
uct hx, and display the non-neglected bits as a weight, in
integral pounds, for the user. In the event that the A/D
converter is saturated (x = 210 − 1 = 1, 023), an overflow
indicator will be displayed. The transducers to be used
always produce exactly zero volts with no weight applied,
but vary from 0.25 lbs. per A/D count to 0.35 lbs. per A/D

20From Table V, 103/64 also appears to be an attractive rational
number, because the division by 64 can be accomplished by shifting
hx + z right by 5 bits. However, with the TMS370, each shift of
a 16-bit operand requires two RRC instructions, for a total of 10 in-
structions at 8 clock cycles each, or 80 clock cycles (more than the
DIV instruction). Therefore, 243/151 is the more attractive rational
number.

21A value of 256 rather than 255 must be used for xMAX because
it is assumed that x ∈ [0, 256).
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count in their transfer characteristic. Market research has
shown that users strongly dislike bathroom scales which
overstate their weight; but simultaneously prefer that their
weight not be understated by more than 2 lbs. In the design
of the custom integrated circuit for the family of bathroom
scales, what value of q should be chosen? How accurate
will each bathroom scale be? How many bits must be re-
served for h, and what strategy should be used to choose h
based on the transfer characterisic rI of each transducer?

Solution: From the problem statement, rI ∈ [0.25, 0.35],
rIMAX = 0.35, xMAX = 1, 02322, and it is required that
L(x)−F (x) ∈ [−2, 0]. It is also required that rA ≤ rI (as in
Eqs. 93, 94); otherwise it is possible that ∃x ∈ [0, xMAX ],
L(x) > F (x), which contradicts the product requirements.
With xMAX = 1, 023, εSPAN = 2, and rIMAX = 0.35,

(97) yields q = 11 as the minimum choice for q to meet
accuracy requirements.
With xMAX = 1, 023, z = 0, q = 11, 2q = 2, 048, and

rIMAX = 0.35, (95) predicts that L(x)−F (x) ∈ (−1.84, 0].
With q = 11, 2q = 2, 048, and rIMAX = 0.35, (98) yields

hMAX = 716 and 10 bits must be reserved in the custom
integrated circuit for the calibration factor h. For each rI
to be tabulated, h should be chosen by (93): h = �rI2q� =
�2, 048rI�.

VIII. Conclusion

The techniques presented in this paper demonstrate how
linear scaling functions of the form y = rIx (rI ∈ R+, not
necessarily ∈ Q+) can be implemented on inexpensive 4-
bit and 8-bit microcontrollers by approximating rI with a
rational scaling factor rA = h/k (h ∈ Z+, k ∈ N). Several
methods for choosing h and k and several implementation
techniques were presented.
A detailed analysis of approximation error due to the

inability to choose rA = rI and due to the quantization
inherent in digital systems and integer arithmetic was pro-
vided. It was shown that the approximation error can be
bounded when it is known that the approximation will be
used only over a domain of [0, xMAX ], xMAX ∈ N. It was
also shown that by introducing an integral parameter z,
the error function could be adjusted to be never negative,
never positive, or centered about zero.
For cases where rI is known at design time, three al-

gorithms were presented that allow h and k to be chosen
subject to the constraints h ≤ hMAX and k ≤ kMAX so
as to place rA = h/k as close as possible to rI . For cases
where rI is not precisely known at design time, methods
were presented for designing tabulated scalings and bound-
ing the approximation error introduced.
Important results from number theory were presented

which show that although the worst-case error in placing
rA decreases as 1/N , the typical error decreases as 1/N2.
Techniques which allow linear approximations to be per-

formed economically on microcontrollers of varying capa-
bility were also presented. It was shown how the form of
rA = h/k could be modified to improve software efficiency,

22From the problem statement, x = 1, 023 will generate an overflow
display, so we need not consider x ∈ [1, 023, 1, 024).

enable use of only scaleable (non-division) instructions, or
facilitate tabulation of scaling factors.
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X. Definitions, Acronyms, Abbreviations,

Variables And Mathematical Notation

�·�
Used to denote the floor(·) function. The floor(·) func-
tion is the largest integer not larger than the argument.

�·�
Used to denote the ceiling(·) function. The ceiling(·)
function is the smallest integer not smaller than the ar-
gument.

a/b

An arbitrary rational number.
coprime

Two integers that share no prime factors are coprime.
Example: 6 and 7 are coprime, whereas 6 and 8 are not.

FN

The Farey series of order N . The Farey series is the
ordered set of all reduced rational numbers with a de-
nominator not larger than N .

greatest common divisor (g.c.d.) The greatest com-
mon divisor of two integers is the largest integer which
divides both integers without a remainder. Example:
the g.c.d. of 30 and 42 is 6.

H/K, h/k, h′/k′, h′′/k′′, hi/ki

Terms in a Farey series of order N .
irreducible

A rational number p/q where p and q are coprime is
said to be irreducible. Equivalently, it may be stated
that p and q share no prime factors or that the greatest
common divisor of p and q is 1.

KPH
Kilometers per hour.
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MPH
Miles per hour.

N

The set of positive integers (natural numbers).
Q

The set of rational numbers.
Q+

The set of non-negative rational numbers.
rA

The rational number h/k used to approximate an arbi-
trary real number rI .

rI

The real number, which may or may not be rational,
which is to be approximated by a rational number rA =
h/k.

R

The set of real numbers.
R+

The set of non-negative real numbers.
reduced

See irreducible.
sk = pk/qk

The kth convergent of a continued fraction.
xMAX

The largest element of the domain for which the behavior
of an approximation must be guaranteed. In this paper,
most derivations assume that x ∈ [0, xMAX ], xMAX ∈ N.

Z

The set of integers.
Z+

The set of non-negative integers.

References

[1] G.H. Hardy, E.M. Wright, An Introduction To The Theory Of
Numbers, ISBN 0-19-853171-0.

[2] G. Harman (1998) Metric number theory, Oxford University
Press.

[3] P. Kargaev, A. Zhigljavsky (1966) Approximation of real numbers
by rationals: some metric theorems, Journal of Number Theory,
61, 209-225.

[4] P. Kargaev, A. Zhigljavsky (1967) Asymptotic distribution of the
distance function to the Farey points Journal of Number Theory,
65, 130-149.

[5] A. Ya. Khinchin, Continued Fractions, University Of Chicago
Press, 1964; Library Of Congress Catalog Card Number 64-15819.

[6] William J. LeVeque, Fundamentals Of Number Theory, Dover
Publications, 1977, ISBN 0-486-68906-9.

[7] C. D. Olds, Continued Fractions, Randam House, 1963, Library
Of Congress Catalog Card Number 61-12185.

[8] Oystein Ore, Number Theory And Its History, ISBN 0-486-65620-
9.

[9] M. R. Schroeder, Number Theory In Science And Communica-
tion, ISBN 3-540-62006-0.

David T. Ashley (biography not yet included
in document).

Joseph P. DeVoe (biography not yet in-
cluded in document).

Cory Pratt (biography not yet included in
document).

Karl Perttunen (biography not yet included
in document).

Anatoly Zhigljavsky (biography not yet in-
cluded in document).



118

Fig. 5. Version Control Information (For Reference Only—Will Be Removed Before Submission Of Paper)

LATEX compile date: December 8, 2000.

PVCS version control information:
$Header: J:/arch/dashley1/misc_asn/misc_asn/pq_paper.tev 1.62 25 May 2000 14:05:22 dashley1 $.


