
1

99PC-314

A Hybrid System Solution Of The Interrupt Latency
Compatibility Problem

Feng Lin
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202

David T. Ashley
Electronics Technical Center, Visteon Automotive Systems, 17000 Rotunda Drive, Dearborn, MI 48121-6010

Michael Heymann
Department of Computer Science, Technion, Israel Institute of Technology, Haifa 32000, Israel

Michael J. Burke
Electronics Technical Center, Visteon Automotive Systems, 17000 Rotunda Drive, Dearborn, MI 48121-6010

Copyright © 1997 Society of Automotive Engineers, Inc.

ABSTRACT

Microprocessors and microcontrollers are now widely
used in automobiles. Microprocessor systems contain
sources of interrupt and interrupt service routines, which
are software components executed in response to the
assertion of an interrupt in hardware. A major problem
in designing the software of microprocessor systems is
the analytical treatment of interrupt latency. Because
multiple interrupt service routines are executed on the
same CPU, they compete for the CPU and interfere with
each other's latency requirements. Here, interrupt
latency is defined as the delay between the assertion of
the interrupt in hardware and the start of execution of
the associated interrupt service routine. It is estimated
that 80% of intermittent bugs in small microprocessor
software loads are due to improper treatment of
interrupts. Until this work, there is no analytic method
for analyzing a particular system to determine if it may
violate interrupt latency requirements. There is also no
reliable empirical method for ruling out the possibility of
interrupt latency violations in a particular system, as
they may occur under only very specific conditions. We
use a newly developed hybrid system approach to solve
this interrupt latency compatibility analysis problem. We
have developed an efficient algorithm to determine if
interrupt latency violations may occur in a particular
system. A software tool that implements the algorithm
is also being developed. With such software, we can
easily check if interrupt latency constraints may be
violated under any circumstances. If so, such software
may also indicate how to modify the interrupts and
interrupt service routines to avoid such violations.

INTRODUCTION

Microprocessor systems contain interrupt sources (ISs),
which can request service from the processor (assert an
interrupt), and must always have a software response
(the execution of the corresponding software interrupt
service routine, or ISR) starting within an interval of time
(the maximum allowable interrupt latency, or AIL) after
the assertion of the hardware interrupt. Because a
processor may execute only one stream of instructions
at a time, the execution of one ISR may delay the
execution of another ISR until the first has completed.
Hence, ISs and their associated ISRs interfere with each
other’s interrupt latency requirements and may not be
combined arbitrarily in the same microprocessor system
without the possibility of the AIL being violated for some
or all ISs.

As a necessary condition to guarantee that a
microprocessor system will always behave as intended,
each IS must always be serviced by its corresponding
ISR within the AIL. Verifying that the interrupt latency
requirement is always satisfied for every IS is the
interrupt latency compatibility problem that we address
in this paper.

The importance of the interrupt latency compatibility
problem in microprocessor system design cannot be
overstated. A system accidentally constructed so that
interrupt latency incompatibilities exist has a high
probability of exhibiting serious behavioral defects which
are intermittent, because the conditions required to

2

cause an interrupt latency violation may involve specific
timing relationships between the assertion of different
hardware interrupts. Furthermore, it is uncertain that
product testing will excite the system with these
necessary timing relationships. For an automobile
manufacturer which produces microprocessor systems
with firmware that cannot be altered after production,
intermittent defects may cause disappointed customers,
warranty returns, or government-mandated vehicle
recalls. For systems which may cause injury or loss of
life through defective behavior—such as airbag
deployment systems, ABS systems, throttle controls, or
fly-by-wire controls—the importance of minimizing the
probability of intermittent defective behavior is clear.

The interrupt latency compatibility problem is difficult to
solve, and has defied an analytical solution by the
mathematical and computer science community for
more than 25 years1. We believe that the reason this
problem has defied solution is that it combines both
discrete and continuous elements, and a mathematical
framework in which this problem can be embedded
(hybrid systems) is a relatively recent development.

To analytically verify that interrupt latency requirements
can never be violated, it must be verified that they will
never be violated in any possible run of the system.
The complexity of practical systems makes it impossible
to exhaustively search all possible runs of the system.
For the same reason, testing or simulation results can
never be conclusive.

In the view of the authors, the only practical way to
solve the interrupt latency compatibility problem is by an
intelligent analytical approach that will consider all
possible runs of the system without an exhaustive
search. We believe that such an approach exists using
a theory that we have developed recently for a class of
so-called hybrid systems.

Hybrid is used to classify a system consisting of both
continuous dynamics and discrete events. In our
context, continuous dynamics describe essential
continuous elements of the system such as the passage
of time, while discrete events describe events such as
the assertion of an interrupt or a discrete state change in
digital hardware. Both continuous dynamics and
discrete events are needed in describing or modeling
the interrupt latency compatibility problem.

To implement our solution, we model each IS by an
elementary hybrid machine (EHM). An EHM consists of
several configurations that describe the status of the IS,
such as Interrupt Not Pending, Interrupt Pending, etc.
(Figure 3). Transitions from one configuration to
another are also specified. We also model the software
system (SS) as an EHM to reflect that generally only
one ISR may run at a time, and to capture the

1 We believe that computer processors relying on
hardware interrupts were common no later than 1972.

interaction between the ISRs and the ISs (Figure 2).
Then, a well-defined parallel composition of all EHMs
can be used to describe the concurrent operation of
several ISs and ISRs, resulting in a composite hybrid
machine (CHM).

After obtaining a CHM model of the overall system,
violation of interrupt latency requirements can now be
specified by identifying all illegal configurations.
Therefore, the question of whether interrupt latency
requirements can be violated is equivalent to the
question of whether any of the illegal CHM
configurations can be reached from the initial
configuration. Verification is now reduced to reachability
analysis.

Reachability analysis of hybrid systems is a difficult
problem. In this paper, we develop an efficient
algorithm to determine reachability for a class of hybrid
systems encountered in the interrupt latency
compatibility problem. Our algorithm uses a logical
approach by manipulating logical conditions involving
the timing of events. We find this logical approach to be
excellent in the specification and implementation of
reachability analysis.

Using our approach, a necessary and sufficient
condition for meeting the interrupt latency requirements
is obtained. The interrupt latency requirements can be
violated if and only if some illegal configurations are
reachable from the initial configuration. Therefore,
there is no conservatism in our approach. This is
important because conservatism may add unnecessary
cost to a satisfactory system by misclassifying it as
capable of violating its interrupt latency requirements,
thus forcing unnecessary increases in product cost.

We are aware of several proposed approaches to the
interrupt latency compatibility problem which have
appeared in the literature dating back to at least the
early 1970s. Among the existing approaches, rate-
monotonic analysis (RMA) [5] is best-known and most
widely used. Although RMA is well-developed and has
been used extensively in practice, there are difficulties
in applying the mathematical results of RMA to the
interrupt latency compatibility problem. First, RMA can
only be used for perfectly periodic (i.e. rate-monotonic)
ISs. This is a serious limitation, as most interrupts in
automotive systems are not periodic. Second, RMA
gives only sufficient conditions for satisfying interrupt
latency requirements. Therefore, a satisfactory system
may be erroneously classified by RMA as able to violate
its interrupt latency requirements, provoking
unnecessary cost increases. Finally, RMA can be
applied only to fixed priority preemptive scheduling.

The approach we propose has additional advantages.
One advantage is the ability to model the discrete
behaviors of a system, which cannot be modeled or
analyzed using RMA or other approaches which rely on
continuous mathematics alone. We have found that we

3

can use our approach to model ISRs which vary their
execution time in cyclical patterns (typical of ISRs
associated with periodic ISs). We are also able to
model queued communication peripherals and the
associated ISRs, where the amount of ISR execution
time required to retrieve data from the peripheral may
increase with increasing interrupt latency. Finally, we
are able to model non-atomic ISRs (ISRs that may be
interrupted).

Since the parallel composition of EHMs and the
reachability analysis must in practice both be performed
automatically by a computer, we offer some insight into
the construction and availability of software tools to
perform these tasks.

MATHEMATICS OF HYBRID MACHINES

In this section, we present the hybrid machine model
developed in [6] to specify the interrupt latency
compatibility problem. Using this model, each process
(e.g., each SS or IS) is modeled by an elementary
hybrid machine denoted by

EHM = (Q,Σ, D, I, E, (q0, x0)).

The elements of an EHM are

1. Q, a finite set of vertices.

2. Σ, a finite set of event labels. An event is an input
event, denoted by σ (underscore), if it is received by
the EHM from its environment; and an output event,
denoted by σ, if it is generated by the EHM and
transmitted to the environment. 2

3. D = {dq = (xq, yq, uq, fq, hq): q∈ Q}, the dynamics of
the EHM, where dq, the dynamics at the vertex q, is
given by:

x'q = fq(xq, uq),

yq = hq(xq, uq),

with xq, uq, and yq, respectively, the state, input, and
output variables of appropriate dimensions. For the
interrupt latency compatibility problem, we consider
only x'q=constant3 and yq= xq. Therefore, we need
not distinguish the output and state variables. (A
vertex need not have dynamics associated with it,
that is dq = ∅ , in which case we say the vertex is
static.)

2 The environment of an EHM includes all other EHMs,
hence an event will be denoted σ in the generating EHM
and σ in the EHM which accepts this event as input.
3 For our models, this constant is usually 1 (to allow a
continuous variable to mimic elapsed time).

4. I = {Iq : q∈ Q}, a set of invariants. Iq represents
conditions under which the EHM is permitted to
reside at q. Formally, an invariant is a predicate
which is defined as a Boolean combination of
inequalities (called atomic formulas) of the form

si≥Ci or si≤Ci,

where si is a shared continuous real variable (or SV,
to be defined soon), and Ci is a real constant.

5. E = {(q,G∧σ→σ ',q', xq'
0): q, q'∈ Q}, a set of edges or

transitions, where q is the exited vertex, q' the
entered vertex, σ the input event, σ' the output
event, G a predicate having the same form as
invariants Iq, and xq'

0 the initialization value for xq'

upon entry to q'. We allow the initialization to take
on one of three forms.

(a) xq'
0=constant;

(b) xq'
0=g(xq), that is, xq'

0 is a function of xq; or

(c) xq'
0=nondet(vl,vu), that is, xq'

0 takes a value
between vl and vu.

4

An edge (q,G∧σ→σ ',q', xq'
0) is interpreted as follows:

if G is true and the event σ is received as an input,
then the transition to q' occurs with the assignment
of the initial condition xq'

0(t0)= xq'
0 . Here t0 denotes

the time at which the vertex q' is entered. The
output event σ' is transmitted at the same time.

Although a more general model was presented in
[6], in this paper we assume that when the EHM
enters vertex q, its invariant Iq must be satisfied.
Thus, let us define wp(q,G∧σ ,q') to the weakest
precondition under which the transition (q,G∧σ ,q')
will not violate the invariant Iq upon entry to q. Since
some of variables that appear in Iq are possibly (re-
)initialized upon entering q, the condition
wp(q,G∧σ ,q') can be calculated from Iq by
substituting into Iq the appropriate initial values.
That is, if xq' is (re-)initialized to xq'

0, then

wp(q,G∧σ ,q')= Iq| xq'= xq'0.

Since we allow nondeterministic (re-)initialization,
care must be taken when we calculate wp(q,G∧σ ,q').
For instance, if Iq=[si ≥ Ci] and si

o
=nondet(kl,ku), then

4 nondet(vl, vu) does not imply a probability distribution,
it denotes that the value assigned has some uncertainty
but will be in [vl, vu]. The reachability algorithm we have
developed correctly treats such assignments.

4

wp q G q
true if k C

false otherwise
l i

(, , ')∧ =
≥�

�
�

σ

This is because if kl≥Ci, then in the worst case [si≥Ci]
is true, so that the transition (q, G∧σ , q’) will not
violate the invariant Iq’. If the weakest precondition
is not satisfied, that is, G does not imply
wp(q,G∧σ ,q'), then we will replace (q,G∧σ →σ',q',
xq'

0) by (q, wp(q,G∧σ ,q') ∧ G∧σ →σ',q', xq'
0).

If σ' is absent, then no output event is transmitted. If
xq'

0 is absent, then the initial condition is inherited or
partially inherited from xq (assuming the inherited
states represent the same physical object and hence
are of the same dimension). If σ is absent, then the
transition takes place immediately upon G becoming
true. Such transitions will be called dynamic
transitions. If G is absent, the guard is always true
and the transition will be triggered by the input event
σ. Such transitions will be called event transitions.

Although our EHM model allows guarded event
transitions with both G and σ, such transitions can
be decomposed into event transitions and dynamic
transitions as shown in Figure 1.

q q’ <=> q1 q2 q’
G∧σ σ

¬G

G

Figure 1: Guarded Event Transition

In the figure, q has been partitioned into q1 and q2,
with Iq 1= Iq ∧ ¬ G and Iq 2= Iq ∧ G. This
decomposition is valid because for a guarded event
transition to take place, the guard must be true when
the event is triggered.

6. (q0, x0) denotes the initialization condition: q0 is the
initial vertex and xq0(0)= x0.

Without loss of generality, we assume that the invariant
Iq is violated if and only if one of the guards at q is
satisfied, that is,

Iq = ¬G1∧ ¬ G2∧ ...∧¬ Gk,

where G1,G2, ...,Gk are guards of the dynamic transitions
leaving q. If this assumption is not satisfied, we can
simply redefine Iq as above without changing the EHM.

When several processes modeled by EHMs run in
parallel, the concurrent system will be modeled by a
composite hybrid machine (CHM) using a parallel
composition operator ||.

CHM = EHM1||EHM2||...||EHMn.

Interaction between EHMs is achieved by means of
signal transmission (shared variables, or SVs) and input-
output event synchronization (message passing or event
passing) as described below.

Shared variables consist of output signals from all
EHMs as well as signals received from the environment.
They are shared by all EHMs in the sense that they are
accessible to all EHMs. A specific shared variable si

can be the output of at most one EHM. The set of
shared variables defines a signal space S= [s1, s2, …,

sm]∈ Rm.

Transitions are synchronized by an input-output
synchronization formalism. That is, if an output event σ
is either generated by one of the EHMs or received from
the environment, then all EHMs for which σ is an active
transition label (i.e., σ is defined at the current vertex
with the guard satisfied) will execute σ (and its
associated transition) concurrently with the occurrence
of σ. A specific output event can be generated by at
most one EHM.

Formally, a CHM is defined as follows.

CHM = EHM1||EHM2||...||EHMn= (Q,Σ, D, I, E, (q0, x0)),

where

1. Q = Q1 × Q2 × …× Qn is the set of configurations;

2. Σ = Σ1 ∪ Σ 2 ∪ …∪ Σ n is the set of events;

3. D = {dq = (xq, yq, uq, fq, hq): q=<q1, q2, …, qn>∈ Q}
combines all the dynamics of q1, q2, …, qn;

4. I = { Iq = Iq1 ∧ Iq2 ∧ … ∧ Iqn: q=<q1, q2, …, qn>∈ Q} is
the invariant;

5. E is the set of edges or transitions, described below.

6. (q0,x0) = (<q0
1, q0

2, …, q0
n>, (x0

1, x0
2, …, x0

n)) is the
initial condition.

The transitions in the CHM can also be derived from the
EHMs. In general, the transitions can either be
triggered by an input event from the environment or by
a dynamic transition in one of the EHMs. Note that one
transition in an EHM can trigger other transitions in other
EHMs.5 Therefore, a transition in the CHM may consist
of a logically triggered finite chain of transitions in the
EHMs. These transitions are considered to occur
instantaneously and concurrent vertex changes in the
EHMs occur at exactly the same instant.

For the interrupt latency compatibility problem, however,
we can assume that the system is closed or self-

5 We assume that there is no infinite chain of transitions,
as this will lead to a Zeno system (see [6]).

5

contained6. Therefore transitions in the CHM are always
triggered by dynamics in one of the EHMs. We denote
these transitions by a triple

(q,G, q') = (<q1, q2, …, qn>,G, <q'1, q'2, …, q'n>)

where q=<q1, q2, …, qn> is the source configuration,
q'=<q'1, q'2, …, q'n> the target configuration, and G is a
guard. To have such a transition, there must exist a
transition (qm, G→σ', q'm, xq'm

0) in some EHMm, that
triggers the transition. Note that for simplicity, we do not
write the output events and initial conditions, they are
inferred from the EHMs.

We use EHMs to model ISs and ISRs. The overall
system is then described by the CHM. Since the above
construction of a CHM from EHMs can be implemented
automatically by a computer, a designer need only
specify the EHMs. For the systems we have
considered, the number of vertices in EHMs describing
ISs is usually between 5 and 10. The EHM describing
the SS may contain far more vertices, but there is only
one such EHM in a system.

To specify interrupt latency requirements, we identify an
illegal vertex in each EHM model of an IS. In other
words, when the exhibited interrupt latency exceeds a
given bound, the EHM will enter the vertex labeled
illegal via a dynamic transition guarded by G=[t>b],
where t is the waiting time and b is the given bound. A
configuration in the CHM is illegal if at least one of its
vertices is illegal. The set of illegal configurations is
denoted by Qb. Clearly, the interrupt latency
requirements will be violated in some runs of the system
if and only if at least one illegal configuration can be
reached from the initial configuration.

MODELING OF MICROPROCESSOR SYSTEMS

This section outlines the modeling of microprocessor
systems. The goal of modeling is to model the system
as a collection of EHMs, which can then be combined to
obtain a CHM, and the CHM can be checked for the
reachability of illegal configurations. An EHM timing
model of a microprocessor system with ISs and ISRs
must involve separate EHMs for each IS as well as a
separate EHM for the SS. The reason for this modeling
requirement is that, except for certain events which
force synchronization between separate EHMs, each IS

6 This assumption significantly simplifies the reachability
algorithm to be presented, although we do have a
second and more complex algorithm that can handle
open systems. Note that this assumption is made
without essential loss of generality, because we can
model the environment by an additional EHM that
triggers the event transitions at an arbitrary time by
using nondet().

and the SS may change state independently. An
interrupt source (such as a UART) may change state in
response to a significant event (such as a received
character or the passage of time) without affecting other
ISs or the SS. Software, of course, may change state
without affecting any IS.

Before we describe modeling in detail, we need to clarify
two subtle modeling points. First, the AIL is not a
constant (it varies with the state of the system); and
second, the AIL will not appear explicitly in any EHM.

Up to this point, we have described the AIL as if it were
a constant. In practice, the AIL will change with the
state of the system. Consider a free-running 16-bit
counter (i.e. a timer) which is interfaced to the SS so
that it generates an interrupt and causes execution of
the same ISR (a)when the counter reaches the value of
F00016; and (b)when the counter rolls over from FFFF16

to 000016. Depending on how this IS is used in the
system, there may be the requirement that the ISR
complete before the hardware interrupt is asserted
again. In this example, this would imply that half of the
time when the interrupt is asserted, a relatively short AIL
is involved (on the order of 0FFF16 counts of the free-
running counter); but that the other half of the time, a
relatively long AIL is involved (on the order of F00016

counts of the free-running counter). Furthermore, which
of the two AIL values is appropriate is not random—the
AIL alternates in a perfectly reliable A-B-A-B-… pattern.

The key salient point about the timer example above is
that the patterns of interrupts which have occurred in the
past place restrictions on (and hence supply information
about) the patterns of interrupts which may occur in the
future. The timer example is by no means contrived or
unique in this regard. In our modeling work, we have
found qualitatively similar examples involving UARTs,
timers, and network communication peripherals. We
should further add that this phenomenon is not restricted
to one IS at a time—certain forms of “collusion” between
different ISs are also possible. Consider two network
communication peripherals (on the same network) which
are interfaced to the same microprocessor. Assume
that each of the two communication peripherals will only
receive a certain set of network messages, and that the
two message sets are mutually exclusive. If the
physical characteristics of the network are such that only
one message can be transmitted at a time, a receive
interrupt asserted by one of the two communication
peripherals places strong restrictions on when in time a
receive interrupt may be asserted by the other
communication peripheral. Similar collusion may exist
between transmit and receive interrupts in the same
communication peripheral.

The strength of our approach is that it can consider the
interrupt history of the system (if the system is modeled
well), and thus can treat an AIL which is state-
dependent. We are able to model ISs where past
patterns of interrupts place restrictions on future patterns

6

of interrupts, and systems where ISs collude. Our
approach represents a necessary-and-sufficient test of
any system that we can model in our framework, rather
than a sufficient test.

It should also be noted that in practice the AIL will never
appear explicitly in any EHM. We have defined the AIL
to be the maximum allowable time between the
assertion of an interrupt by an IS and the start of
execution of the associated ISR. EHM IS models simply
contain transitions to the illegal configuration (ILC). In
principle it would be possible to manually determine the
AIL from the EHM models by starting at the IS ILC and
working backwards while simultaneously examining the
ISR EHM and the interactions between the IS and the
ISR, in order to determine the latest relative time the
ISR can start while avoiding the ILC. However, we have
never done this and we suspect it would be tedious for
complex models.

OVERVIEW OF MODELING SOFTWARE SYSTEMS

Figure 2 shows the EHM timing model of a software
system (SS). The system has one RTPI (ready to
process interrupts) configuration, which models the SS
as it is executing instructions and is able to be
interrupted. ISs use an SV as an interface to the SS to
indicate that they require service; we call this SV the
RSSV (requesting service SV). At any time when no
ISs are asserting an RSSV, the SS may enter a critical
section (CS), which is a series of instructions executed
with interrupts disabled. During a critical section, the
software may not enter an ISR. Once the SS begins
executing an ISR, another ISR may not begin execution
until the SS returns to the RTPI configuration. We refer
to an ISR which must run to completion as an atomic
ISR. Non-atomic ISRs are treated as an exceptional
case and discussed seperately.

Figure 2 shows that a CS may be entered at any time
when no IS is asserting its RSSV. The guard on entry to
the CS will reflect this aspect of a practical system—
microprocessor hardware is almost always designed so
that if multiple interrupts are pending, no non-ISR
instruction will be executed until no interrupt is pending.
In the figure, the CS guard contains an event σ, which is
an input event from the environment. This denotes that
the CS may or may not be entered when no IS RSSV is
pending. In other words, σ is a shorthand for an event
which may occur at an arbitrary time.

For our modeling, we assume that the execution time of
the CS may be in a certain range, with the lower bound
derived from the shortest CS in the SS, and the upper
bound derived from the longest CS in the SS. We are
not confident that it is adequate to model the CS as the
longest CS in the SS (that is, replacing t=nondet(L,U) by
t=U), as we have found counterintuitive examples in our
modeling where a longer CS delays the start of

execution of a lower-priority ISR until a higher-priority
ISR also becomes pending, and hence avoids rather
than aggravates an AIL violation (for the higher-priority
ISR). We believe it may be possible to accidentally
construct a practical system where the system may
violate its AIL requirements with a shorter CS but may
not violate its AIL requirements with a longer CS. This
requires further investigation. Assuming that the CS
execution time falls into a range circumvents this
uncertainty7.

RTPI

ISR1 ISR2 ISRN CS
t'= -1

...
G1 G2 GN

t< 0

t= randam(L,U)
σ ∧ ¬ G1 ∧ ¬ G2 ∧ … ∧ ¬ GN

Figure 2: EHM Model Of Software System

IS EHMs signal the SS EHM that an interrupt is asserted
through the RSSV belonging to the IS. If the RSSV is
set to indicate that the IS requires service, the guard of
the transition leaving RTPI will be chosen to allow the
SS EHM to enter the appropriate ISR.

In a microprocessor system, the digital hardware
assigns priorities. If multiple ISs require service when
the SS becomes RTPI, the ISR to be entered is chosen
using a fixed priority scheme. This behavior can be
captured in the SS EHM by choosing the guards so that
a lower-priority ISR cannot be entered while any higher-
priority IS requires service.

To illustrate the modeling of priority resolution in
hardware, consider a system with three ISs, each with
an associated ISR. Assume that IS1 has the highest
priority, followed by IS2 and then IS3; and that the
semantics of the RSSVs require a value of zero if no
service is required, and a value greater than zero if
service is required. For this example, suitable guards
are shown below.

G1: RSSV1 > 0
G2: RSSV2 > 0 ∧ RSSV1 ≤ 0
G3: RSSV3 > 0 ∧ RSSV2 ≤ 0 ∧ RSSV1 ≤ 0

This strategy for the construction of guards can be
extended indefinitely.

7 Our uncertainty lies with the nature of practical
systems rather than with the nature of the mathematical
framework. We know it is possible to model such a
system within the hybrid system framework, but we are
uncertain if any practical system would have this
characteristic.

7

Figure 2 is diagrammatic only, to show the major
features of the SS EHM. In Figure 2, the rectangles
labeled as ISRs represent the bodies of the ISRs—in a
practical SS model, each ISR may entail high
complexity and consist of at least several
configurations, with multiple transitions leading back to
RTPI.

OVERVIEW OF MODELING SOURCES OF
INTERRUPT

Figure 3 gives a diagrammatic EHM model of an IS. An
IS is modeled to have a unique initial configuration. The
configurations of an IS EHM can always be divided into
three mutually exhaustive and mutually exclusive
categories:

• Configurations in which the IS does not require
service.

• Configurations in which the IS requires service.
• Illegal configurations.

σ
RSSV=0

INTERRUPT_NOT_PENDING
(Initial Configuration)

INTERRUPT_PENDING

ILLEGAL
(Illegal Configuration, or ILC)

RSSV= 0

G1

RSSV= 1

G2

Figure 3: EHM Model Of Interrupt Source

Figure 3 shows the three categories of configurations
that will be present an EHM IS model. The
microprocessor system will normally reset into a state
where no IS is requesting service, hence the initial
RSSV of zero. After the system begins operation, at
some point the IS may change configuration so that it is
requesting service from the SS; G1 may involve both
time and events. Once the IS is requesting service,
exactly two outcomes are possible. Either the SS will
interact with the IS in a timely fashion to bring the IS to
a configuration where it is no longer requesting service
(in the figure, σ represents an OE from the SS EHM
which effects a state change in the IS), or else
eventually G2 will be met and the configuration of the IS
will be deemed illegal.

Figure 3 is diagrammatic only, in that almost no
practical IS can be modeled with only three

configurations. Each rectangle in the figure represents
a set of configurations. The configuration of the IS will
typically evolve through many configurations before the
IS requests service, hence G1 in the figure is not a
single guard, but rather a collection of guards on
potentially many transitions which define the boundary
or the horizon between the set of configurations where
the IS is not requesting service and the set of
configurations where the IS is requesting service. G2

and σ are boundaries or horizons in the same sense.

Although this is not required by the underlying
mathematical framework, our design rules (presented
later) embrace models where the RSSV is assigned
consistently in each transition into a configuration, so
that the RSSV is a function of the configuration only.

Each IS model has a single illegal configuration (ILC).
All transitions leading into the ILC reflect a situation
where the SS was not able to prevent an undesirable
state change in the IS through timely interaction. In a
practical system, events which lead to the ILC may be a
buffer overflow (in the case of a UART), a missed
message (in the case of a network communication
peripheral), or a periodic interrupt which is not fully
processed before the next similar interrupt occurs (a lost
“timetick”).

The transitions leading into the ILC may represent
situations which are very disparate in their nature and
severity; the only requirement is that these situations are
arbitrarily deemed undesirable in the system. It is not
required that each transition leading into the ILC
represent a catastrophic event. It would be possible, as
a modeling example, to tighten the notion of desirability
in order to ensure a system with a certain safety factor
or timing margin, or to rule out severe jitter in a timetick
ISR.

For the modeling approach presented here, the EHM
timing model ceases to represent the modeled system
at the ILC boundary. The timing models constructed
therefore do not accurately model the behavior of a
system in which any ILC is reachable. In practice, this
tends to be because the ILC is a modeling “catch-all”,
which may map to many disparate undesirable
configurations in the modeled system. Mathematically,
this point is more profound—if no ILC is reachable, then
the ILCs can be discarded from the CHM, in effect they
are not truly part of the model.

OVERVIEW OF INTERACTIONS BETWEEN
SOFTWARE SYSTEM AND SOURCES OF
INTERRUPT

As we explored the adequacy of the hybrid system
mathematical framework in solving the interrupt latency
compatibility problem, about a dozen pairs of EHM
models were developed for ISs and their corresponding

8

ISRs. We have noted similarities in all of our refined
models, and these similarities suggest preferred
modeling approaches or design rules, which we present
here.

1. Each IS EHM maintains a single RSSV, with a value
of zero indicating that no service is required, and a
value greater than zero indicating that service is
required.

2. RSSVs appear in the guards of transitions in the SS
EHM leading from the RTPI state, with hardware
interrupt priority resolution modeled as discussed
earlier.

3. Within each of the ISRs of the SS EHM,
assumptions can be made about the configuration of
the corresponding IS, so it is known that OEs from
the SS will have a specific effect on the
configuration of the IS.

4. Each IS has exactly one ILC, which is a modeling
“catch-all” for any situation deemed arbitrarily
undesirable.

5. Each RSSV is assigned consistently in IS transitions
so that it is a function of the IS configuration only.

6. In addition to the RSSV, each IS may maintain
additional SVs which allow the ISR model to “sense”
the state of the IS and make branch decisions based
on this state.

7. An IS is designed so that an RSSV may not go from
a value greater than zero to a value of zero or less
without intervention from the corresponding ISR8.

8. Once an ISR is entered, the IS and the ISR may
interact in an arbitrary fashion. Typically, the ISR is
modeled to be a source of OEs which drive the state
of the IS, and the ISR transitions contain guards
involving SVs owned by the IS.

9. ISRs each contain at least one exit to the RTPI
configuration.

In the following sections, models for typical ISs and their
corresponding ISRs are presented. Each of these
models adheres to the design rules presented above.

PERIODIC INTERRUPT SOURCES

8 Practical ISs never release an asserted interrupt
without SS intervention. If this design guideline is
violated, guideline (3) cannot be applied, as the ISR has
no assurances about the range of configurations of the
IS.

Figure 4 depicts the EHM model of a periodic IS. In
configuration A (the initial configuration), the continuous
variable t advances with t’=1 to mimic elapsed time.
When t becomes equal to K1 (the period of the IS), the
transition to configuration B is taken, the RSSV is set to
signal that the IS requires software intervention, and t is
set to zero to begin measuring the next period. If the
SS interacts with the IS before K2 elapses by sending σ,
the IS drops its request for service. If the SS does not
interact with the IS in a timely fashion, K2 elapses and
the IS reaches the ILC. For a typical practical system,
K2<K1, since usually an ISR must begin to run before
the next periodic interrupt. Note that K2 can be set
arbitrarily within this constraint to limit jitter of the
associated ISR.

Figure 4: Periodic IS

CONSTANT EXECUTION TIME ISRS

Figure 5 depicts an ISR with constant execution time.
This ISR is a typical companion to Figure 4, as a
“timetick” ISR often has a constant execution time. On
the transition out of RTPI, the OE σ is sent to the IS to
effect a state change9, and an elapsed timer is reset.
The SS EHM remains in its single configuration until the
modeled constant execution time K is exhausted, then it
returns to the RTPI configuration.

9 This is an application of design rule (3), the ISR can
assume that the IS is asserting an interrupt; otherwise,
the guard in the SS model would prevent the ISR from
being entered.

9

t'=1

From RTPI

[GN ∧ ¬ G1 ∧ ¬ G2 ∧ … ∧ ¬ GN-1]
t=0
σ

To RTPI

[t ≥ K]

Figure 5: Constant Execution Time ISR

It is easy to see that through the introduction of an
additional configuration, a constant execution time ISR
can include a startup delay before it interacts with the
IS. In practice, an ISR is almost never free to
immediately interact with an IS when it begins
execution. We hinted previously that the AIL never
appears directly in an EHM. It should be clear from the
notion of this type of startup delay that both the ISR
EHM and the IS EHM need to be considered
simultaneously to calculate the AIL from the EHM
models.

ALTERNATING EXECUTION TIME ISRS

In practice, it often occurs that an ISR will vary its
execution time in a repeating pattern. Such patterns are
especially common in “timetick” ISRs which have been
“divided down”; that is, implemented so as to perform
their primary function during only a rational fraction of
their invocations.

Figure 6 depicts an ISR with an alternating execution
time. The execution time of this ISR alternates between
P1 and P2 in an A-B-A-B-… pattern. This ISR is a
typical companion to Figure 4. Note that an additional
continuous variable x is used to allow the ISR to hold
state between modeled invocations. It is easy to see
that this mechanism can be extended to arbitrary
repeating patterns.

t'=1

[x≤0 ∧ GN ∧ ¬ G1 ∧ ¬ G2 ∧ … ∧ ¬ GN-1]
t=0
x=1
σ

[t ≥ P1]

RTPI

t'=1

[x>0 ∧ GN ∧ ¬ G1 ∧ ¬ G2 ∧ … ∧ ¬ GN-1]
t=0
x=0
σ

[t ≥ P2]

Figure 6: Alternating Execution Time ISR

QUEUED RECEIVER PERIPHERAL INTERRUPT
SOURCE AND ISR

In practical systems, primarily due to queued ISs, an
ISR may have an execution time that increases with
increasing interrupt latency. Phrased more colloquially,
the longer you wait, the worse it can get. We feel that
any modeling framework must capture this aspect of a
practical system. An example of a typical queued
communication peripheral is the 16550 UART, which
contains a queue of 16 bytes.

We are aware of two modeling approaches that can
treat such devices within the framework of hybrid
system EHM models.

1. The queued IS can be modeled as having a
continuous queue state (although a practical IS will
have a discrete queue state). This is the approach
presented here.

2. The queued IS can be modeled as having a discrete
queue state, i.e. the queue state can be captured in
the EHM configuration. For an IS containing a small
queue, this approach is practical. We will not supply
the details here, as this approach is intuitive.

10

q' = 0

q=0
RSSV=0

A

q' = R1

B

σ1

q' = R1

C

ILC
E

q' = R1-R2

D

[q ≥ L1]
RSSV=1

σ2

[q ≤ 0]
RSSV=0

[q ≥ L2]

Figure 7: EHM Model Of Queued Receiver IS

We prefer modeling the queue state as continuous, as it
reduces the number of configurations in the resulting
CHM. In practical systems, an ISR tends to loop until
the IS queue is depleted, and the execution time cost
per item removed is approximately constant. We feel
fairly confident in modeling a queue with a discrete state
using a continuous variable, in that the continuous
model of the ISR can be designed to require at least as
much execution time as the discrete model, in the same
sense as ∀ x, �x� ≤ x. However, we do not claim that this
replacement of a discrete queue state by a continuous
queue state is mathematically valid or without potential
peril10.

10 The implicit (and invalid) assumption behind such a
substitution is that a longer ISR execution time is
“worse”, so that a system which shows AIL compatibility
with the continuous IS model will also show AIL
compatibility with the discrete IS model. Although we
believe this logical implication will hold for almost any
practical system, it will not hold in the general case, and
this can be shown by a compact counterexample.

[RSSV > 0]
σ2

[RSSV ≤ 0]

From RTPITo RTPI

Figure 8: EHM Model Of Queued Receiver ISR

Figures 7 and 8 show EHM models of a queued receiver
IS and the associated ISR, respectively. In interpreting
the figures, assume that q represents the occupancy of
the queue, that the IS will assert a hardware interrupt
when the queue fills to L1, that the queue has capacity
L2, that the queue can fill at the rate R1, and that the
software can empty the queue at rate R2.

The IS EHM (Figure 7) begins in configuration A with
q=0 (an empty queue) and RSSV=0 (not requesting
CPU attention). At an arbitrary time, environmental
input event σ1 will cause the IS to assume configuration
B. In configuration B, the queue begins to fill at rate R1.
When the queue reaches L1, the IS assumes
configuration C, in which it is requesting attention from
the CPU. If the software ISR fails to intervene in time
and the queue reaches L2, the ILC will be entered;
otherwise the ISR will send event σ2, which will cause
the queue to empty at the rate R1-R2 until the queue is
empty. The ISR EHM model (Figure 8) is substantially
simpler, it simply waits in a configuration for the IS
queue to empty.

NON-ATOMIC ISRS

By atomic ISR we mean an ISR which will always run to
completion because it cannot be interrupted by any
other ISR. We have found that software developers
intuitively avoid non-atomic ISRs. Most experienced
software developers have seen more than one elusive
software defect traced to improper treatment of
interrupts, and consequently will intuitively attempt to
limit the freedom of the SS by allowing only atomic
ISRs. Most microprocessor SSs involve only atomic
ISRs.

11

It occasionally occurs, however, that a collection of ISs
and ISRs are mutually incompatible with respect to AIL,
and that compatibility can be achieved by making at
least one ISR interruptible by higher-priority ISRs.
Fortunately, most microprocessor interrupt hardware is
very flexible, in that substantial control is available over
when a certain priority of ISR can be interrupted, and by
which other ISRs it can be interrupted.

If reachability analysis shows that AIL violations are
possible, we propose the following modeling and
software design approach to create a system without
potential AIL violations.

A lower-priority ISR should be divided into an integral
number of segments of approximately equal execution
time. The number of segments must be chosen so as to
relieve the AIL problem and create a system where no
AIL violation is possible, i.e. for a system that is almost
satisfactory, N=2 (a bisection) would be appropriate, but
for more severe timing problems a larger N may be
required. Figure 9 shows the SS model resulting from
our approach (with N=3, a trisection) applied to a system
with two ISRs, where ISR1 is the higher-priority ISR and
ISR2 is the lower-priority ISR. Note that the model of
ISR1 now appears in three places in the SS EHM. Note
also that the guards implement priority resolution, and
only allow ISR2 to be interrupted at certain points.

Figure 9: EHM Model Of SS With Non-Atomic ISR

If reachability analysis shows that the modified system
cannot exhibit AIL violations, then the actual software
should be modified by inserting interrupt windows in the
lower-priority ISR. Such windows would typically consist
of an instruction which enables interrupts immediately
followed by an instruction which disables interrupts.
These windows would allow the lower-priority ISR to be
interrupted, but only at certain points. We feel that an
approach using interrupt windows is safer than allowing
the lower-priority ISR to be interrupted at an arbitrary
point.

ADDITIONAL MODELING SCENARIOS

The examples presented in the preceding sections
illustrate the hybrid system modeling of ISs and the SS.
The examples have been chosen to demonstrate the
EHM modeling of essential features of a microprocessor
system.

In practice, ISs and ISRs are not qualitatively different
than the examples, but they are often far more complex.
To model complex ISs, it has sometimes been useful to
create an IS which consists of multiple EHMs. For
example, to model a network communication peripheral
which has a receive queue consisting of RAM storage
for a certain integral number of messages, it might be
natural to decompose the model into a transmit EHM, a
receive EHM, a receive queue EHM, and an EHM which
generates network physical medium timing. These
EHMs interact using the two interface mechanisms
allowed under the hybrid system framework (SVs and
events which are generated by one EHM and accepted
by another). It has also been convenient to use guards
where the atomic formulas involve comparisons of SVs
against each other rather than against constants.
Collusion between ISs can also be modeled using SVs
and passed events.

We have not yet encountered and do not anticipate
encountering a practical system which cannot be
evaluated for interrupt latency compatibility using the
hybrid system method we have proposed.

VERIFICATION ALGORITHM

Since an algorithm for verifying that the interrupt latency
compatibility requirement is satisfied is equivalent to an
algorithm for checking reachability in the CHM, we
present a reachability algorithm in this section.

The essence of our algorithm is as follows. We start
from an illegal configuration q'. It will be reached from a
legal configuration q only when one IS goes without
service from the SS for too long; that is, when the AIL of
the IS is violated or equivalently when G=[t>b] becomes
true. This is illustrated in Figure 10. Such a transition is
called illegal. Denote the set of illegal dynamic
transitions from q by DT(q, Qb).

Iq Iq’

G

Figure 10. From Legal to Illegal

In order to guarantee that a transition (q,G,q’)∈
DT(q,Qb) will not take place and result in the violation of
an AIL requirement, some other transitions from q (to

12

some legal configurations) must occur before (q,G,q’)
can occur. In other words, (q,G,q’) must be preempted
by some other transitions. This may or may not be
possible depending on the continuous variable x at q.

To find a preemptive condition for transition (q,G,q’), we
recall our assumption that the invariant Iq is violated if
and only if one of the guards at q is satisfied. Under this
assumption, the transition (q,G,q’) will be preempted by
another dynamic transition from q if and only if the time
when G will become true is larger (that is, later) than the
time when will Iq become false. Denote the time when
the predicate P will become true by T(P). We can
calculate T(P) as follows, starting from atomic formulas.

Case 1: P=[si≥Ci] or P=[si>Ci], where si is an SV and
Ci is a constant. By our assumption on continuous
dynamics, si has a constant rate: si = ri. Therefore,
T(P) can be calculated as follows.

T P

if s C

C s r if s C r

otherwise

i i

i i i i i imin() () /=

>

− < ∧ >

∞

�

�

�
�

�

�
�

0

0

Case 2: P=[si≤Ci] or P=[si<Ci].

T P

if s C

C s r if s C r

otherwise

i i

i i i i i imin() () /=

<

− > ∧ <

∞

�

�

�
�

�

�
�

0

0

Case 3: P=P1∧ P2.

T(P)=max{T(P1), T(P2)}.

Case 4: P=P1∨ P2.

T(P)=min{T(P1), T(P2)}.

Case 5: P=true.

T(P)=0.

Case 6: P=false.

T(P)=∝ .

Now, the condition to preempt an illegal transition
(q,G,q')∈ DT(q,Qb) is given by

pc(q,G,q')=[T(G)>T(¬ Iq)].

Here we assume that the weakest precondition is always
satisfied, that is, G�wp(q,G,q’). Otherwise, we will
modify the preemptive condition as

pc(q,G,q')=[T(G∧ wp(q,G,q'))>T(¬ Iq)].

Using this preemptive condition, we can split the
configuration q into two sub-configurations: good con-
figuration qg and bad configuration qb by partitioning the
invariant Iq as

Iqg=Iq∧ pc(q,G,q')
Iqb=Iq∧¬ pc(q,G,q').

Clearly, the dynamics of and the transitions leaving and
entering the configurations qg and qb are the same for q,
except that the transition (q,G,q') is now impossible.

If there is more than one illegal dynamic transition at q,
then we will split q into qb and Iq as follows.

Iqg=Iq∧ (∧ (q,G,q)∈ DT(q,Qb) pc(q,G,q'))
Iqb=Iq∧¬ (∧ (q,G,q)∈ DT(q,Qb) pc(q,G,q')).

From the above discussion, we can now formally
describe our reachability algorithm.

REACHABILITY ALGORITHM

Input

•The model of the system

CHM=(Q,Σ, D, I, E, (q0, x0)).

•The set of illegal configuration

Qb⊆ Q.

Output

•The set of good invariants Iqg

GI={ Iqg: q∈ Q}.

Execution

Initialization

1. P:={ qg: q∈ Q};

2. R:={ qb: q∈ Q};

3. For all q∈ Q-Qb do

13

Iqg:=Iq;

Iqb:=false;

4. For all q∈ Qb do

Iqg:=false;

Iqb:= Iq;

5. Stop:=true;

Iteration

6. For all q such that Iqg≠false do

H:=∧ (q,G,q’)∈ DT(q,R) pc(q,G,q’);

If Iqg≠Iq∧ H then

Iqg:=Iq∧ H;

Iqb:=Iq∧¬ H;

Stop:=false;

7. If Stop=true, then go to 10;

8. Stop:=true;

9. Go to 6;

10. End.

This algorithm takes the CHM model of the system and
the set of illegal configurations Qb as inputs. Both CHM
and Qb can be obtained automatically from the EHMs as
described in the previous section. The algorithm first
makes two copies qg and qb for each configuration q. It
then repeatedly partitions the invariant Iq into good
invariant Iqg and bad invariant Iqb. The initial partition is
straightforward. Subsequent partitions require the
computation of preemptive conditions. The output of the
algorithm is the set of good invariants GI={ Iqg: q∈ Q}.

Various information can be derived from GI={Iqg: q∈ Q}.
For example, interrupt latency requirements will not be
violated if and only if for the given intial condition (q0,
x0), the good invariant at the initial configuration Iq0g is
satisfied by x0, that is,

Iq0g x= x0=true.

EXAMPLE: HYBRID SYSTEM MODEL OF
MICROPROCESSOR SYSTEM WITH REACHABILITY
SOLUTION

To illustrate our approach, we consider a small example.
The system consists of two sources of interrupts, IS1 and
IS2. Both request interrupt service periodically, with
periods T1 and T2, respectively. The corresponding
interrupt service routines ISR1 and ISR2 are executed on
the same CPU, with priority given to IS1. It takes the
CPU C1 and C2 units of time to execute ISR1 and ISR2

respectively. We assume that both ISRs are atomic.
The interrupt latencies cannot exceed the deadlines
d1=T1-C1 and d2=T2-C2 respectively. In other words, the
interrupt service routines must be completed before the
next period. We will show how this problem can be
solved using our approach.

To model the interrupt sources ISi, i=1,2, we use the
EHMi shown in Figure 11.

ti’=1
[ti<di]

ti’=1
[ti<Ti]

Illegal

Ai

Bi

Ci

[ti>di] -> Ai=0

starti -> Ai=0[ti>Ti] -> ti=0, Ai=1

Figure 11. ISRi EHM

EHMi has three vertices: in configuration Ai an interrupt
is pending, and configuration Ci is illegal. SV ti models
the clock and SV Ai indicates whether the EHMi is in
vertex Ai (it is the RSSV). Constant di=Ti-Ci is the
deadline for waiting. Event starti represents the start of
the interrupt service routine ISRi. The initial vertex is Ai

and is indicated by arrow ->.

The ISRs are modeled by EHM3, shown in Figure 12.

14

t’=1
[t<C1]

t’=1
[t<C2]

X

Z

Y

[A1=1] -> start1, t=0

[A1=0∧ A2=1] -> start2, t=0[t>C2]

[t>C1]

Figure 12. EHM3

EHM3, representing the SS, has three vertices as
follows.

X: ready to execute interrupt service routines;
Y: executing ISR1; and
Z: executing ISR2.

The parallel composition EHM1||EHM2 is shown in
Figure 13, where only four configurations A1A2, A1B2,
B1A2, and B1B2 are legal. In the figure, we do not show
the transitions between illegal configurations because
they are not important. In fact, all the illegal
configurations can be combined into one.

B1C2

C1A2C1C2

A1C2

C1B2

A1A2

B1A2

A1B2

B1B2

[t1>d1] [t1>d1]

[t2>d2]

[t1>T1]

[t2>d2]

[t2>T2]

start1 start1

start2

start2

[t1>T1]

[t2>T2]

Figure 13. EHMi ||EHM2

The overall system is modeled by

CHM=EHM1||EHM2||EHM3

which can be constructed similarly.

Using our algorithm, we can determine if the illegal
configurations in the CHM are reachable from the initial
configuration. This, of course, depends on the values of
Ti and Ci. The following cases have been verified.

Case 1: T1=5, T2=4, C1=3, C2=2. In this case, we find
that the illegal configurations are reachable from the
initial configuration. Therefore, the interrupt latency
requirement is violated.

Case 2: T1=8, T2=3, C1=5, C2=2. In this case, we find
that the illegal configurations are reachable from the
initial configuration. Therefore, the interrupt latency
requirement is violated.

Case 3: T1=5, T2=8, C1=1, C2=1. In this case, we find
that the illegal configurations are not reachable from the
initial configuration. Therefore, the interrupt latency
requirement is not violated.

Case 4: T1=17, T2=4, C1=3, C2=1. In this case, we find
that the illegal configurations are reachable from the
initial configuration. Therefore, the interrupt latency
requirement is violated.

Case 5: T1=5, T2=6, C1=3, C2=2. In this case, we find
that the illegal configurations are reachable from the
initial configuration. Therefore, the interrupt latency
requirement is violated.

Case 6: T1=80, T2=40, C1=3, C2=2. In this case, we find
that the illegal configurations are not reachable from the

15

initial configuration. Therefore, the interrupt latency
requirement is not violated.

SOFTWARE IMPLEMENTATION OF ALGORITHM

For a practical microprocessor system, determining
interrupt latency compatibility using the hybrid system
algorithm presented here requires a computer solution.
The upper bound on the number of CHM configurations
for which a manual determination of reachability is
practical is on the order of 20. In contrast, the practical
microprocessor systems we have encountered would
generate CHMs with on the order of 40,000 to 100,000
configurations. Reachability algorithms cannot be
applied to such systems by hand.

A fair number of problems can be embedded in the
hybrid system framework, including a classic steam
boiler problem [2]. It has been our experience that most
problems which are amenable to modeling using a
hybrid system framework involve either software alone
or software in control of a physical plant. We feel that
the number of problems which require analysis using a
hybrid system framework is adequate to spawn the
commercial development of computer tools. We also
feel that the number of such problems is growing, due to
the proliferation of computer-controlled systems. As of
this writing, we are aware of three companies engaged
in the for-profit development of computer tools for the
analysis of hybrid systems.

ACKNOWLEDGMENTS

We would like to gratefully acknowledge the support of
the management team at Visteon (Dan Presidio, Dave
Patterson, Chuck Minear, Dave Avery, Marian
Mahoney, Joe DeVoe, and Nick Sarafopoulos), whose
quest for product excellence led to the funding of this
effort and the freedom to pursue a solution to this
problem in the workplace. We also gratefully
acknowledge the support of the technical professionals
at Visteon who shared with us their expertise and
exhaustive insight into this problem and the constraints
on the solution; especially Joao Silva, Kevin Tiedje, Bob
Crawford, and Karl Overberg.

CONTACT

For further information, please contact Dr. Feng Lin,
Department of Electrical and Computer Engineering,
Wayne State University, Detroit, MI 48202, Tel: (313)
577-3428, Fax: (313) 577-1101, email: flin@ece.eng.
wayne.edu, home page: www.ece.eng.wayne.edu/~flin.

REFERENCES

1. Audsley, Neil C.; Burns, Alan; Davis, Robert I.;
Tindell, Ken W.; Wellings, Andy J.. Fixed Priority
Pre-emptive Scheduling: An Historical Perspective.
Real-Time Systems v 8 n 2-3 Mar-May 1995 pp.
173-198.

2. M. Heymann, F. Lin and G. Meyer, 1997. Control
Synthesis For A Class Of Hybrid Systems Subject
To Configuration-Based Safety Constraints. NASA
Technical Memorandum 112196.

3. Park, Dong-Won; Natarajan, Swaminathan;
Kanevsky, Arkady. Fixed-priority Scheduling Of
Real-time Systems Using Utilization Bounds.
Journal of Systems and Software v 33 n 1 Apr 1996
pp. 57-63.

4. Park, Dong-Won; Natarajan, S.; Kanevsky, Arkady;
Kim, Myung Jun. Generalized Utilization Bound
Test For Fixed-Priority Real-Time Scheduling
Proceedings of the 1995 2nd International
Workshop on Real-Time Computing Systems and
Applications Oct 25-27 1995 Tokyo Japan pp. 73-77.

5. Liu, C.L.; Layland, James W. Scheduling
Algorithms for Multiprogramming In A Hard Real-
Time Environment. Journal Of The ACM, v 20 n 1,
January 1973, pp. 46-61.

6. M. Heymann, F. Lin, and G. Meyer, “Synthesis And
Viability Of Minimally Interventive Legal Controllers
For Hybrid Systems”, Discrete Event Dynamic
Systems: Theory and Applications, 8(2), pp. 105-
135.

DEFINITIONS/ACRONYMS/ABBREVIATIONS

AIL
Allowable interrupt latency, the maximum delay
(without ill effects) between the assertion of an
interrupt in hardware and the start of execution of
the associated interrupt service routine.

CHM
Composite hybrid machine, a collection of
configurations and transitions formed by performing
a parallel composition of several EHMs. Note that a
CHM is structurally identical to an EHM (form of
configurations and transitions), but a CHM will
contain many more configurations than an EHM.

Configuration
The discrete part of the state vector of an EHM or
CHM. In our drawings, configurations are shown as
rectangles and are linked together by transitions.
Because an EHM or CHM also contains continuous
state variables, the state vector of an EHM or CHM
is hybrid. We use configuration to refer to the
discrete part only.

CS
Critical section, a sequence of machine instructions
executed with hardware interrupts disabled. Critical

16

sections are commonly used to properly share
resources (data structures, hardware) between ISR
and non-ISR software components, or to guarantee
reliable timing of a sequence of instructions. Critical
sections are relevant to the interrupt latency
compatibility problem because they may delay the
start of an ISR.

EHM
Elementary hybrid machine, a collection of
configurations, dynamics, and transitions.

ILC
Illegal configuration, a configuration in an EHM
which is deemed arbitrarily undesirable.

IS
Interrupt source, a hardware peripheral which can
generate a hardware interrupt, such as a timer or a
communication peripheral.

ISR
Interrupt service routine, a software component
which is executed in response to a hardware
interrupt.

OE
Output event, an event generated by an EHM. An
output event of one EHM may be an input of
another EHM.

RMA
Rate-monotonic analysis, a body of mathematical
results derived from a paradigm involving software
processes with a constant rate of execution and a
constant execution time.

RSSV
Requesting service shared variable, a shared
continuous variable used by an interrupt source
EHM to indicate to the SS EHM that service is
requested.

RTPI
Ready to process interrupts, a single configuration in
our model of a software system, during which the
software is free to process interrupts by executing
an ISR.

SS
Software system, the EHM model of the software
system including ISRs and CSs.

SV
Shared variable, a continuous variable which is
assigned by exactly one EHM and may be tested by
an unlimited number of other EHMs.

UART

Universal asynchronous receiver transmitter, a
common communication peripheral which can
receive and send serial characters.

